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ABSTRACT 

We consider a natural parallel version of the classical greedy algorithm for finding a 
maximal independent set in a graph. This version was studied in Coppersmith, Raghavan, 
and Tompa* and they conjecture there that its expected running time on random graphs of 
arbitrary edge density of 0 (log n ) .  We prove that conjecture. 
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1. INTRODUCTION 

In this note we consider the problem of finding the lexicographically first maximal 
independent set (LFMIS) in a random graph. Coppersmith, Raghavan, and 
Tompa [l] describe a parallel version of the standard greedy algorithm for this 
problem: Suppose we are given a graph G = (V, E ) ,  V =  [n] = { 1,2,  . . . , n} .  For 
Z V we let 

r + ( Z )  = {x $Z : xz E E for some z < x ,  z E 2)  , 

and 

r - ( z ) = { x $ Z : x z E E f o r  some z>x, Z E Z }  

* Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer Science, 1987, pp. 
260-269. 
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Note that we have implicitly oriented the edges from low to high. 

algorithm PARALLEL GREEDY (G); 
begin 

GIS t 0; 
until G has no vertices do 

begin 
let A = { a  : r-(a) = 0} ; 
GIS +GIs U A ;  
remove A U T(A) from G 

end 
output GIS 

end 

It is easy to see (Ref. 1, Lemma 2.1) that GIS is the LFMIS. Cook [2] showed 
that the problem of computing the LFMIS of a graph is complete for P and so is 
not in NC unless NC=P.  PARALLEL-GREEDY can be implemented on a 
CRCW PRAM in 0(1)  time per iteration if one processor is allocated to each 
edge of G. 

Coppersmith, Raghavan, and Tompa showed that if T(n, p )  denotes the 
expected number of iterations T = T ( G )  when G = G n , p  then T(n,  p )  = O( m). 
(Gn,p  is the random graph with vertex set [n] where each edge occurs indepen- 
dently with probability p = p ( n ) . )  

They conjecture that T(n, p )  = O(1og n)  and it is the aim of this article to 
prove it. We also prove a lower bound T(n, p )  = a( &) for a range of values 
of p .  More precisely, 

(1% nIZ 

a log n Theorem 1. ( a )  5 T(n, p )  for $ 5 p 5 & where 0 < CY 5 1 is constant 
( b )  T(n,  P )  = O(l0g n).  
The hidden constant in ( b )  is independent of p .  

Note that our inequalities are only claimed for n large. 

2. LOWER BOUND PROOF 

Let m = Lp-'J and consider the subgraph H of G induced by [m]. If H contains a 
component which is a directed path of length 1 - 1, then clearly T 2 $1. (The 
direction of an edge ij, i < j is from i to j . )  Now let 

and 2, = the number of components of H which are directed paths of length 1. 
We show 

1 
1 + mp1'4 

Pr(Z, # 0) 2 

and the lower bound follows. 
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Now 

and so 

Furthermore 

We can now use the useful inequality (Schwarz) 

and (1) follows. 

3. UPPER BOUND PROOF 

We shall, as in Ref. 1 consider a modified algorithm which always takes at least as 
long as PARALLEL-GREEDY. It is similar to the one described there. In what 
follows we may take r = 5. 



42 CALKIN AND FRIEZE 

algorithm MODIFIED PARALLEL-GREEDY (G) ; 
begin 
X:=V; Y:=GIS:=O; 
while 1x1 L m do 

L1: begin 
Z := m lowest numbered elements of X; X:= X\Z 
run PARALLEL-GREEDY for r iterations on Y U Z 
and let A be the independent set constructed; 

GIS := GIS U A 
X : = X - ( A U I " ( A ) ) ;  Y : = ( Y U Z ) - ( A U T + ( A ) ) ;  

L2: end 
L3: run PARALLEL-GREEDY to completion on X U  Y 

end 

We claim that MODIFIED PARALLEL-GREEDY (MPG) constructs the 
LFMIS of G and always requires at least as many iterations as PARALLEL- 
GREEDY. This is because the difference between the modified algorithm and the 
original algorithm is that it does not necessarily add vertices to GIS the first time 
they become sinks. Instead we may have to wait until they become members of Z 
first. This does not change what goes into GIs,  but instead delays the time when 
subsequent members of GIS become sinks. 

We will show first under the assumption 

p I (log n)-7 

that with sufficiently high probability 

there are at most [loglo,, n] executions of the main loop Ll-L2, and 
(4) 

at most 3 [log,,,, nl iterations of PARALLEL-GREEDY are needed 
to execute statement L 3. ( 5 )  

Now let X,, Y,,  2, C X, be the values of X, Y, Z at the start of the tth 
execution of the main loop A-B of MPG. Let A ,  denote the set A constructed 
during the tth iteration. 

The key to an analysis of MPG is an understanding of the distribution of the 
edges contained in U f z 1  Zi for k = 1,2,  . . . . 

