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Abstract

We consider a probabilistic model, due to Lander and Waterman
and to Alizadeh, Karp, Newberg and Weisser, for the physical map-
ping of DNA molecules. Within this model, we answer precisely a
question of Alizadeh et al concerning the minimum number of probes
required to reconstruct the entire ordering of a given clone library with
high probability. We also examine the related problem of determining
the least number of probes required to construct a “tiling” for the
library. We give a fairly precise characterization for this number.
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1 Introduction

The objective of many efforts in molecular biology, including the Human
Genome project, is to sequence chromosomal DNA, i.e. to obtain the se-
quence of A, C, T or G nucleotides which constitute one strand of each
molecule. This may be a complex task since, for example, in a typical human
chromosome there are on the order of 10® nucleotides, and the whole genome
comprises 23 pairs of chromosomes. Modelling this combinatorial complexity

leads to interesting mathematical and computer science problems. See [7].

A sub-goal of DNA sequencing is often to construct a physical map, which
specifies the location of specific identifiable fragments on the molecule. In the
usual procedures for physical mapping, it is necessary to extract information
from fragments of the molecule called clones. These might typically contain
about 10* nucleotides. A clone library is a collection of clones covering one or
more molecules of interest, for example the human genome. One approach to
physical mapping is to locate (by hybridization) the occurrence of short se-
quences called probes within the clones. See [2]. In practice, the identification

process may also involve errors, which further complicates matters.

Lander and Waterman [5] proposed a probabilistic model for the location
of clones in physical mapping. Their model was refined by Alizadeh, Karp,
Newberg and Weisser [2] to encompass the occurrence of probes within clones.

We will describe the model in detail in Section 2.



Assuming this model, the question was posed in [2] and [7] as to how many
probes are required to correctly order a given clone library, even assuming
that the data is error-free. From the probabilistic viewpoint, the question
concerns the existence of a “threshold” [1]. In Section 6 we will answer
this question precisely. From a practical viewpoint, the numbers required
are fairly discouraging. Therefore, in Section 7, we will describe and exam-
ine a natural related problem, having a more modest objective than that of
ordering the entire clone library. Again we can give reasonably precise char-
acterizations for the numbers of probes required. For this second problem,
in contrast with the first, the numbers required are rather more encouraging

for the practitioner.

2 The model

Let V =4{1,2,...,n}. Then we will consider the following model:

(a) The genome is represented by the interval [0, L].

(b) There is a library of n clones, each being an interval C; (i € V') of unit

length with C; C [0, L.

(c) The left end-points of the clones X; (i € V) form a Poisson process of

density @« = n/L on [0, L—1] —see [3]. n will be our expected number of



clones and whp ' the actual number of probes v satisfies v = n+ o(n).
We assume that the X; are ordered in increasing order. Note that with
probability 1 no two X; are equal in this model. We will say C; is “to
the right” of C; if X; > X, otherwise “to the left”. clones and their
left hand endpoints will be uniformly distributed once we condition on

the value of v.2

(d) There are m probes, and the occurrences of each probe form a Poisson
process with rate A on [0, L]. These m Poisson processes are mutually

independent.

We are interested in the case where L is large, and order-of-magnitude state-

ments will be as L — oc.

The problem is to correctly identify the ordering of the clones in the library
using only the information contained in the probes. Thus for each clone
and each probe we are told whether the clone contains the probe. The
information can be represented as a n x m 0-1 matrix. (See, for example, [2]
for more details.) Given only this information the hope is that one can find
the correct ordering of the clones C1,Cs, ..., C,. We wish to determine the

minimum number of probes for which this happens whp. Assuming the

'With high probability i.e., with probability 1-o(1) as L — oc.

