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Abstract

We consider a variation on Maker-Breaker games on graphs or digraphs where the edges have random
costs. We assume that Maker wishes to choose the edges of a spanning tree, but wishes to minimise his
cost. Meanwhile Breaker wants to make Maker’s cost as large as possible.

1 Introduction

We consider a variation on Maker-Breaker games on graphs or digraphs where the edges have costs. We
assume that each edge has a (random but known to both players) cost and Maker’s goal is build some some
structure, e.g. a spanning tree, but wishes to minimise his cost. In a play of the game, Maker chooses an
edge for his structure and then Breaker deletes b edges. If Maker is unable to build the desired structure
at all we say the cost is infinity. Maker will have to avoid this situation to get a meaningful result. Biased
Maker-Breaker games have a long history of research, beginning with Chvátal and Erdős [1]. We refer the
reader to an excellent monograph of Hefetz, Krivelevich, Stojaković and Szabo [5] on this topic.

We begin with a simple case that does not involve graphs: let N = {1, 2, . . . , } be the set of positive integers.
Maker in her turn has to choose an i ∈ [n] and irrevocably assign a value to f(i) ∈ N. We let Mt denote the
set of elements i ∈ [n] that have been selected in this way by Maker after t rounds of play. Breaker in his
turn selects i1, i2, . . . , ib ∈ [n] and j1, j2, . . . , jb ∈ N and makes jr unavailable to Maker for the value of f(ir),
r = 1, 2, . . . , b. We let Bt denote the set of pairs (i, j) for which Breaker has made f(i) = j unavailable to
Maker after t rounds. Thus M0 = B0 = ∅ and in round t, Maker adds one element to Mt to create Mt+1 and
Breaker adds b pairs to Bt to create Bt+1.

Let ϕ(f) =
∑︁n

i=1 f(i). Maker’s aim is to keep ϕ as small as possible and Breaker has the opposite intention.
Our first result is the following.

Theorem 1. If Breaker goes first then Maker can choose f such ϕ(f) ≤ (b + 1)n and this is optimal. If
Maker goes first then Maker can choose f such ϕ(f) ≤ (n− 1)b+ n and this is optimal

We have the following corollary: Suppose that instead of paying j, j = f(i), Maker pays X(i, j) where the
X-values are independent uniform [0, 1] random variables.

Corollary 2. In this uniform random scenario, Maker can pay at most µb(b+ 1 + o(1)), w.h.p., where µb is

the solution to log(b+1)−1
b+1

= µ− 1− log µ. (Note that µb = 1 +O( log
1/2 b

b1/2
).)
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In preparation for more complicated scenarios, suppose that we replace N by [m] i.e. we insist that f(i) ≤ m.

Theorem 3. Suppose that m >
∑︁n

i=1 1/i. Then w.h.p. Maker can choose f such f(i) ≤ m for i ∈ [n] and
ϕ(f) ≤ (b+ 1)n and this is optimal.

Corollary 4. In this uniform random scenario, Maker can pay at most µb(b+ 1 + o(1)), w.h.p.

Now we turn to a more complex problem. Here the board is the set of edges of the complete (loopless) digraph

K⃗n. There is an n×n cost matrix C. For each i ∈ [n] we have C(i, i) = ∞ and C(i, j), j = 1, 2, . . . [n] \ {i} is
an independent uniform random permutation of [n− 1]. Maker’s aim is to construct a spanning arborescence
T of low total cost, where the cost C(T ) =

∑︁
(i,j)∈E(T )C(i, j). (A spanning arborescence is a spanning tree

whose edges have been oriented away from one vertex, the root.)

After t rounds, Maker will have selected a set of t edges Mt that induce a digraph where each vertex has
out-degree at most one. Furthermore, these edges induce a forest when edge orientation is ignored. Similarly,
Breaker will have selected a set Bt of bt edges where Mt ∩Bt = ∅.

Theorem 5. W.h.p., over the random choice of C, Maker can construct an arborescence T of cost C(T ) ≤(︁
b/θ∗ + b+ 1 + o(1)

)︁
n, where θ∗ ≈ 0.2938.... (θ∗ is the solution to (1 + θ∗) log(1 + θ∗)− θ∗ log θ∗ = log 2.)

We doubt that this is optimal for Maker.

Conjecture: W.h.p. Maker can construct an arborescence T of cost C(T ) ≤ (b+ 1 + o(1))n.

