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1 INTRODUCTION

Let G = (V, E) be a graph in which the edges are coloured. A set S C FE is
said to be multicoloured if each edge of S is a different colour. A spanning

tree of G is said to be multicoloured if its edge set is. In this paper we study
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the existence of a multicoloured spanning tree (MST) in a randomly coloured

random graph.

In fact, our main result will concern a randomly coloured graph process. Here
€1,€3,...,en is arandom permutation of the edges of the complete graph K,
and so N = (’2‘) Each edge e independently chooses a random colour c(e)

from a given set of colours W, [W| >n — 1.

The graph process consists of the sequence of random graphs G,,,m =
1,2,...,N, where G,, = ([n], E,) and E,, = {e1,€s,...,€en}. We identify

the following events:

Cm = {G,, is connected }.

Ny = {|W,| > n— 1}, where W,,, is the set of colours used by E,,.
MT ., = {G,, has a multicoloured spanning tree }.

Let &, stand for one of the above three sequences of events and let
me = min{m : &,, occurs},
provided such an m exists. Clearly, if ma 7 is defined,
mm7 > max{me, my},

and the main result of the paper is

Theorem 1 In almost every (a.e.) randomly coloured graph process

mumr = max{me, my}.



To establish the existence of an MST we use a result of Edmonds [2] on
the matroid intersection problem. In this scenario M;, My are matroids over
a common ground set E with rank functions ry,ry respectively. Edmonds’

general theorem on this problem is
max(|/| : I is independent in both matroids) = min (ri(E1) + ra(£)).
1UE2=

FnEs—o

(1)
For us M, is the cycle matroid of a graph G = G,, and M, is the partition
matroid associated with the colours. Thus for a set of edges S, r(S) =
n— k(S) where k(S) is the number of components of the graph Gg = ([n], S)
and 73(S) is the number of distinct colours occurring in S. If i € W then C;
denotes the set of edges of colour ¢ and for I C W, C; = U;c; C;. We will

use Edmonds’ theorem as follows:

Theorem 2 A necessary and sufficient condition for the existence of an

MST is that

k(Cr) < [W|+1— |1 for all I CW. (2)
Proof To see this, w.l.o.g. restrict attention in (1) to E, of the form C;
and then take I = W\ J in (2). O

2 Proof of Theorem 1

Observe first that if w = w(n) — oo slowly, then in a.e. randomly coloured

graph process
me > mo = [3n(lnn — w)] and my < my = [n(lnn +w)].
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Fix some m in the range [mg, m;| and let w,, = |W,,|. We define the event
A ={31 CWp, |I| =k : k(C1) > wy,, — |I| + 2}

We know that if m > max{m¢, my} and there is no MST then A; occurs
for some k € [3,w, — 1] (A; U Ay cannot occur since the colours of W,
are all used and A, cannot occur if G,, is connected.) Take a minimal &,

corresponding set I and let S = Cf.
Claim 1 Gg has no bridges.

Proof If there is a bridge, remove it and all edges of the same colour.

Clearly Aj_1 occurs, contradicting the minimality of k. O

With the notation of Claim 1 suppose then that Gg has ¢ isolated vertices
and n—k+x—1 non-trivial components, z > 1. Since non-trivial components

without bridges have at least three vertices,

i+3n—k+z—1i)<n (3)
or
3 3
> n—Sk+°
) n 2k’+2x
3 3
> n—Sk+°
> n 2k+2

So now let B denote the event

{AICW,,, [I| =k, TC[n]: t=|T| <3(k—1)/2,
all edges coloured with I are contained in T,
there are u > max{k,t} I-coloured edges}.

Here T is the set of vertices in the non-trivial components of G¢,. Thus,

k
NN A C B for k > 3. (4)
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For large k (> 9n/10) we consider a slightly different event.

We first rephrase (2) as
k(Cwyy) < |J]+1 for all J C W. (5)

So if m > max{me¢, my} and there is no MST then there exist £ > 1 colours
whose deletion produces A > £ + 2 components of sizes ny,...,ny (£ =0 is

ruled out by the connectivity of G,,).

Claim 2 Some subsequence of the n;’s sums to between £ + 1 and n/2.