2The actual model proposed in [2] and [5] was n uniformly randomly chosen points.
Our analysis was originally done in this model. We have opted here for the Poisson
model, as suggested by a referee, since (i) it yields essentially the same result, and (ii) the
computations are generally easier.



above model, we answer this question precisely in Section 6, as follows. Let
n = n(L) tend monotonically to infinity with L. Let py(n) be the probability
that n clones form one connected component, and p;(n) be the probability
that their correct ordering can be found from the data. Clearly p;(n) <
po(n). Let us call n(L) minimal if py(n) — 1, but, for any n'(L) such that

limy,, o n'(L)/n(L) < 1, we have py(n’) — 0. Then we show that

Theorem 1 Let n(L) be minimal, and let m = B(n)nlogn as n — oo, then

0 if B(n) =0,
pi(n) = { exp{—e*/(26)) if B(n) — B, a constant, (1)
1 if B(n) — oo.

Furthermore the algorithm ORDER, described below, satisfies

Lh_)n;o Pr(ORDER finds the correct sequence) = Jim p, (n).

Note that this number m is in fact rather large, about nlogn. Therefore,
in Section 7 we examine a more modest objective: that we correctly order a
connected subset of the library which covers “almost all” of the genome. We

call this a tiling of the clone library.

Remark We will see that we need n = L(log L+loglog L+w) where w — oo
with n. Our proof of Theorem 1 is given only for w = o(log L), but the reader
may check that when w = ~ylog L, Theorem 1 remains true with the exception

that the limit in case (ii) is increased by a factor (v + 1).



3 Clone Ordering Algorithm

Let I; denote the set of probes incident with clone i. Let A;; = I; \ I; and
Di,j = |Ai,j| for ¢ ?é_] € V. Let Dz = {Aj,i : ] eV \ {’L}} for 7 € V. We will

assume that w = o(logn) and let § = n~'/3.

Let

D*(z) = me (1 — e )(1 — ).

We show later (Lemma 1) that whp D; ; > D* = D*(§) whenever C;NC; = 0)

and that Di,i—i—l < D*.

Next let
M; ={A € D; : A is minimal and |A| < D*}.

and consider the graph G = (V, E) where
E = {(l,j) : Aj’,' € M; or A,”j € MJ}

In ideal circumstances G will be a path with vertices in clone order. Whp
this will be close to being true. Disjoint clones tend to have D;; > D* and

so not yield edges. Most of the remaining edges are of the form (7,7 + 1).

Algorithm ORDER

(0) Construct G.

(1) Find a Hamilton path in G.



Of course Step 1 is intractable unless we can prove that whp G has a special

structure. We prove that whp either

(a) i # j such that I; = I;, in which case there is more than one sequence

of clones compatible with the data, OR

(b) I; # I for i # j and G consists of the path H = (1,2,3,...,n) plus a

set of edges (7,1 + 2) for i € K, where 1 € K implies that i — 1 ¢ K.

In Case (b) G consists of a sequence of |K| triangles joined by paths. each
triangle (z,y,2) contains a unique vertex of degree 2, y say. Delete the

corresponding edge (z, z) for each triangle. We are left with the path H.

4 Qutline of Proof

The choice of m = fnlogn is determined by the fact that for 3 constant,
the expected number of pairs i, j for which I; = I; tends to e*/(28)) as L
(and n) tend to co. In fact the number of pairs is asymptotically Poisson

(see Lemma 5), which explains the form of (1).

Let us now work under the assumption that I; # I; for i # j. We must show

that whp G has the particularly simple form described above.

e Lemma 1 shows that whp D, ;1 < D* < D;; for I; N I; = . Then G

will not contain any edges for which I; N I; = (.
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e Lemma 2 rules out edges (i, k) for |k —i| > 2. This is done by showing

that whp Ay ; will not be a minimal member of D;, assuming I,NI; # 0.
e Lemma 3 shows that whp (i,7+ 1) is an edge of G for 1 <7 <n — 1.

e Lemma 4 shows that conditional on I; # I;;;, whp at most one of

(1 —1,i+1) and (4,7 + 2) is an edge of G.

o At this stage we know that if the I;’s are distinct then whp G has the

stated structure and the correct clone ordering can easily be found.

e Lemma 5 then determines the asymptotic probability that the I;’s are

distinct.

