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ABSTRACT 

We study the threshold for the existence of a spanning maximal planar subgraph in the 
random graph Gn,p. We show that it is very near p = & . We also discuss the threshold for 
the existence of a spanning maximal outerplanar subgraph. This is very near p = A. 
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1. INTRODUCTION 

In this short note we condider the threshold for the property that the random 
graph Gn,p contains a spanning maximal planar subgraph, i.e., a planar subgraph 
with 3n - 6  edges and 2 n - 4  triangular faces. Our notation and terminology 
follows [l]; in particular Gn,p is the random graph with vertex set [ n ]  = 
{ 1,2, . . . , n }  which is obtained by selecting each of the N = ( ) possible edges 
independently, with probability p. Let us define the graph property d by setting 
G = (V,  E) E d if E contains a set F of 31VI - 6 edges such that (V,  F) is planar. 
Thus G E d iff G contains a maximal planar graph spanning the entire graph. 
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Theorem 1. 

C (a)  Let p = 3 where c = (27e/256)'I3. Then a.e. G, , ,#d.  
n 

c(log n)l13 
n113 

where C P  100. Then a.e. G,,, E d. (b )  Let p = 

Note the small gap within which the exact threshold has been located. It is 
difficult to speculate what the exact threshold value is. Note also that the simplest 
"local" condition that every vertex lies on at least one triangle is not almost 
always sufficient, in contrast with many other graphs properties (see [l]). Note 
also that n-k'(3k-6) is the exact threshold for containing any fixed maximal planar 
subgraph with k vertices. The techniques used to prove Theorem 1 can be 
modified to prove another problem. 

Recall that a graph is outerplanar if it can be drawn on the plane with every 
vertex incident with the outer face. A maximal outerplanar graph is one in which 
every face other then the outer one is a triangle. An n-vertex maximal outerpla- 
nar graph has 2n - 3 edges. 

Let B denote the property of containing a maximal outerplanar graph spanning 
the entire graph. 

Theorem 2. 

C (a)  Let p = 1/3 where c = (e/4)'12. Then a.e. G,,, #B. 
n 

'(log n)1'2 where c > S f i .  Then a.e .  G,,,  E 3. ( b )  Let p = 
n'l' 

The proofs of these two theorems are given in the next two sections. 

2. PROOF OF THEOREM 1 

Let M ,  be the number of maximal planar subgraphs with n labelled vertices. Then 

P(G,,, E d) 5 M , P ~ " - ~ .  

As almost every maximal planar graph has a trivial automorphism group, Tutte's 
classical formula [4] implies that 

C 
if n is sufficiently large (in fact, for all n).  Hence, if p = 113 where 
c = (27e/256)l13, then 

n 

P(G,,, E d) < 1 / n  

and this proves part (a). 
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1 

Fig. 1 

To prove part (b) we need to define some specific triangulations that we can 
construct with high probability. Let T = T ,  be the 1Pvertex triangulation of 
Figure 1. Note that T, can be constructed from the outer triangle by a sequence of 
“vertex insertions.” By this we mean take a face F = xyz and then insert a new 
vertex u into F by adding edges ux, uy,  uz. Thus we can start with outer triangle, 
insert the vertex labelled 2, insert the vertices labelled 3 into 3 of the faces and so 
on. We refer to these insertions as operations 2, 3, 4, and 5.  

T ,  is the first in a sequence T , ,  T , ,  . . . , T , , .  . . . Construct T,  from T ,  by 
‘inserting’ a copy of T ,  into each of the 6 “special” faces labelled 3, 4, 5. After 
insertion the vertices inside each special face are numbered as they are in T I  and 
so T, has 36 special faces. In general T,  is obtained from T k - ]  by inserting a copy 
of T ,  into each special face and numbering the vertices as above. T ,  has the 
following statistics: 

(i) 6, special faces; 
(ii) t k  = 4(  16 - 6, - 1) vertices; 
(iii) maximum degree 18. 