We base this conjecture on the fact that if f : [n] → [n] is a uniform random mapping then the digraph with
edge-set {(i, f(i))} is almost a random arborescence, i.e. it differs from a arborescence by O(log n) edges.

Corollary 6. In this uniform random scenario, Maker can pay at most µb

(︁
b/θ∗ + b+ 1 + o(1)

)︁
, w.h.p.

We now consider the undirected versions of Theorem 5 and Corollary 6. I.e., now we have a weighted complete
graph and Maker wishes to build a low cost spanning tree. We note that Hefetz, Kupferman, Lellouche and
Vardi [6] considered a worst-case version of this problem, in the context of finding a maximum weight spanning
tree.

In the following theorem the edges of the complete graph are given independent uniform [0, 1] costs.

Theorem 7. Maker can build a spanning tree of cost at most 4µb

(︁
b/θ∗ + b+ 1 + o(1)

)︁
, w.h.p.

If Maker and Breaker do not think too hard then they might come up with the following strategies for playing
the Spanning Tree Game. Let us call the following strategies for Maker and Breaker the greedy strategies. The
edges of Kn are sorted into increasing order. Maker always chooses the cheapest edge available and Breaker
always deletes the b cheapest edges that Maker might want to use in the next round.

Theorem 8. If Maker and Breaker employ greedy strategies then w.h.p. the cost of Maker’s tree is asymp-
totically equal to (b+ 1)ζ(3).
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2 Mappings: proof of Theorem 1

For i /∈ Mt we let ri(t) = min {j : (i, j) /∈ Bt} be the minimum of the possible values for f(i) available to
Maker at the end of round t. Let δi(t) be the indicator for i /∈ Mt. We use the following potential

Φ(t) =
n∑︂

i=1

ri(t)δi(t).

In round t + 1, Maker’s strategy is simply to choose an arbitrary i /∈ Mt and put f(i) = ri(t) and so that
Mt+1 = Mt ∪{i}. This reduces Φ by ri(t). On the other hand Breaker will add b ordered pairs to Bt and will
be able to increase Φ by b. We get slightly different answers depending on who goes first.

Suppose that Breaker goes first. Now Φ(0) = n and Φ(n) = 0. So we have

−n =
n−1∑︂
i=0

(Φ(t+ 1)− Φ(t)) =
n−1∑︂
i=0

(b− ri(t)) = nb−
n−1∑︂
i=0

ri(t) = nb−
n∑︂

i=1

f(i).

If Maker goes first then we replace b − rn−1(t) by −rn−1(t) because Breaker does not get an nth turn. This
gives ϕ(f) = (n− 1)b+ n.

Both results are optimal, because any other choice for Maker with f(i) > ri(t) yields a higher value for ϕ.
This completes the proof of Theorem 1.

We complete this section with a proof of Corollary 2. We define permutations πi such that X(i, πi(j + 1)) ≥
X(i, πi(j)) for 1 ≤ j < n. Then, if Maker were to choose f(i) = j as in Theorem 1, then Maker is charged
X(i, j).

We need the following lemma from Frieze and Grimmett [3].

Lemma 9. Suppose that k1 + k2 + · · ·+ kM ≤ aN , and Y1, Y2, . . . , YM are independent random variables with
Yi distributed as the kith minimum of N independent uniform [0,1] random variables. If µ > 1 then

P
(︃
Y1 + · · ·+ YM ≥ µaN

N + 1

)︃
≤ eaN(1+logµ−µ).

(The lemma in [3] is given in terms of a logN instead of aN . There is nothing in the proof of that lemma
that precludes us from replacing a by aN/ logN .)

Now naively, we could observe that E(X(πi(j))) = j/(n + 1) and then, at least in expectation, we could
replace a cost j in the function model, j/(n + 1), giving us a bound of b + 1. Breaker however does affect
the choice which j Maker will choose and so we feel that we are forced to take a union bound over Maker’s
possibilities. This leads to the claimed inflated constant.