5 Preliminaries

Let Z;,1 =1,2,..., be an infinite sequence of independently and identically
distributed exponentials with parameter o. Let X; = Z1 + Zo 4+ -- -+ Z; and
let v = max{i : X; < L—1}. Thus X1, X5, ..., X, are distributed as the left

hand endpoints of the clones in our model.

Now observe that there is a “gap” in the coverage if there exists ¢+ < v such

that Z; > 1. However,

Pr(3i<v:Z;>1)

IN

L1
/ ae “dx
=0



Now suppose n = L(log L + loglog L + w) for some w, we have
Pr(di:Z; > 1)< (1+4o0(1))e“.

Thus, if w — o0, then whp there will be no gap. On the other hand, if
w — 00, then since v is Poisson with mean n, v > n/2 whp. Furthermore
the number Zg,, of indices ¢ < n/2 such that Z; > 1 is distributed as a
binomial with mean ne */2 — oco. Hence Zg,, # 0 whp. Hence constant w
is the threshold for connectivity of the clones. This result is well known in

different contexts, see [4] and the references contained therein.

Note that ordering will be impossible if the clone library is not connected
since, no matter how many probes are used, there will be no way of detecting
the order in which the disconnected pieces should be placed. Thus, to ensure
connectivity with high probability, we must have w — co. Note now that, in
our earlier definition, the clone library is minimal if and only if w = o(logn).
However, most of our proofs are easily modifed for the case w = Q(logn). The
details are left to the reader. However, in practice, clone libraries are designed
to provide small constant coverage of the genome, with a coverage factor of
about five, say. In the model, k-times coverage of an interval including most
of the genome corresponds to taking n(L) at around L(log L + kloglog L),
or w at about (k — 1)loglog L. (See, by comparison, [4].) Thus this region

of greatest interest for w falls well within the scope of our results.

It will be observed, that in this model, short segments at either end of the



genome will (with probability 1) be uncovered by any clone. This is a small
deficiency in the model which we ignore, assuming that these segments are

to be handled separately.

6 Threshold

Let m = Bnlogn. We show that the threshold for ordering the entire set of

clones occurs at constant 3, and hence prove Theorem 1.

We show first that with high probability adjacent clones have smaller differ-
ence sets A; ; than disjoint clones. Let § = n~1/3, as before.

Lemma 1 Let D*(§) = me *(1 —e *)(1 —6). Then whp, for everyi €V,

Di+1,i < D* and min{Dj’,- : Cj N Cz = 0} > D*.

Proof For any constant K > 0,
L-1
Pr(3i<v:Z;>1-Kd) < / aexp{—(1 — Ké)a}dz
=0
< nexp{—logL —loglogL +w — O(dlog L)}

o(1).

Thus assume that Z; < 1 — K¢ for ¢ < v. Then probes fall in A;;;; inde-

)

pendently with probability dominated by e™*(1 . But, for large

enough K and sufficiently small d,
me—A(l — 6_)‘)(1 _ 5) > (1 + 5)me_)‘(1 . e—)\(l—Ké))_
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Thus
Pr(3i: Diy1; > D*) < E(vexp{—36>me (1 — e M 7K0)}) = o(1).
Now, if C; N C; = 0, then probes fall in I; \ I; independently Hence we have

Pr(3i,j : Dj; < D*) < E(vexp{—16°me *(1 —e M)}) = o(1).

We now prove the crucial properties of G.
Lemma 2 With high probability {i, k} is not an edge of G for all |k —i| > 2.

Proof Suppose the Lemma is false, and let us assume without loss that
k> i+ 2 and Ag; € M;. (The case k < i — 2 is symmetric.) Hence
Cx N C; # 0 by Lemma 1. Suppose i < j < k. Then C; C Cy U C;. Hence
I; C I,UI. Thus I; \ I; C I \ I;, i.e. Aj; C Ag; and we must have
Aj;; = Ag,; by minimality. Hence A,; = A;;; for all « < r < k. We have

four successively overlapping intervals Cj, Cjy1, Cita, Ciys.