Suppose we condition on the values of Z,, Z,, . . . , Z, .  We claim that 

the edges contained in each Zi are unconditioned, i.e., are chosen 
independently with probability p .  ( 6 4  

a possible edge uu, u E Zi, u E Z j ,  i < j will occur independently 
with probability 0 (u E A i )  or p ( u $ A i ) .  (6b) 

Knowing this we first prove 

Lemma 1. If m is large and t 5 m114 then 
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Proof. Let u E Y, and suppose u E Z , ,  a 5 t - 1. We claim there exists b s a and 
a directed path with head u ,  of length greater than 2r(t - b) ,  contained in 
UfZb 2,. Now either 2, contains a directed path of length greater than 2(t - a)r 
with head u ,  in which case we take b = a, or not. In the latter case there is a 
vertex u' E 2, n Y,, where c < a ,  and a directed path of length greater than 
2r(t - a) from u' to u which is contained in Uf=, 2,. For otherwise, at the start of 
iteration a the longest directed path with head u contained in Y, U 2, is of length 
at most 2r(t - a ) .  But then u will be eliminated by the end of iteration t - 1, 
contradiction. Inductively, for some d 5 c ,  u' is the head of a directed path of 
length greater than 2r(a - d )  which is contained in U:=, Z , .  The result now 
follows with b = d .  (The base case, t = 2,  for this induction is of course identical 
to the case where b = a above.) 

Let 5, denote the number of paths of length exactly 2r(t - b )  contained in 
U::: 2,. It follows that 

I -  1 

Now it follows from Eq. (6) that 6, is dominated stochastically by the number 

We prove in the Appendix that 
of directed paths qb of length 2r(t - b )  in the random graph Gm(r-b),p. 

200r4t2 , l s b s t - 1 .  
e2 r ( ' - b )  

Pr ( q b  (2,) rn) 7 (7) 

Hence 

k = l  

and the lemma follows. m 

If lYrl is small compared with m ,  then we can show that IXt+ll I &lXIl with 
high probability. 

for some constant a > 0. 

Proof. We can proceed somewhat similarly to Lemma 2.2 of Ref. 1. Let 
p = 2 ( g ) '  and assume lY, ls  prn. Let 
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2: = {zE Z , : y y < z ,  y E  Y, U Z,  and y z E  E }  

X i  = { x  E X ,  - 2,: 32 E Z: such that zx E E }  

Then clearly X, , ,  X ,  - (Zi U X i ) .  Now if z E Z, we have 

Pr ( z  E Z i )  2 (1 - p ) ( l + P ) m  2 0.236. . . 

and since the events { z  E Z:}  for z E Z, are independent, we have 

(Here we use the fact that the tails of the binomial distribution are exponentially 
small.) 

On the other hand, for x E X ,  - Z, we have 

Pr ( x  ex; 1 I Z: I 2 4 m) (1 - p ) i m  5 0.82 

and since, given Zi ,  the events { x  E X i }  for x E X ,  - Z, are independent 

Pr ( I x ;  1 5 +j (x,( 1 (z: 1 2 $m) 5 e-rr"m for some a"> 0 .  

The result follows. rn 

114 Now let 1 = [loglo,9 nl 5 m (since p I (log r ~ ) - ~ ) .  For there to be more than 
I executions of the main loop of MPG we must have 

or 

/Y,1<2(;)'rnand ~ X , + l ~ > $ , / X , ~  f o r s o m e t s l .  

But, by Lemmas 3.1 and 3.2 the probability of one of these events is at most 

Suppose now that 7 5 1  iterations of the main loop of MPG suffice. Let 
A = A(7)  = the length of the longest directed path in Ul=l Zi. Clearly the execu- 
tion of Statement L3 of MPG requires at most A/2 iterations of PARALLEL- 
GREEDY. But 
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I 
Pr (37 5 1 :  h(7) z 31) I ( :;)p3’-’ r = l  

Together with Eq. (8) we have 

Pr(MPG requires more than ( r  + 3) log,,,, n iterations 
of PARALLEL-GREEDY) = O((1og n ) - 3 ) .  

Hence 

Pr( PARALLEL-GREEDY requires more than 
( r  + t ) log,,,, n iterations) = O((log n)-’ . (9) 

Now it follows easily from calculations done in Ref. 1 

PARALLEL-GREEDY requires more than 

= O ( l / n ) ,  for some absolute constant c > O .  (10) 
c(log n)’ 
log log n 

It follows immediately from Eqs. (9) and (10) that we can write 

T(n, p )  5 c log n for some absolute constant c > 0, 
provided p 5 (log n)-’ . (11) 

We now consider p z (log n)-’. For this we introduce another modification of 
PARALLEL-GREEDY which we call MPG2. Let m r  = [ p - ’ ] .  