There are at most
(︁
(b+1)n−1

n−1

)︁
choices for

∑︁n
i=1 f(i) to add up to (b+1)n. Let F denote this set of choices. For

a fixed µ > 1 we have

P

(︄
∃f ∈ F :

n∑︂
i=1

X(i, πi(f(i))) ≥ µ(b+ 1)

)︄
≤
(︃
(b+ 1)n− 1

n− 1

)︃
e−(b+1)n(1+log µ−µ)

≤
(︂
(b+ 1)e−(1+(b+1)(1+log µ−µ))

)︂n
= o(1),

if µ > µb. This completes the proof Corollary 2 and Corollaries 4, 6 can be proved in the same manner. In
particular note that the bound claimed in Corollary 4 (resp. Corollary 6) is asymptotically just µb times the
coefficient of n from Theorem 3 (resp. Theorem 5).
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3 Mappings: proof of Theorem 3

Here Maker has to be more careful and exploit a version of the Box Game of Chvátal and Erdős [1]. In this
game there are n disjoint sets A1, A2, . . . , An, the boxes. In each round BoxMaker removes p elements from
A =

⋃︁n
i=1 Ai and BoxMaker removes q boxes. In the context of our mapping game, we let Ai = {(i, j), j ∈ [m]}.

Maker takes the role of BoxBreaker with p = 1 and Breaker takes the role of BoxMaker with q = b. After t
rounds there will be n − t boxes remaining and their contents will have been reduced. We will assume that
BoxMaker (Breaker) goes first and the BoxBreaker (Maker) always chooses a remaining box Ai of minimum
size (and puts f(i) equal to the smallest element left in Ai).

Theorem 3.4.1 of [5] shows that if |Ai| = m >
∑︁n

i=1 1/i then BoxBreaker (Maker) has a strategy (described
above) that garantees them a win. Thus given our lower bound on m, we see that Maker can finish the game.
Also, by the analysis of Section 2, she will end with a value of ϕ(f) ≤ (b+ 1)n. This completes the proof of
Theorem 3.

4 Arborescence: proof of Theorem 5

First we describe Maker’s strategy. Let Ft denote the set of oriented trees induced by Mt. Each of these
trees/components will have a root and Maker must choose an edge leaving one of these roots.

On Maker’s turn, if there is no root of any component on at most n/2 vertices such that Breaker has taken
at least nβ edges from the root, we call this a normal turn for Maker. Here 0 < β < 1 is a constant to
be determined later. On a normal turn, Maker always chooses the root i of the smallest component K (in
case of a tie, say choose the least indexed root). Maker then chooses the edge (i, j) /∈ Bt that (i) minimises
C(i, k), k /∈ Bt and (ii) does not point into K. We call this the sensible choice from root i.

If it is not a normal turn we say it is an emergency turn. On an emergency turn, Maker picks some component
on at most n/2 vertices from which Breaker has removed at least nβ edges, and Maker makes the sensible
choice out of this root. We will argue that w.h.p. this strategy gets Maker an arborescence consisting of a
set of edges whose total cost is at most (b/θ∗ + b+ 1 + o(1))n.

Consider the event to the contrary, i.e. that the total cost in the end is say (b/θ∗ + b + 1 + 3ε)n for some
fixed ε > 0, meaning that the extra cost paid for edges pointing within components is (b/θ∗ + 3ε)n, over and
above the (b+1)n achievable for Theorems 1, 3. We bound the probability of this event as follows. First it is
at most π1 + π2 + π3, defined as follows. π1 is the probability that we pay an extra εn on normal steps falling
in the first n0 steps, where n0 = n − nα for some 0 < α < 1. π2 is the probability of paying εn on normal
steps after step n0. π3 is the probability of paying bn/θ∗ + εn on emergency steps.

First we bound π1. Let N1 be the set of normal steps in the first n0 steps. Then we union bound over choices
for numbers at, t ∈ N1 where the intended meaning of the at is as follows. At step t, Maker takes an edge
from a root to another arborescense, paying an extra at for edges pointing into its own component. So we
have

∑︁
t at = εn, and the number of choices for the at is

(︁
εn+|N1|−1
|N1|−1

)︁
= exp{O(n)}.

We will also union bound over sequences xt, t ∈ N1 which will mean the following. At step i, if v is the root
that Maker is taking an edge from and Maker chooses the edge of cost rt, xt = rt − 1 − at. In other words,
the reason Maker has to choose the edge of cost rt = 1 + at + xt is because among the edges of smaller cost,
at of them point into v’s component and xt edges have been taken by Breaker. In particular, knowing xt and
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at tells us the cost rt of the edge that Maker will choose at step t. We have
∑︁

xt ≤ bn, and the number of
choices for the xt is exp{O(n)}.