Given such a quadruple, let w = Z;11,0 = Z; 10,y = Z;13. If the quadruple
satisfies Ai—H,i = Ai+2’i = Az’+3,i, then every probe which falls in [Xz'—l—l +

1, X; 43 + 1] must also fall in [X;, X; 41 + 1]. This has probability

(1 . e—)\(l—i—w)(l _ e—)\(z—f—y)))m_

11



Thus the event & that there exists any quadruple meeting this condition

satisfies

Pl‘(gl)

IN

IN

L-1 pl 1 1
/ / / a4€—a(w+m+y) (1 _ e—)\(l-f-w) (1 _ e—)\(z—i—y)))mdgdwdxdy
13 0Jx

1 a a
n_/ dw [ dz | dy(1—3ixe ™z +y))" +o(n™")

where a = n~1/?,

nt 1 ' ' 1y,-2)

ﬁ/o dw/o dx/o dy(1 —sxe “(z +y))™

’I’L4 1 a 2

ﬁ/ dw (/ e‘bmzdz> where b = Ae™?*/2,
0 0

nt 1

740 ()

0 (logn) .
n

Lemma 3 With high probability {i,i+ 1} is an edge fori=1,2,...,n— 1.

Proof Otherwise there exists an ¢ such that A;;; € M, and A; ;11 & M.

This only occurs if, for some %, A;_1; C A1 and Ajjo41 C Ajipr. Let us

call this event &, and let w = Z;,x = Z; 11,y = Z;1o. As in Lemma 2, we

have a quadruple of sets which overlap in succession, and if & occurs, every

probe which falls in either [X; 1, X;] or [X;41 + 1, Xj12 + 1] must also fall

in [X;, X;11 + 1]. This has probability (1 — e 2*#)(1 — e=2w+¥)))™m  Hence,

12



similarly to Lemma 2,

52 < —/ dw/ dm/ dy *)\(H-w)(l _ e*/\(w—ky)))m -0 (10gn> .

n

|

From Lemmas 2 and 3, we see that G will be a path with the possible
exception of cases where an edge of the form {i,i + 2} exists. If such an
edge exists then, unless {i — 1,7 + 1} is also present, G decomposes into
two smaller graphs joined by the bridge {i — 1,i}. Hence we can recursively
subdivide the order-reconstruction problem. The only difficulty occurs when
both {i—1,i+1} and {4,742} are present, since then it is not clear whether
1+ 1 should be placed before or after 7. Let £5 be the event that this happens
for some 4, let £ be the event {lix1 = L} and & = U, EY. Note that
Ef) = {Ai1; = Aj i1 = 0}. Clearly, if &4 occurs, we cannot order all the
clones, since there will be a pair C;, C;1; which could be ordered incorrectly
but consistently with the data. On the other hand, if £ does not occur, then
we have argued that ordering is possible. (And is, in fact, achievable by a
simple polynomial time algorithm). Clearly &4 implies &3, since if ;. = I;
then A;; 1 = Ajr11 and A 40 = Ajt1i+2. We now show that the converse

is almost always true.
Lemma 4 Pr(&;\ &) = o(1).

Proof We will use the notation from the proof of Lemma 3. If £ occurs,

13



then for some 7, the following two events occur.
(i) Either Aj_q 41 € Migq or Ajyqi-1 € Mg,
(11) Either Ai+2,i € Mz or Ai,i+2 € Mz’+2.

Reasoning as in Lemmas 2 and 3, this gives four possible cases:

(a) For some i, Aj_1;41 = Ajip1 and Ajpo; = Ajyq;. Call this event &,.
we see that every probe which falls in either [X; 1, X;] or [X;11+1, X0+ 1]
must also fall in [X;, X;;1 + 1]. The probability of this was bounded by
O(logn/n) in the proof of Lemma 3. Thus Pr(&,) = O(logn/n).

