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Abstract

We consider the following procedure for constructing a directed tree
on n vertices: The underlying undirected tree is fixed in advance but
the edges of the tree are presented in a random order (all orders are
equally likely); each edge is oriented towards its endpoint that has the
lower indegree at the time of its insertion. The question is what is
E(M(n)), the expected maximum indegree? As we shall explain, this
problem has connections with balanced allocations and with on-line
load balancing.

Previous results by Azar, Naor, and Rom imply that if the insertion
order is arbitrary, for any tree, M(n) = O(logn) and that there are
trees and insertion orders for which M(n) = Q(logn). On the other
hand, results by Azar, Broder, Karlin, and Upfal imply that if both the
underlying tree and the insertion order are random, then E(M(n)) =
O(loglogn). Here we show an intermediate result: for any tree if the
insertion order is random, then E(M(n)) = O(logn/loglogn) and
there are trees for which E(M(n)) = Q(logn/loglogn).
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1 Introduction

We consider the following procedure for constructing a directed tree on
n vertices: The underlying undirected tree is fixed in advance but the
edges of the tree are presented in a random order (all orders are equally
likely); each edge is oriented towards its endpoint that has the lower in-
degree at the time of its insertion. The question is what is E(M(n)), the
expected maximum indegree? We show that for any tree if the insertion or-
der is random E(M(n)) = O(logn/loglogn) and there are trees for which
E(M(n)) = Q(logn/loglog n). The motivation for this problem comes from
two directions: balanced allocations and on-line load balancing.

Suppose that we sequentially place n balls into » boxes by putting each
ball into a randomly chosen box. This is known as the random allocation
process and it has been extensively studied in the probability and statistics
literature. (See e.g. [8, 9].) A standard result is that when the process has
terminated, the fullest box has, with high probability (that is, 1 — o(1)),
Inn/Inlnn(l + o(1)) balls in it. Azar, Broder, Karlin, and Upfal [4] con-
sider a variant whereby each ball comes with d possible destinations, chosen
independently and uniformly at random. The ball is placed in the least full
box among the d possible locations at the time of its insertion. Surprisingly
when the process terminates the fullest box has only Inlnn/In d4+O(1) balls
in it, an exponential difference. (This allocation method is called the greedy
algorithm and the number of balls in a box is often called the load of the
box.)

Given this gap, it is natural to consider an in-between model: assume
that each ball has d possible destinations, fixed in advance, but the order
in which the balls are inserted is random. If we restrict our attention to
the case d = 2, we can view this process as the construction of a graph
G with with n vertices and n edges as follows: the edges are presented
in a random order (all orders are equally likely) and each edge is oriented
towards its endpoint that has the lower indegree at the time of its insertion.
Edges correspond to balls, the two endpoints of an edge are its two possible
choices, and the orientation is done in the greedy fashion described above.
The question becomes what is E(M(n)) the expected maximum indegree?

Clearly the maximum load can be as high as n/2 if all the choices for
all the balls are the same two boxes. To avoid these trivial situations it
is convenient to consider only the situation when in fact there is a way of
putting the balls in boxes that is consistent with the available choices for
each ball and that results in a maximum load equal to one. This means that



the graph G has the property that the number of edges induced by any set
of j vertices contains at most j edges. Furthermore if GG is not connected the
problem decomposes in an obvious way. So without loss of generality we can
assume that G is connected which means G is actually a tree plus one extra
edge. Finally it is easy to show that the addition of one edge changes M(n)
by at most one, so we can assume that G is a tree T', which is our model.
The proofs of [4] can be modified to show that if 17" is chosen uniformly at
random then E(M(n)) = O(loglog n).

The connection with on-line load balancing is as follows: We are given
a set of n servers and a sequence of tasks. Each task comes with a list of
servers on which it can be executed. The load balancing algorithm has to
assign each task to a server on-line, with no information on future arrivals.
The goal of the algorithm is to minimize the maximum load on any server.
The quality of an on-line algorithm is measured by the competitive ratio:
the ratio between the maximum load it achieves and the maximum load
achieved by the optimal off-line algorithm that knows the whole sequence
in advance. This load balancing problem models for example, communica-
tion in heterogeneous networks containing workstations, I/O devices, etc.
Servers correspond to communication channels and tasks to requests for
communication links between devices. A network controller must coordi-
nate the channels so that no channel is too heavily loaded.

On-line load balancing has been studied extensively against worst-case
adversaries [1, 2, 3, 5, 6, 7, 10]. What we are considering here are permanent
tasks, that is, tasks that arrive but never depart. For this case, Azar, Naor
and Rom [7] showed that the competitive ratio of the greedy algorithm is
O(logn) and that no algorithm can do better. Their proof can be slightly
modified to show that, in our terminology, for every tree and every order of
insertion M(n) = O(logn) and that there are trees and insertion orders for

which M(n) = Q(logn).