Algorithm MPG2 
begin X : =  [n];  GIs :=@;  

while X # 0 do 
L1: begin 

2 := min { m r ,  1x1) lowest numbered elements of X; 
run PARALLEL-GREEDY to completion on 2 and 
let A be the independent set constructed; 

GIS := GIS U A 
X : = X - ( A  U r+( A)); 

L2: end 
end 

One can see as for MPG that MPG2 constructs the LFMIS of G and requires at 
least as many iterations as PARALLEL-GREEDY. 
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We will assume from now on that p I (2 log lip)-'. This is true for p 
sufficiently small, say p I po.  For p > po we know that with probability 1 - o( 1 ln) 
the size of GIS is less than say 2 log, n ( b  = &) and since PARALLEL- 
GREEDY finds at least one new member of GIS at each stage, it requires 
O(1og n)  iterations when p > po.  

Let u denote the number of iterations of the main loop Ll-L2 of MPG2. 
Define X , ,  Y, ,  2, in analogy to MPG. Next let [,, t = 1,2,  . . . , u denote the 
number of iterations of PARALLEL-GREEDY required for the tth execution of 
Ll-L2, and let 5, = 0 for t 2 c + 1. 

Then 

Note by Eq. (11) 

E ( [ , ) I c l o g l l p ,  t = 1 , 2 , .  . . , n .  (13) 

[The constant here is (roughly) twice that in (11). Also E( 5,) = Em.(T(m", p ) )  
where m"< m' is a random variable. Clearly, T(m", p )  5 T(m', p )  always.] 

3 log n Now let co = + 1; we will show that 

(14) 
1 
n P r ( u > u , ) s - .  

Hence 

UO 

I E ( & )  + n Pr (u> ao) 
1 = 1  

I u,c log l l p  + 1 

= O(l0g n)  . 

We will therefore have finished the proof of our theorem once we have completed 
the proof of Eq. (14). 

Proof of Eq. ( 1 4 ) .  
a = log, (m'p + 1) - 2 log, log, (m'p  + l ) ,  then 

We will show in the Appendix that if t I u, b = 1 - p  9 6 2 2 ,  

e- 1 /4p2 otherwise. 

m'p + 1 Thus if x E X ,  - Z ,  and 6, = 4(loge (mrp + 1 ) ) 2  then 
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1 1 1 -pz _ _  1 
= - +2pe p +  7 e 

50 P 

5p2I3 . 

Hence if IX,l> m' then 

So if we define x, = IX,l for t 5 u and x ,  = 0 otherwise, then 

This is true for t = 1 and assuming that it is true for t we have 

n n 

E ( X , + ~ )  = c E(X,,~ I x, = k) Pr (x, = k) 5 c p2I3k Pr (x, = k) by (16) 
k=O k=O 

and Eq. (17) follows. Note that the argument here works regardless of t 5 u or 
t > u. 

It follows from Eq. (17) that 

and so 

1 
Pr (xmo 2 1) I - 

n 

and Eq. (14) follows. I 

We have thus verified the conjecture of Ref. 1. It would be interesting to see if 
the same result can be proved for random regular graphs. 
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APPENDIX 

Proof of Eq.  (7).  We first note that 

and so, since t2 = o(m) in our range of interest, 

Furthermore, where so = 2r(t - b )  and m, = m(t - b) ,  we have 

In the summation s denotes the number of edges that a general path of length so 
has in common with a given fixed such path, E denotes the number of subpaths 
made up by these common edges. 

Now let u , = ( ~ , ? ~ ) ( ~ ~ - ~ ~ - , ) .  Theh 

u,+l - (so - 21)(s0 - 2E + l)(so - s - 1) -- 5 2 .  
21(2E+ l)(rno - so + s + 1 + 1) 

s3 

u, rn, 

But since t3 = o(m) we have 

so- 1 

= E(?lb)Z( 1 + 2% c u s )  
s = l  

where 

Observe now that 

5 2r so - s S O  5- us+1 - -- 
u s  ( m o - - o + s + l ) p  mop 
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Also u1 5 %. We deduce then that 

<- lor’s‘, 4 f i  (2r)”O + - rso - 
m m 

I l r S i  
m 5- (2r)”O. 

Now the Chebycheff inequality yields 

if a m 2  E ( T ~ )  Var (7,) 
(am - E(vb))2 

Pr (v, L am) 5 

44r’s’ SO S O  

- < ~ ( : )  i f a z 2 ( & )  . 

2 s 12 Putting a = ( 5 )  O yields Eq. (7). 

Proof of (15). Now A ,  is the set of vertices picked by the ordinary sequential 
greedy algorithm for finding a maximal independent set. Assume without loss of 
generality that t = 1 and S = {sl = 1, s2, . . . , s k }  [m’]. Then, where s k + l  = 
mi  -t 1, 

Hence 

Pr (IA,I = k) 5 ( m ’ - 1  - )(1 -p)(’)(l- ( 1  -p ) ’ ) )“ ‘ -” .  

Let now A = m’p + 1 and k = log, A - 2 log, log, A - log, 6, 6 5: 2. Assume first 
that 6 I 6. We then have 
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5 - -  
5 e as p is small. 

Finally, suppose 5 2 6, so that k I log, 4. Then 

5 exp {: log, A(log, 6 + log, -) 1 1  - 1 log, :} 
P P  
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