(b) For some i, A;j_1;41 = Ajip1 and Aj 9 = Ajyq4492. Call this event
Ey. We see that every probe which falls in [X; 1, X;] falls in [X;, X;1; + 1]
and every probe which falls in [X;, X;,4] falls in [X;11, Xij12 + 1]. Thus every
probe which falls in [X; 1, X;4] falls in [X;;1, X;12 + 1]. But the probability

of this event can bounded as in the proof of Lemma 2. Thus

Pr (5() < —/ dw/ dx/ dy 1+y)(1 e A(w+w)))m -0 (10gn> '

n

(c) For some i, Aji1,-1 = A1 and Ajyo; = Ajiq,;. This event, &, say, is

simply the reverse (in clone ordering) of &, and hence Pr(&,) = O(logn/n).

(d) For some ’i, Ai—i—l,i—l = A,”z’_l and Ai,i+2 = AH_LH_Q. Call this event
Sc(li), for given ¢, and let & = UL, S,Y). Note that Sf) C 5(5"), so we must
estimate more carefully than above. If Eéi) occurs, then every probe which

falls in [X; + 1, X;41 + 1] falls in [X;_1, X; + 1] and every probe which falls

14



in [X;, X;.1] falls in [X;1, X;40 + 1]. The probability of this event is
(1 B (1 o e—)\w)(e—)\(H—w) + e—)\(H—y)))m’

since the following two events are disjoint:

A given probe falls

(i) in [X; 4+ 1, X1 + 1] and not in [X;_1, X; + 1].

(11) in [Xz; Xi—l—l] and not in [X,'+1,Xi+2 + 1]

Let Ny be the number of events Ec(ii) which occur. Then,

/ / / 1 (1 _ e—)\x)(e—/\(l-l-w) + e—)\(l-l-y)))m ade—WtE+y) 1 1 dy

/ / / exp —mAe e +e_)‘y)x) ade= W) dyy dg dy

—a(w+y) dwd
no w
/ / m)\e’\e’\w+e M) + Y
00 a2e—aw+y
mle~ )‘/ / e M 4 e )\ydwdy
no

e (w+y)
T mde X /o /o e w/a 4 o—My/a dw dy

Q

na 1 (since @ — oo with n)
~ = i w
mie= 2
o
= 26 (since a & logn, m = fnlogn).

Now let N be the number of events & which occur. The event &ii) occurs

if and only if there is no probe in [X;, X; 1] which is not in [X; 1, X;41 + 1]

15



and no probe in [X; + 1, X;; + 1] which is not in [X;, X; + 1]. Thus, using

disjointness as in (d) above,

E(N)

Q

[e.e]
n/ (1 =21 —e ) mae Mdz
0

Q

[e.e]
n/ exp(2mAe*z)ae M dz
0
no
2mAe*

e)\

26\

Q

But this is asymptotically equal to E(N;). Now &ii) C E?Ei), and hence

=1

IN

S Pr(Eef N &)
i=1
= Y {Pr(&”) - Pr(&)}
i=1
= E(Ns) —E(V)
= o(1).
We have therefore shown that, asymptotically, ordering depends on the oc-

curence or otherwise of &, and that the expected number of such events is

e*/(268)). We now complete the proof of Theorem 1. O
Lemma 5 Pr(&;) — exp{—e*/(26)\)} as n — oo.

