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We consider the asymmetric traveling salesman problem for which the triangular in-
equality is satisfied. For various heuristics we construct examples to show that the
worst-case ratio of length of tour found to minimum length tour is 2 (#) for n city
problems. We also provide a new O ([log, n]) heuristic.

I. INTRODUCTION

The traveling salesman problem has the following simple description: given a com-
plete digraph on n nodes with an n X n matrix ||d(i, /)| > O giving the lengths of arcs
(#, /) find a minimum length circuit (or four) which goes through each node exactly
once. The length d(T’) of a tour T is given by d(T) = Z; yerd(,j).

The problem has been studied extensively for the past few decades and many algo-
rithms have been proposed for its exact solution.

None however have worst-case time bounds which are polynomial in n. A complex-
ity theory (NP-completeness) initiated by Cook [3] and Karp [16] and extensively
covered in Garey and Johnson [11] indicates that an exact algorithm for this problem
with a polynomial time bound seems unlikely to exist.

One is therefore also interested in approximate algorithms which take time poly-
nomial in 7 but which do not guarantee an optimal solution but seem likely to lead
to ‘good’ solutions.

Given such an heuristic method H it is of interest to study its worst-case ratio R,,(H)
for n node problems where

R, (H)=Sup (d(T)/d(T*):T* is a minimum length tour,
T is a tour generated by H under the assumption
d(T*)>0)
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One would like to have a polynomial heuristic for which R,, = 1 + € where € is small
and positive. Unfortunately, the problem of finding a tour within any required
accuracy is also NP-hard—see Sahni and Gonzales [26].

If however we restrict our attention to problems in which the triangular inequality

d@,j)<d@,k)+dk,j) )

for all #,j, k € N holds (or maximum length tours) then the outlook is brighter.

Most attention has been focused on the symmetric case where d(i,j) =d(j, i) holds
foralli, j € N. For this problem the best known result is that for Christofides heuristic
[1] for which it is known that R, = (3m - 1)/2m, where m = |n/2|—see Comuéjols
and Nemhauser [4].

In this article we consider the asymmetric problem in which (1) holds.

Sections II-V deal with variations on a number of heuristics proposed over the last
15 years or so. We find that though quite good empirically these all have worst-case
performance R, = 2(n).* This is rather poor considering that (1.1) implies that no
tour can be more than n times the length of an optimum tour.

Section VI describes a heuristic based on repeated assignment which in contrast to
the above has R, < [log; n].

Finally Sec. VII gives some ‘data dependent’ bounds for which R,, depends on extra
assumptions about the d(i, j).

Notation

This notation is used for Sec. II-V where we only exhibitA lower bounds for R,,.

For each algorithm dealt with we first define a digraph G = (V, 4), where N = {1, 2,
...,n} and A C N? together with a function I: 4 - IR. The arc set 4 is implicitly
defined as the set of (i, f) for which a value I(i,f) is given.

The actual “hard” example satisfying (1) uses the complete digraph on n nodes with
arc lengths defined by d where d(i, /) = minimum length of a path from i tojin G
using arc lengths defined by 1. We will always have d(i,j) = I(i,]) for (i,/) EA.

The optimal tour will always be T*=(1, 2, ...,n,1). The tour found by the partic-
ular heuristic under discussion will always be denoted by T. Tours will sometimes be
viewed as sets of arcs to help with notation. ForasetS CN? d(S)=Z jesd(i,/)

To avoid listing special cases for i + 1,7 - 1 we adopt the convention:

ifi<0 nodei=nodei+n,

ifi>n nodei=nodei- n.

Il. GREEDY ALGORITHMS

This important algorithm has been widely studied in relation to matroids and general
independence systems—see Edmonds [5], Jenkyns [14], and Korte and Hausmann [18].

*We say f(n) = S2(g(n)) if there exists ¢ > 0 such that f(n) 2 cg(n) for all n.
= 0(g(n)) if there exists ¢ > 0 such that f(n) < cg(n) for all n.



TRAVELING SALESMAN PROBLEM 25

Greedy Algorithm
begin
T:=9;
while T is not a tour do
begin
d(e) =min (d(f): FEN? and T U {f} is contained in at least one tour)
T:=TU {e}
end
end
Definition of G

We assume n is even and n = 2m

IG,i+1)=1, i€EN- {m},
i(m,m+1)=L, wherelL is “large”,
1G,))=1, m+1<i<n 1<j<n i#j,

IG,j)=1, I<i<m,1<j<m i#j.
We note the following:

d(T*)=n+L- 1
Ifi<i<Kmandm+1<j<nthend(i,j)=>L )
Now the greedy algorithm could select (n - k, k + 1) for 0< k < m - 1 as its first

m arcs. It would then be forced to select the arcs satisfying (2). Under these circum-
stances d(T) = n(L + 1)/2. Thus

R,Zn(L +1)2(n+L-1). 3)

Since L can be made arbitrarily large the RHS of (3) can be made arbitrarily close
to n/2. For the symmetric case we showed in Frieze [8] that

Q2 (log nfloglogn) <R, <O(logn).