Having fixed the at and xt we will reveal the random digraph step by step as the game runs. More specifically,
on Maker’s turn at step t ≤ n−1 we see the current component structure which uniquely determines the root,
say v which Maker will take an edge from. We reveal the costs of all edges coming from v, which determines
which edge Maker will take (i.e. the lowest cost edge which is not taken by Breaker and which does not point
into v’s component). Recall that among all the edges from v not taken by Breaker, the at lowest in cost all
point into v’s component. The size of the smallest component is at most

⌊︁
n

n−t+1

⌋︁
and so each out-edge has

probability at most
n

n−t+1
−1

n
= t

n(n−t+1)
of pointing into the component. There are at most

(︁
at+xt

at

)︁
choices for

the costs of the at edges pointing within the component. Thus we bound the probability π1 by

exp{O(n)}
∏︂
t∈N1

(︃
at + xt

at

)︃(︃
t

n(n− t+ 1)

)︃at

≤ exp{O(n)}
∏︂
t∈N1

(︃
n− nα

n1+α

)︃at

≤ n−αεn+o(n) = o(1). (1)

We bound π2 similarly. Let N2 be the set of normal steps after step n0. We choose numbers at, t ∈ N2 adding
up to εn and there are at most

(︁
εn+nα

nα

)︁
= exp{o(n)} choices here. Likewise there are exp{o(n)} choices for

the xt, i ∈ N2. To bound the number of choices for the interior edges we can instead choose Breaker’s edges
and there are at most nxt ways to do that. So π2 is at most

exp{o(n)}
∏︂
t∈N2

nxt

(︃
t

n(n− t+ 1)

)︃at

≤ exp{o(n)} × nnα+β × 2−en = o(1)

assuming only that α + β < 1.

Finally we bound π3. Note first that there are at most bn1−β emergency steps, so we union bound over at
most nbn1−β

= exp{o(n)} choices for emergency steps. Let N3 be the set of emergency steps. We fix numbers
at ≥ nβ, t ∈ N3 adding up to say an where a = b/θ∗ + ε, there being exp{o(n)} choices. We also fix numbers
xt, t ∈ N3 adding up to say X ≤ bn, there being exp{o(n)} choices. Since on an emergency step we always
have a root of a component on at most n/2 vertices, the probability of an edge landing in the same component
is at most 1/2. Thus we bound π3 by

exp{o(n)}
∏︂
t∈N3

(︃
at + xt

at

)︃(︃
1

2

)︃at

≤ 2−an+o(n)
∏︂
t∈N3

e(at+xt) log(at+xt)−at log(at)−xt log(xt). (2)

Suppose now that we fix the values for at, t ∈ N3. Let

ϕ =
∑︂
t∈N3

f(at, xt) where f(a, x) = (a+ x) log(a+ x)− a log(a)− x log(x).

We argue next that to maximise ϕ we must have xt/at taking the same value for all t ∈ N3. Consider the
function g(x) = f(a, x) + f(b, L− x) for some a, b, L > 0. Then

g′(x) = log(a+ x)− log(x)− log(b+ L− x) + log(L− x).

g′′(x) = − a

x(a+ x)
− b

(L− x)(b+ L− x)
< 0.

So, g is strictly concave and its derivative vanishes when (a + x)(L − x) = x(b + L − x) equivalently when
a
x
= b

L−x
. Thus, if we fix at, t ∈ N3 and maximise over xt, t ∈ N3 then we have xt = θat for t ∈ N3 where

θ = X/an ≤ b/a. We can therefore bound the product in (2) by∏︂
t∈N3

e(at(1+θ)) log(at(1+θ))−at log(at)−θat log(θat) =
∏︂
t∈N3

eat((1+θ) log(1+θ)−θ(log θ)) = ean((1+θ) log(1+θ)−θ log θ). (3)
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Now recall that θ∗ ≈ 0.2938... is defined as the root of (1 + θ∗) log(1 + θ∗)− θ∗ log θ∗ = log 2. Since a > b/θ∗

we have θ∗ > b/a ≥ θ and so (1 + θ) log(1 + θ)− θ log θ < log 2. Now by (2) and (3) we have π3 = o(1).