Proof Let p = ¢*/(28)\) ~ E(N). For the remainder of the proof of the

lemma, we condition on the value of v. So we may assume that v &~ n left

16



hand endpoints are chosen uniformly from [0, L — 1]. Then Pr(&;) =~ u/n.
Let us say C; misses C; if C; U Cj41 does not meet C; U Cyy1. Let v; be the

number of C; which do not miss a given C;. Then if ¢ = [10logn], say,

1
Pr(maxy; > 40logn | v) < 4(?) i < n~10.

Thus we may assume max; v; < 40logn. But, for given ¢ and j such that
C; does not miss C;, a calculation similar to that in part (a) of the proof
of Lemma 4 gives Pr(&; N &) = O(1/m?). Thus Pr(&; | &) = O(n/m?)
However, if C; misses C; then &;, £; are independent. Consider Y- g Pr(N;cs &)
over all sets S size k for constant k. If C; misses C; for all 4,7 € S then
Pr(N;es &) =~ (pu/n)*. Hence the contribution to the sum from these terms
is p* /k!, since there are about n*/k! such sets. However if S contains two
sets that do not miss, let » be the maximum number of ¢ € S such that the
C; miss one another. The contribution from such sets is then at most
I:;_i :—1(407“ logn)f=" (%)T x O (%) =0 (%) :
Hence, for £k =1,2,3,..., we have
> Pr() &) =~ ’Z—I;
S:|S|=k €S :

Then, by inclusion-exclusion,
00 k

Pr(lJ &) — Z(—1)k—1% =1—e"

i€V k=1

17



Hence, we have Theorem 1 for constant 3. For 8 — oo slowly enough, we
therefore have Pr(&;) — 1, and for § — 0 slowly enough, we have Pr(&,) —
0. Theorem 1 now follows by observing that the probability that we can
reconstruct the clone ordering is monotone in the number of probes for a

fixed number of clones.

7 Constructing a tiling

In this section, we consider the problem of constructing a tiling, i.e. a subset
of the clone library which is correctly ordered and covers the genome, with
the exception only of regions of length o(1) at either end as L — oc. We will
show that this requires considerably fewer probes than in Section 6, since we
are not obliged to give any ordering information on the clones which are not
in the tiling. We will show that m = o(log® L) probes will always suffice, and

that ©(log L) probes are both necessary and sufficient for this task.

Suppose C;NC; # 0, and X;—X; = z. Then D;; is binomial with parameters
m, e (1 —e~?). Let us write u(x) = me™*(1 —e*?) for the expected value.

Clearly p(z) is an increasing function of x.

Let now § = w'/?/logn. Then, for each i € V, define
Si={j: u(6%) < Dj; < p(l—8)}
Now consider the following algorithm for finding an ordered subset of the

18



clones.

(0) Pick any clone Cj,, and find a j; € S; such that Dj, ; is maximum.

Place clone C}; adjacent to C;, in the chosen subset. Let i < iy, j < 7i.

(1) If there is k € S; such that D;; > D, and Dy; > D,;, pick one such
that Dy ; is maximum. Place clone Cj adjacent to C; on the opposite
side from Cj; in the chosen subset. Let ¢ «— j, j < k£ and repeat this

step.

(2) Otherwise reverse direction. Let j < iy, i < j;. Repeat step (1) until

the loop terminates again, then stop.

Theorem 2 If m(n) is such that logn/6* = o(m), then with high probability
the algorithm will succeed in correctly determining a linear order on a subset

of the clones. Futhermore, if S is the set of clone numbers in the chosen

subset, then |S| = O(L) and

min X; — X; < &2 X, - max X; < 62
Jjes jeS

We will prove the theorem in the following sequence of Lemmas. K will

denote some sufficiently large positive constant.
Lemma 6 Ifj € S;, then whp C; N C; # 0.

Proof This follows directly from Lemma 1, using pu(1 — §) > D*(KJ§). O

19



Lemma 7 If X, — X; > 262, then whp S; # 0.

Proof Since u(l —0) > D*(KJ), if i # v, there is a least one j (i.e. i+ 1)
such that D;; < p(1 —98). Also, u(6%) ~ £u(26%). Thus, if X; — X; > 26 for
any 1, j, then
Pr(Dys < u(8?) < exp(~1(1 — o(1)) (5 u(26)).
Hence
Pr(3i,j: X; — X; > 26 and D;; < pu(6%)) < n? exp(—=Q(md?)) = o(1),
since logn = o(u(6?)).