Proof Assume nqy < ng < -+ < my.
If ny > ¢+ 1, one of ny,...,ny_1 and n) suffices.
Suppose then that n; </, 1 <7 < A

Choose r such that

ni+-o+n. <n/2, nitcc 40 >n/2

and then
np+-+n, > n/2—mn.
> n/2—4
> L.
and we can take nq,...,n,. O

Note next that if J is minimal in (5) then each colour in J appears at least

twice as an edge joining components of Ge,, ;-



So if m > max{me¢,my} and there is no MST and A; does not occur for
k < 9n/10 then there is a set L of 1 < £ < w,, — 9n/10 colours and a set S
of size s, £+ 1 < s < n/2 such that (i) all t = n(S) = |(S : S)| > 1 edges
are L-coloured, ((S : S) is the set of edges joining S and S =V \ S), (ii) the
lexicographically first max{2¢—t,0} non-(S : S) edges joining up components
(of the W'\ L coloured edges) are also L-coloured. Let D, denote this event.
Then

wm—1 wm—9n/10

Con N ( U Ak> C U Pr.(Dy). (6)
k=9n/10 =1

It follows from (4) and (6) that

Pr(mar > max{my, m¢}) <

m1 9n /10 Wm—9n/10 mi
o(1) + _Z Lz_g Prp,,(By) + 4—22 Pr,,(Dy) +Pr< U (Crm ﬂ.Awm_l)) )

(7)

Here Pr,, denotes probability w.r.t. G,, and the o(1) term is the probability
that G,,, is connected or that my > my. (Our calculations force us to

separate out A, _1.)

We must now estimate the individual probabilities in (7). It is easier to
work with the independent model G,, p = m/N, where each edge occurs
independently with probability p and is then randomly coloured. For any
event £ we have (see Bollobés [1] Chapter II) the simple bound

Pr,(£) < 3vnlnnPr,(£). (8)

where Pr, denotes probability w.r.t. the model G,.



2.1 Few colours

We thus consider p = alnn/n, 1 —o(1) < a < 2+ o(1). We will initially
assume that |W| =n+ ¢, —1 < ¢ < en where € is some small fixed positive

number (e = .01 is suitable). Then

i <8 8 ) )" ()

sk-1)/2  (3) tot ok, (14+e)k /42,\ Y u
n‘e’ ne t’e ko(lc aklnn
S Z Z tt kk () n ka(l—e)/2 ( ) (9)

t=1 u=max{t,k} 2u n?

Case 1: 3<k <ky=n/(3lnn).

3(k—1)/2 (2) 3, 1—a(1—€¢)/2\ ¥ 2u—t u
e’n t aeklnn
sy < M7 §L(ense oy o ke

t=1 u=max{t,k} n 2u

3(ki)/2 (2% (esnlaue)/?)k t\** (aektlnn\"
- ) ) ()

t= u=max{t,k} n 2un

s=1)2 (%) Anl21-9200k Inn\* 7 i\vt [ aeklnn )"
Z Z 2kn ) (_) < )

t=1 u=max{t,k} n 2n

_ 0 flnn \* .
na(l—0/2

It follows from this and (8) that

IA

gi E:Prm (B) = O((nlnn)(vVnlnn)((Inn)*/n?0-9))

m=mg k=4

= o(1). (10)



For k = 3 we compute Pr,,(B;) directly, but since now u =t = k = 3 is

forced,
2 N-3
n 3 m—3 3 3 (m—3)
< v
Prm(Bs) < (3) <1 n-l—c) (n—i—c) (ﬁ)
= 0(e*(nn)*n=%/?)
and so

S Pro(Ba) = ofL). (11)

m=mg

Case 2: ky < k <n/2.
We now write (9) as

sz () /pai-9/2\F g\ ut foekilan)®
pre) < S S (S oy (edktian)

t=1 u=max{t,k} n 2un

sz (3) (e3n1—a(1—e)/2)k (t)u—t atk

IN

>3 :

t=1 u=max{tk} n

(after maximising the last term over u)

B 3(:211)/2 (2% <63n __;_%_e)> (g)ut )

u=max{t,k}
stk-1/2 (3) 3 1—a(l—q\ "
. > (en_> (13
t=1 wu=max{t,k} k

since t < 3(k —1)/2 < 3n/4.

(13) and (8) clearly imply

m;  n/2

> Prn(By) = o(1). (14)

m=mg k=kg



Case 3: n/2 <k <9n/10

Claim 3 Choose any constant A > 0. Then, in a.e. process, simultaneously
for each m € [mg, m1], the sets of s < A wvertices of G,, which span at least

s edges together contain at most (Inn)4+! vertices.