(We obtain (ii) from the recurrence t, = f k - 1  + gk-’ - 16.) 
Now define Tk,i, i = 0,1,2,3,4 as follows: Tk,o = Tk and Tk,i  is obtained from 

Tk, i - l  by applying Operation i + 1 to those subgraphs contained in each of what 
was a special face of T k .  Thus T,,., = Tk+, .  It is convenient to let To denote a 
triangle. 

where c = 100. Let p1 satisfy 1 - (1 - p1) l0  = 

p so that p, >p/lO. We can assume that Gn,p is the union of 10 independent 
copies of Gn,+,. Let E,, E l ,  E,, . . . , E9 denote the edge sets of these copies. 

c(log n)1’3 
n113 Suppose now that p = 
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Let k ,  = max{ k : 2tk - 4 5 4 n} = [log,( ( 2 + 11)) J 

We try to construct a spanning maximal planar subgraph of Gn.p as follows: we 
will fill in the details of each step of the construction later. 

A: construct To using edges in E,; 
B: f o r k = O t o k , - 1  do 

for j = 1 to 4 do 
construct a copy of Tk, j  from the copy of Tk, j - l  via operation j and using 
only edges from E,, r = ( (k  + l) j  mod 8) + 1 

C: augment the copy of Tk, to a spanning triangulation by vertex insertion 
using edges from E,  only. 

We must now show that we can complete the construction above with 
probability 1 - o( 1). 

A: G ,,, has a triangle with high probability if w = w(n)+ w. Since np, + m we 
can be sure that A succeeds with probability 1 - o(1). 

B: the process of constructing Tk, j  from T k , j - l  involves trying to insert a 
vertex into each of at most $n triangles. Suppose that the vertices outside 
of our copy of T k , j - l  comprise V l ( k ,  j )  and the vertices of the triangles 
into which we are trying to insert vertices from Vl(k ,  j )  comprise 
V,(k,  j )  V,(k - 1, j ) .  We are examining edges from E,. The previous 
time we used edges from E,, the vertices in V,(k,  j )  were outside of the 
then current triangulation Tk-2 , j -  and so the E, edges between V,(k ,  j )  
and V,(k,  j )  are unconditioned by the history of the construction to this 
point. 

n , ;  

To show that Tk, j  can almost always be constructed from T k , j - l  we define a 
bipartite graph BP(k,  j )  with vertex partition V,(k,  j )  and S(k ,  j )  = {faces F of 
T k , j - ,  into which a new vertex is inserted in the creation of T k , j } .  BP(k,  j )  has an 
edge uF whenever u E V l ( k ,  j )  is adjacent in G, = ([n], E,) to all vertices of 
FE S(k ,  j). Note that P ( u F E  E,) = p :  but that these edges do not appear 
independently. 

To complete the analysis of B, we need only prove that 

(1) P(BP(k,  j )  contains a matching of size ) S ( k ,  j ) l )  = 1 .- o((1og n)-'). 

Because the edges of BP(k,  j )  do not appear,independently we again resort to 
the trick of partitioning the edge set. Let E, = ,U Er,i where the edges of Er,i are 
chosen independently with probability p , ,  1 - (1 - p,)' = pl ,  p 2  2 y. Consider 
the graph T ( k ,  j )  which has vertex set S(k ,  j )  and an edge F,F,, where F,, 
F, E S(k, j), whenever Fl and F, share a vertex in T(k,  j - 1). It is not hard to 
see that the maximum vertex degree in T ( k ,  j )  is at most 7 (when j = 3 and 
accounting for special faces sharing a vertex.) It is therefore possible to color 
these triangles using only 7 colors so that tri5ngles of the same color are vertex 

1 = l  
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disjoint. Let us now decompose BP(k ,  j) as .U B P ( k ,  j ,  i) where B P ( k ,  j ,  i) has 
the i-colored triangles denoted S(k,  j ,  i) C S ( i , ' j ) ,  all of Vl(k ,  j) and an edge uF 
if u is adjacent to all vertices of F via edges of color Er,i .  Edges in BP(k,  j ,  i) now 
appear independently with probability p i  > p3/703. We can now use the result of 
Erdos and RCnyi [2] (see also [ l ,  pp. 155-1591) concerning the threshold for a 
perfect matching in a random bipartite graph. Actually, we only need a matching 
from S(k, j ,  i) to V,(k, j ) .  

p 3  . n  > log n ,  so we can first By choice of k, ,  IVl(k, j + 1)1? - always and - 
match S(k,  j ,  i) to a subset V,(k, j ,  1) of Vl(k ,  j) and then S(k,  j ,  2) to a subset 
of V, (k ,  j)\V,(k, j, 1) and so on, with sufficiently high probability (observe that 
the dominant failure probability in Erdos and RCnyi's result comes from isolated 
vertices). This completes the analysis of B. 