Thus if S; = (), we may assume X; — X; < 26 for all j such that C;NC; # 0.
Let X; be maximum such that X; < X;+1. Clearly X;;; ¢ [X;, X;+1], and

thus if j < v we have Z;; > 1—26?, contradicting the proof of Lemma 1. O

Lemma 8 If X, — X; > 26, then whp there will exist a choice for k in

step (1) of the algorithm.

Proof We have p(6?) ~ 2u(6%/2). If X; — X; < 6%/2 for any i, j with j € S;,
then
Pr(Dy: > u(62)) < exp(~1(1 - o(1))u(8?).
Hence,
Pr(3i,j : X; — X; < 6°/2 and D;; > pu(6%)) < n*exp(—Q(md?)) = o(1).

20



Thus we may assume that X; — X; > §2/2. If j # v, from Lemma 7 there

will exist a k € Sj, and we will have X, — X; > 262.

First suppose C; N Cy # 0, so C; N C;NCy # (. Then Ajr € A, thus
Dj,lc > Di,k only if Aj,k = Ai,k- But since Xj - X, > (52/2 and X — X]’ < 1,

the existence of such an 7, 7 and k£ has probability less than
nP(1—e 2 (1 —e?/2)™ = o(1).
Similarly, since X}, — X; > 6% and X; — X; < 1, n® Pr(D;; > Di;) = o(1).

Suppose finally, that C; N Cy = 0. Now, since j € S;, D;; < p(l —6) <
D*(§/K). But, from Lemma 1, Dy; > D*(§/K), so Dy; > D;;. Similarly
Diy > D*(6/K?). If X4 — X; > 1 — §/K, then

Pr(Dy; < pu(1 —9)) < exp(—Q(mé*)) = o(n?).

Inflating the right side of the above inequality by n? deals with the existence
of any such pair k, j. Since k € S; we may now assume X; — X; <1—-6/K.

But D*(§/K?) > (14 €)u(1 — §/K) for some fixed € > 0. So
Pr(D;; > D*(§/K?))) < exp(—=Q(md?)) = o(n™?),

and inflation by n? can be used as previously. O

Lemma 9 It is correct to place Cy on the opposite side of C; from C;.

Proof Suppose X; < X; < X;. Then, since k € S;, we have C, N C; # 0

and hence C; N C; N Cy # 0. But then D, > D, a contradiction.
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Thus suppose X; < Xy < X;. Then, since j € S;, we have C; N C; # () and

hence C; N C; N Cy # (. But then D;; > Dy ;, again a contradiction. O

Theorem 2 now follows. We see that when we are building the subset from
“left to right”, we cannot terminate until we have encountered a C; such that
X, — X, < 262 Similarly, by symmetry, when we are building the subset
from right to left, we cannot terminate until we have encountered a C; such
that X; — X; < 26%. Thus we have only to verify the claim concerning the

number of clones selected.
Lemma 10 The algorithm will whp select O(L) clones.

Proof We will merely sketch the method, leaving the routine calculations
to the reader.
Let j € B if and only if there is no k£ for which Xj+% < Xp <X+ % Then,
L—1
E(|B|) < / ae~3dz = o(n??).
=0

Thus Pr(|B| > n*?) = o(1). If j ¢ B, let k be such that X; + 1 < X}, <

X; + % By straightforward calculations we obtain
Pr(Dyy < (6?) = o(n™?), Pr(Dyy > (1 - 8)) = o(n"2).
Thus with high probability we will have k& € S; in all such cases.
Now, if X; 4+ 3 < Xy < X; 4+ 2 and X; < X}, similar calculations give
Pr(D;y < Dj;) = o(n™?), Pr(Dy; < D;;)=o0(n"?).
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Thus k£ will be a valid selection in step (1).
However, if £ € S; is such that X, < X; + I, then letting ¢ = $(u(3) + 1(3)),
further calculations show

Pr(Dy; >t) =o(n?), Pr(Dy; <t)=o(n?),
so with high probability D,; < Dy ;. Thus if j ¢ B, the maximization in
step (1) will ensure that we choose k so that X, — X; > 1.