Proof We need only prove this for G,,, and since the property is mono-
tone decreasing we need only prove it for G,,, p1 = my/N ([1], Chapter II.)
But

— &)\ &

e*4(Inn)?)

bl

E,, (number of vertices) < i (n) <(§)> "k
p1 — P

I
S

Now use the Markov inequality. O

It follows that we may rewrite (3) as

i+3(Inn)A" 4+ (A+ ) (n—k+z—i)<n

and so
A+1
i > n—%k—O((lnn)A“)
A
> — —K.
> n A—lk

By making A sufficiently large we see that if £ < 9n/10 then ¢ < 19n/20 in
(12) and consequently

m1  9n/10

> > Prp(Bx) = o(1). (15)

m=mo k=n/2



Case 4: k£ >9n/10

Pl‘p (Dg) S

nz/:2 n\ (n+c S(§:S) S(Tl _ S) Ep t (1 - )s(n_s)_t / max{2¢—t,0}
s \8 14 pt t n+c P n+c '

Let u(s,¢,t) denote the summand in the above and let p = aclnn/n and note

that o € [1 —w/Inn,2 + w/Inn].
Case 4.1: t < 2/
It will generally be convenient to split s into two ranges:

Case 4.1.1: s < nt/10

o) = ()70 o ()
< (@)s< ’I’I,—;C ) ( s(n — S)t;ﬂalnn)tn_as(n_s)/n (nic>2e
Y
< (nl atas/ng ) ( ) (lnn)2>z. )
Now

nlfa—f—as/n < (1 4 0(1))6w (17)
where & > 1 —w/Inn and w — oo slowly.

So if s < 3e* then (16) implies that
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and if s > 3e¥

ot < (S0

Case 4.1.2: s > nl/19,

Claim 4 In a.e. process, every G,,, m € [mg, mq] is such thatn(S) > v|S|Inn

for all n'/10 < |S| < n/2, where v > 0 is some absolute constant.

Proof (outline) For |S| > n?/® one can use the Chernoff bounds on the
tails of the binomial 7(S). If |S| < n%3 we use the fact that with high
probability (i) G,,, has n¢ vertices of degree < eInn where € = ¢/(¢) — 0

with €, and (ii) in G,,, no set S of size < n/(Inn)? contains 3|S| edges. O

So if s > n!/1% then we can take t > yslnn > 2¢ for some constant y > 0

and this case is vacuous.

Case 4.2 : t > 2/.

¢
u(s, 6,t) < (E)s((n-i-c)e) <s(n—s)el+1’a€1nn>tnas(ns)/n

s 14 tn(n + c)
nl=otas/ne\* [ (n+ c)e\’ [s(n — s)e*Pallnn\’
= (18)
s 14 tn(n +¢)
Case 4.2.1: t < 2n and so ((n + c)e/f)* < (3ne/t)!/2.
nlmetes/ng\* (3050Inn\’
u(s, 4,t) < < . ) <t3/2n1/2 ) . (19)

11



Case 4.2.1.1: s < n!/'°. Now (17) gives

(¢ (woteny

< e(l—|—o(1))e“’

@

= €, say,

¢
s
u(s, ,t) < i
(n%_°(1)>

Case 4.2.1.2: s > n'/10,

and so (19) implies

Using Claim 4 and (19),

t
u(s, £,t) < n~/M1 (\/%) .

Case 4.2.2: t > 2n and so ((n + c)e/f)t < ente < e(1+9)H/2,

From (19),

u(s,6,1) < (

S tn

Case 4.2.2.1: s < n!/10,

Arguing as in (20),
s \¢
u(s,£,t) < (nlo(l)) :

Case 4.2.2.2: s > n'/10,

From Claim 4

S n

u(s 0.1) < ((1 +0(1))e“’+1>s (g)t_

12

(1+ 0(1))ew+l>s <30s€1nn>t.

(20)



for some constant A > (. Now this clearly implies

u(s, 4,t) =0(27") (21)
for £ < n/(3A). For £ > n/(3A) we have s > £ and

u(s, 0,t) < n 24"
and so (21) holds here also.

Summarising,

20 nl/10 n /¢ t
Pr(D,) = (Z > (nl o(1> * Z 2 ( : o(1)>

t=1 s=(+1 t=20+1 s=0+1

2n n/2 t pl/10 s(n—s) s t
—+ -
t= %15 nzl/lo (\/_) Z ;—H ( %—o(l))

n/2  s(n—s)

+ > Y 2

s=nl/10 t=2n+1

— O(Enf(.gfo(l))l).
where the double summations correspond to the five cases enumerated above.