n 
2 703 2 

C: since the maximum degree in Tk, is 18, each face of Tk, shares a vertex 
with at most 51 other faces. Also Tk, has at least - faces and so it is 
possible to find - vertex disjoint faces in Tk,. Furthermore, if a triangula- 
tion contains (Y vertex disjoint faces and a vertex is inserted into one of 
these faces, then the new triangulation has at least (Y vertex disjoint faces. 

n 
n 12 

612 

Let u , ,  u2 ,  . . . , u,, m < n be an enumeration of the vertices outside of Tk,. We 
will try to insert u i ,  i = 1,2,  . . . , m sequentially into the current triangulation 
using edges in E9 only. Since there are always at least - vertex disjoint faces 
available, we have 

n 
612 

3 n / 6 1 2  P( 3i : ui cannot be inserted) 5 n( 1 - p , )  
< n - 1 1 2  

and this shows that we can complete the construction with high probability and 
completes the proof of Theorem 1. 

3. PROOF OF THEOREM 2 

The proof of part (a) is similar that of part (a) of Theorem 1. Let On be the 
number of maximal outerplanar graphs with n labelled vertices. Then 

P(Gn, ,  E 93) 5 0 , ,p2n-3  . 

But it is known (e.g., Lovhz [3, Problem 39 of Ch. 11) that 

(n - 2)! (2n - 4 )  < -  ( 4;)n-2 on 5 - 2 n - 2  
and so if p = (e /4n)' / ' ,  then 

C 2 n - 3  

P(G,,, E 93) 5 nn-3/2 On < n- ' l2  

and this proves part (a). 
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For part (b) we provide a construction which can be shown to work with high 
probability. We once again assume that Gn,p is given as the union of a number of 
independent copies of Gn,pl .  Here four will suffice, so that 1 - (1 - p1)4 = p and 
p1 2 -. Let E,, E l ,  E,, E, denote the edge sets of these copies. P 

4 

A: construct a triangle A ,  using edges of E, only. 

B: f o r k = O t o k , = [ l o g , ~ ] - l  do 

At this point A ,  is an outerplanar subgraph of Gn,p containing n, = 3 -2, 
vertices. Let the edges of the outer face of A ,  be e l ,  e2,  . . . , enk where ei, ei+l are 
adjacent i = 1,2,  . . . , n, - 1. Let Fl = {el ,  e,, e,, . . .} and F, = { e 2 ,  e4, e6, . . .} 
be the odd and even indexed edges, respectively. 

for j = 1 to 2 do 
construct the bipartite graph BP’(k, j) with vertices 5 U ([n]\V(A,,j-l)) 
[A, , ,  = A , ,  A, , l  is constructed “during” j = 1 and A,,2 = 

There is an edge ue, U ~ Z V ( A , , ~ - ~ ) ,  e € q  whenever u is adjacent to both 

If BP’(k,  j) contains a matching of size 151, then we can use this matching to 
endpoints of e by edges in Ej .  

add 151 vertices to A k , j - l  in an obvious way. See Figure 2. 

C: augment A k l  to a spanning maximal independent outerplanar graph using 
edges from E, only. 

We must now show that we can complete the construction above with 
probability 1 - o(1). 

A: as for A in the previous section. 
B: the edges of BP’(k, j) occur independently with probability p 2  =- PZ -. We 

‘ - 1 6 n  
2 can apply the result of Erdos and RCnyi as before since lV(A,,j-l)l 5 - by 

definition of k 1. 

C: let u l ,  u2,  . . . , u, be an enumeration of [n]\V(Akl). For i = 1,2,  . . . , m we 
try to find an edge on the outerface of the current triangulation for which 
both endpoints are adjacent to ui using edges in E,. Since V(A,,)  has at 

Fig. 2 
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least - vertices and the E3 edges incident with ui are unconditioned by the 
previous history we have 

n 
4 

P(3i : ui cannot be added) 5 n( 1 - p:)n’4 

= o(1) for c > 8 f i  

This completes the proof of Theorem 2. 

4. FINAL REMARKS 

The reader will observe that the constants in parts (b) of the theorems can easily 
be reduced, but that it is not clear how to increase those in parts (a). 

The main question left open by this paper is the whereabouts of the exact 
thresholds. One can also ask for the threshold for the existence of spanning planar 
subgraphs with an ed es, a > l .  The argument of parts (a) shows that the 
threshold is at least n-” and it seems likely that the constructive method we have 
used can be adapted to attack this problem. 
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