Now suppose the algorithm chooses g clones C; with ¢ ¢ B, and b with i € B.
Then these cover an interval of length at least i(g —1)<L,sog<4L+1.

Thus the total number selected is
g+b<AL+1+n*3=0(L).
O

Note that if m(n) = w'logn/é? and § = w'/logn, where w' = o(w) but
w' — 00, then

m = log’ n/w' = o(log® n).

Thus o(log® n) clones will always suffice. On the other hand, suppose w =
logn/v/w', where w' tends arbitrarily slowly to infinity. Thus the the number
of clones is “maximally minimal”. Then letting 6 = 1/w', say, gives m =

(w')3logn, so we need a little more than logn probes.

We also have the following
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Corollary 1 If m(n) = log®n, then whp Ujes Cj = Uiz, Cs.

Proof First suppose w = O(y/logn). Take 6 = w'/logn, where v’ = o(w)

but w' — co. Thus log® n probes suffice, and §2 = o(1/logn). Hence
Pr(Z, < 6%) =1 —exp(—(1 4+ o(1))6*logn) = o(1),

and thus, by Lemma 8, the loop in algorithm must terminate with j = v.

Similarly for the reverse direction.

Now if y/logn = o(w), take § = 1/w. Then a little greater than w?logn =
o(log® n) probes suffice, and again 6> = o(1/logn). The remainder of the

argument is as before. O

Thus, with log® n probes, we guarantee to cover the entire interval represented

in the clone library with high probability .

Although our proofs are given only for w = o(log L), similar methods extend
to faster growing values of w. However, we may deduce from the above that,
if we take w = ©(log L), O(logn) probes will suffice. We use the following

simple Lemma.

Lemma 11 Let f(n), g(n) be positive functions. If f = o(h) for all positive
h(n) such that g = o(h) as n — oo, then f = O(g).

Proof If f # O(g), there is an increasing sequence ¢; — oo such that for

all ¢, there exists n; such that f(n;) > ¢;g(n;). Assume without loss that n;
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is nondecreasing, and define h by h(n) = ¢;g(n) if n; < n < ngy. Clearly

g=o(h),so f =o0(h). Thus f(n;) < cig(n;) for large i, a contradiction. O

Lemma 12 Let ¢ > 0. If n(L) > (1 +¢)log L, then O(logn) probes suffice

to determine the tiling.

Proof For a fixed number of probes m, the algorithm above clearly cannot
have smaller probability of success with a larger number of clones. Thus the
number m(n) required for any given probability of success is nondecreasing
with n. Thus, if m* is the number required when n = (1 + ¢)Llog L, m* <
m(n) for all n such that w = o(logn). Let h be arbitrary such that logn =
o(h), and let 7 = (h/logn)Y/¢. Thus 7 — oco. Let w = logn/7, § = 1/72,
and m = 7°logn. Then Theorem 2 applies, and hence m* < m = o(h). We

now apply Lemma 11, with g = logn, f = m* to complete the proof. a

On the other hand, we have the following simple lower bound.

Lemma 13 At least Llog L clones and log, L probes are necessary to deter-

mine a tiling.

Proof We need Llog L clones for connectedness, without which we clearly
cannot determine a tiling. Any tiling must obviously have at least L clones.
Since it is unambiguously ordered, no two clones can contain the same set
of probes. Now, with m probes, there are at most 2™ different sets. Thus

2m > L. O
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We may sumarise these results in the following “optimality theorem?”.

Theorem 3 n = ©(Llog L) clones and m = ©(log L) probes are necessary

and sufficient to determine a tiling.
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