Thus, we see that
mi n/lO

> N Prp(D) = O((nlnn)(vVnlnn)n™"7)

m=mg (=2
= o(1). (22)
We are thus left with Pr (UL, (Cr N Ay, 1))

We consider G,,,. We know that a.e. G,,, consists of a giant connected
component C' plus O(e”) isolated vertices T'. If UjL,, (Cm N Aw,,—1) occurs

at some time during the process then either
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(i) there exist u,v € T such that the first edges of the process that are

incident with each of u and v are the same colour,
OR

(1) there exists a colour r and a set S, 2 < |S| < n/2 such that in G,,, the
t>2(S:S) edges are all of colour 7.

(Suppose that deleting the edges of colour r from G,, produces at least three
components. If colour k£ has not occurred by time mg then two of these
components must be vertices from T, contradicting (i). If G,,, has edges of

colour 7 then deleting these edges must beak C into at least three pieces.)

Clearly
Pr((i)) = o(1) + O(e** /n) = o(1).
Furthermore

IA
N
M3
(&)
S
N——
S
5 |
M=
3
w
S
=
=
N
Q
=
3
N————
s
Q
w

IN
S
M5
[\
3»—\
|
Q
N——
)
=
M=
3
/N
w
Q
5
3
N——

The upper bound is good enough to apply (8) and so Pr,,,((i7)) = o(1). Thus

Pr( 70 (Cm mAwm1)> = o(1). (23)

m=myg

The result for |[W| < (1 + €)n follows from (7),(10),(11),(14),(15),(22) and
(23).
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2.2 Many colours

We now deal with the case where |W| > (1 4+ €)n. Our main tool is a
monotonicity result that in essence says ”the more colours, the more likely
an MST exists”. We frame it in a general context. Assume that we are given
a fixed collection X7, X5, ..., X of subsets of a finite set X. The elements

of X are randomly coloured with s colours. We identify the event
€ =1{3i,1 <i< M: X, is multicoloured},

and let
7(s) = Pr(€) for s > 1.

Theorem 3
(s +1) > n(s).
O

We defer the proof of this theorem and show how it can be used to finish the

proof of Theorem 1.

When we apply Theorem 3 we have a connected graph G and X4, X5, ..., Xy,
is the collection of edge sets of spanning trees of G. The theorem then implies
that when we randomly colour such a graph, the more colours we choose from,

the more likely we are to produce an MST.

Suppose now that |W| =s > so = [(1+€)n]. Let Pry denote event proba-

bilities when s colours are used. Observe first that

Pr,,(my > mg) = o(1).
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Let G,, denote the set of connected graphs with vertex set [n] and m edges.

Then

Pr,(mamr > max{me,my}) = o(1) + Pry(mupr > me > mg > myy),

o)+ Y. > PryG=Gnr, no MST ,mg > my),

m=mo+1 GEGm

IA

IA

o)+ > > Pr(G = Gm,)Pry(G has no MST),

m=mo+1 GEGn

o)+ > > Pr(G=Gp,)Pry(G has no MST),

m=mo+1 GEGm
o(1) + Pry,(mg < myy)

IN

IN

+ > Y Pry(G = Gm, no MST ,mg > my),

m=mo+1 GEGn
= 0o(1) + Pry,(mapr > max{me, my}),

= 0(1)7
and this completes the proof of Theorem 1.

We now prove Theorem 3. We first generalise the colouring of X to non-
uniform colourings i.e. given p; +po+---+psy1 = 1,p; > 0,1 <1 < s+ 1,
let

p(p1,D2,---Pst1) = Pr(€ when the elements of X are independently

coloured j with probability p;,1 < j < s+1).

Then

and

7r(X,s+1):p< ! ! ! ! >

s+1's+1"" " 's+1's+1
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The theorem follows fairly easily from symmetry and

Ds + ps+1 Ds + ps+1>

5 5 (24)

p(plap2a s aps—l—l) S P (plap2, -vyPs—1,

We prove (24) by conditioning on the set of elements Y C X which are
coloured with the first s — 1 colours and how Y is coloured. Let Z = X \ 'Y

We first eliminate from further consideration those ¢ for which X; NY is not

multicoloured. As for the rest, unless |Z;| = 2,
Pr(X; becomes multicoloured |Y') =0 or 1.

We have thus reduced the problem to the case where |Z;| = 2 for all 4, and
each element is independently coloured s with probability p = ps/(ps + Ps+1)
or s + 1 with probability 1 — p. The Z; can be thought of as the edges of a
graph H, the vertices of which are randomly coloured. There is now a multi-
coloured X; if and only if one of the components of H contains two vertices
of a different colour, for then, trivially, there is an edge with endpoints of a

different colour.

But for a component C' with r vertices,

Pr(C is mono-coloured) = p"+ (1 —p)"

)+

v

and (24) and the theorem follows.
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