We finally note that with the above Maker strategy, if a component reaches size greater than n/2 then its
root will become the root of the final arborescence. This completes the proof of Theorem 5.

5 Spanning Trees 1: proof of Theorem 7

We reduce this Theorem 5. We replace each edge {i, j} with a pair of directed edges (i, j), (j, i). Each

directed edge (i, j) is given a random cost ˆ︁C(i, j), which is an independent copy of the [0, 1] random variable
Z where P(Z > x) = (1− x)1/2 ≤ 1− x

2
for 0 ≤ x ≤ 1. Then if Z1, Z2 are two independent copies of Z, then

min{Z1, Z2} is distributed as a uniform [0, 1] random variable. This is a nice idea, employed by Walkup [7]
in bounding the expected value of a random assignment problem. Note that Z is dominated by 2U [0, 1].

Given the above construction, Maker builds a spanning arborescence. The factor 4 comes from two sources:
first of all using Z in place of U [0, 1] asymptotically doubles the cost of each selected edge. The value of the
kth smallest order statistic of n copies of Z is at most doubled in expectation, due to the dominance claimed
in the previous paragraph. The other source, is that if Breaker deletes (i, j) then he must also delete (j, i).
So we double Breaker’s power by replacing b by 2b. Of course, the factor µb comes from using Lemma 9, just
as in the proof of Corollary 2.

6 Spanning Trees 2: proof of Theorem 8

Suppose that the edges of Kn are sorted into increasing order of weight, e1, e2, . . . , eN , N =
(︁
n
2

)︁
. Maker

selects edges et1 , et2 , . . . , etn−1 and we approximate Maker’s cost by 1
N

∑︁n−1
i=1 tt. Let gi = ti+1 − ti and Tk =

t1 + t2 + · · ·+ tk.

For c > 0 we define x = x(c) by (i) 0 < x ≤ 1 and xe−x = ce−c. Let m = cn/2 then q.s.1 Gn,m

contains a unique giant component of size (1 − x
c
)n ± n2/3. Let τ(c) = 1

c

∑︁∞
k=1

kk−2

k!
(ce−c)k. Then q.s.

κ(Gn,m) = t(c)n± n2/3. Then define

t(k) = k, 1 ≤ n

2
and t(k + 1) = t(k) +

1

1−
(︂
1− xk

ck

)︂2 for k >
n

2
,

where τ(ck)n = k and 0 < xk < 1 and xke
−xk = cke

−ck .

The analysis of the greedy algorithm in Frieze [2] implies that w.h.p.
∑︁n−1

k=1 t(k) ∼ Nζ(3).

Assume for now that Maker follows the greedy algorithm: Maker chooses e0 in round zero and then in round
i, i ≥ 1 Maker chooses the cheapest edge that joins two distinct components. Breaker next chooses b edges
that would join two disitinct components in Maker’s forest.

Let Fk denote the Maker’s forest after the selection of k edges, i.e. at the begining of round k. We note that
fk+1 is a randomly chosen edge that (i) avoids Breaker’s edges and (ii) joins two distinct components of Fk.

1A sequence of events En, n ≥ 1 occurs quite surely q.s. if P(¬En) = O(n−K) for an constant K > 0.
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Assume that after k ≥ n/2 rounds, Fk has a typical structure i.e. a giant of size
(︁
1− x

c

)︁
n and all other

components of size O(log n). Then the expected increase tk+1 − tk is asymptotically equal to b+1

1−
(︂
1−xk

ck

)︂2 and

the new forest component sizes remain “typical”.

It is known (see for example Frieze and Karoński [4], Chapter 18) that if Ln denotes the weight of the minimum
spanning tree then

E(Ln) =

∫︂ 1

p=0

(E(κ(Gn, p)− 1)dp ∼
∫︂ ∞

c=0

τ(c)dc = ζ(3).

Now the effect of deleting b edges is to slow the construction of the spanning tree and replace t(c) by t(c/(b+1))
producing a tree of expected weight asymptotically equal to∫︂ ∞

c=0

t(c/(b+ 1))dc = (b+ 1)

∫︂ ∞

c=0

τ(c)dc.

7 Final thoughts

We have studied an interesting class of Maker-Breaker games where Maker’s goal is build something cheaply.
Our results are not all tight and we believe that there is a general meta theorem that states for such games,
the existence of Breaker increases the cost of the optimum solution by a factor of (b+ 1) on average.
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