2 Upper bound

We consider the following procedure for constructing a tree on n vertices.
The final tree T is fixed in advance, but each edge e is inserted at some
time ¢(e), where the t(e) are independent variables identically distributed
uniformly over [0,1]. Note that this implies that all insertion orders are
equally likely.

Each edge e is oriented towards the endpoint that has the lower indegree



at the time of €’s insertion. The question is: for a given T, what is the
expected maximum indegree?

Let P(n,t,) denote the maximum probability (over all trees) that a tree
with n nodes contains an ¢-proof for the root at time ¢, where an z-proof for
v at time ¢ is a set of edges and their times that force the indegree on v to
be at least ¢ at time {.

Claim 1 For any tree T

/2
P(n,1,1) < ", (1)

where a = In 2/ In(4e€?).
Proof: The proof is by induction on ¢. Base case, 1 = 1:
P(n,t,1) < Pr(3 one edge at time ¢) < nt < nt'/?,

The general case. Suppose that the root r has degree k£ and that its
children are the vertices 1,...,k. We claim that

t
P(n,t,7) < Z / P(n—mnj,z,i—1)P(nj,z,i—1)dz,
1<j<k 70

where n; is the number of nodes in the tree hanging from j. The reason
is that if at time z the edge {r,j} completes an i-proof, there must exist
prior to this time an (¢ — 1)-proof for r that does not involve j, and an
(i — 1)-proof for j. These two events are independent since the trees that
can contribute edges to these two proofs are disjoint, namely they are the
two trees obtained from T by removing the edge {r,j}. By the induction
hypothesis
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Now either n4*/2/i* > 1 in which case (1) is trivial, or nt"/? < i®* in which
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Corollary 2 For any tree T on n vertices the expected maximum indegree

is O(logn/loglogn).

Proof: Fix a tree T. From the claim above, for C' a sufficiently large
constant, Pr(M(T) > Clnn/Inlnn) < 1/n. On the other hand M(n) < n.
a

3 Lower Bound

For the lower bound, we assume that ties are broken randomly: when insert-
ing an edge whose endpoints have the same indegree, the edge is oriented
towards a randomly chosen endpoint.

Let 1% 4 be the k-ary tree of depth d, where d is the largest integer

satisfying
1N\F 1
d{1-—) <-. 2
( 4d> 4 2)

The height of a vertex in T} 4 is the minimum distance to a leaf, so for
example leaves have height 0 while the root has height d. For a node v in
Ty 4, let the random variable L(v,!) denote the load (indegree) of v at time
t and let £(v,t) be the event that the edge to the parent of v has not yet
been inserted at time {.

Claim 3 Let v be a vertex with height at least i in Ty 4. Let f(i) be the
mazimum over such v of Pr(L(v,t/d) < i|E(v,i/d)). Then for 0 < i < d,

f(i)gi(l—j—d)k.



Proof: The proof is by induction on ¢. The base case, ¢ = 0, is clearly true.
For the inductive step, assume the claim is true for ¢ — 1 and let v have
height at least ¢. If L(v,¢/d) < 7, then at least one of the following must be
true:

1L (0,5 <i-1.

2. For each child w of v such that the edge {v,w} is inserted during the
interval (FTI, é] , either L (w, %) <i—1l,or L (w, %) =1L (v, %)
and the tie is broken in favor of w.

The first event occurs with probability at most f(i—1). Secondly, consider a
child w of v. The edge {v, w} has probability 1/d of being inserted during the

interval (FTl, é] . If it is inserted during this interval, then by the inductive

hypothesis,

pe(1 (050 <ot e (w5 < 6

Therefore the second event occurs with probability at most
i ‘ e .
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0
1 1 1\* 1\*
. ; - —2) < (1= =
(a(i-n+g)+1-3) < (1-5)
since f(¢ — 1) < 1/4 by the choice of d and the events under consideration
are independent. Thus

f(i)gf(i—l)—|-<1—$)k§i<1—ﬁ)k.

Corollary 4 For any constant ¢ < 1 and for large enough n, there is a tree
T on al most n vertices for which the expected maximum indegree is al least
clnn/Inlnn.

Proof: Fix ¢ < 1 and let k£ be sufficiently large. Let d be given by (2)
above, so d = (k/(4Ink))(1 + o(1)). The number of nodes in T} 4 is n =



1+ k+---+k% son= ek/9)(1+0(1)) and therefore k = 41n n(1+ o(1)) and
d=(Inn/Inlnn)(1+ o(1)).

For a fixed child of the root, the probability that it is not connected to
the root and has indegree at least d — 1 at time 1 — 1/d is at least 3/(4d).
Hence the probability that there exists such a child is at least

1 <1 3)k>1 (1 1)k>1 !
4d 4d) — ad’
The last inequality follows from (2) above. Therefore the expected maximum

indegree of T} 4 is at least (d — 1)(1 — 1/(4d)) > d — 5/4, which for large
enough n is greater than clnn/Inlnn. O
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