Related Heuristics
k-greedy methods

One might expect some improvement if instead of adding one arc at a time, one
added the minimum length set of k arcs at each stage (k fixed), as in Frieze [9] or
Hausmann, Jenkyns and Korte [13]. By considering the same example as above
we see that for m > k the first k{m/k| arcs (i, j) could satisfy m + 1 < i< n and
1 <j < m. Consequently T must then contain k |m/k| arcs satisfying (2) and so again
R, is O(n).
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Savings method

In the savings method—see Clarke and Wright [2] for details—one chooses a partic-
ular node, node O and then chooses arcs in descending order of s(i, j) = d(i, 0) +
d(0, j) - d(i, j). Append an extra node O to the example above with d(0, i) =
d(i, 0) = L. The savings algorithm acts exactly like the greedy algorithm for the first
n - 1 arc choices and again R,, is O(n)—see also Golden [12]

Loss methods

Webb [28] and Van Der Cruyssen and Rijckaert [27] propose selecting arcs on the
basis of what it costs not to select them. Details are contained in the referenced
papers but as an example suppose T consists of those arcs selected so far and for some
node iy T contains an arc (ip, /) but no arc (J, ip). Let (jy, ip), (J2, i) be the two
cheapest available arcs entering i, that can be added to T. Then if (j,, i) is not used
a “loss” of at least L(ip) =d(ja,10) - d(j1, io) = 0 is incurred associated with node .
This idea is generalized to all nodes that are not incident to 2 arcs of 7. The arc
chosen is that associated with the greatest loss.

In the example considered above initially all nodes have losses of zero and this
remains true if the algorithm selects (n - kK, k+ 1) forO<k<m- 4 asits first m - 3
arcs. Consequently the algorithm would then have to choose m - 3 arcs satisfying (2)
and so again R, is O(n).

IIl. NEAREST NEIGHBOR ALGORITHM

This has the flavor of greedy, except that the set of arcs selected at any stage for a
simple path. It was first proposed in Karg and Thompson [15].

For a simple path P let i(P), j(P) denote the initial and terminal nodes of P. We
allow a singleton node to be a path with no edges.

Nearest Neighbor Algorithm

begin
min =0
form=1,...n do (mis the initial node from which the next tour is to be generated),

begin Ty, = ¢;i(Tr) =j(Tr) =m;
while |T,,| <n- 1do
begin d(e) = min(d(x, y): x is not in T, and y =i(T,,)
oryisnot in T,, and x =j(T,,))
Ty =Tpn VU {e},
end
Ty =Tp Y {(j(Tm),i(Tm))};
ifd(T,,) <min then T = T,, ;min :=d(T,,)
end
end

The following example serves a fortiori whenever a single starting node is used.
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Definition of &
IG,i+1)=1, iEN- {2},
12,1)=1,
12,3)=n-1,
I(i,2)=1, IEN- {2}’
3,)=1, iEN- {3},
IG,i- 1)=n, i€EN- {3},
1G,i-2)=n, iEN- {3,4}.
We note the following:
d(T*)=2n-2.

For m & {1, 2, 3} the algorithm could select (3, m), (m, 2), (2, 1) as its first 3 arcs. It
could then proceed to produce

Tm=3,m2,1,n,n-1,....m+1,m-1,...,4,3)
and
dT,)=n(n-3)+3.
Forme€ {1, 2, 3} we could have
T,=3,42,1,n-1,n-2,...,5,3)

and again d(T,,)=n(n- 3) + 3.
Thus

R,2(nn-3)+3)/2n-2)

~ nf2, for large n.
In the symmetric case Rosencrantz, Stearns, and Lewis [25] showed that R,, =O(logn).

A k-greedy version

It is plausible to consider expanding the current path by k nodes at a time as cheaply
as possible. A bad example is obtained by adding the following arcs to G as defined
above: We assume & 2 § initially

1G,i+2)=1, iEN- {2},
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IG,i- =1, i=l,nn-1,...,n-k+5,
In-k+4,n-2k+4)=n,
In-pk+3,n-(p+2)k+3)=n, p=1,...,|n/k]-2.

Using these lengths the k-greedy version starting at node m € {1, 2, 3} could choose
arcs

(3,m),(m,2),2,1),(1,n),...,(n-k+S,n-k+4)
and then
(n-k+4,n-2k+4),(n-2k+4,n-2k+5),...,(n-k+2,n-k+3)
and then
(n-k+3,n-3k+3),(n-3k+3,n-3k+4),...,(n-2k+2,n-2k+3)

and so on. The arcs (i, i + 2) of length 1 are used to *“‘skip over’ node m. For nodes
m€ {1, 2, 3} the tour produced could be that for node 4.
The length of the tours T, generated can be seen to satisfy

d(T,)>k+@n+k-1)|(n- k)k]

and so for & fixed R,, = 2(n).
If 2 < k < 4 we proceed in a similar manner to above using straightforward modifi-
cations, to get the tours going the ‘““wrong way round.”

IV. CHEAPEST INSERTION ALGORITHM

In this algorithm we start with a degenerate subtour consisting of a single node. Then
at a general stage we have a subtour T through the nodes C C V.

We generalize the idea of building a tour by inserting a node k € C between consecu-
tive nodes (i, j) of T as cheaply as possible as proposed by Nicholson [22].

Where

e=(i,j)€ETand S CN- Clet A(e, S) = (length of shortest path that starts at i,
visits each node of § exactly once and terminates at j) - d(i, )

= minimum cost of “inserting” S between i and j.
We further define for S CN - C.

A(S) =min (Z.crAle,S,) := {S.} is a partition of § into | T| subsets)

= minimum cost of inserting S into the tour.
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Now let k be a fixed positive integer

k-Insertion Algorithm

begin
min :=oe
form=1 ... ndo
begin
m = @;Cm = {m}
while C,,, # N do
begin
Let ky =min (%, |IN - C,,, );
Let A(S*) =min (A(S): SCN - C,, and |S| =k,);

Step A ¢ =c, US*;
amend T, as implied by calculation of A(S*)
end
if min > d(T,) then min :=d(T,,,); T := T),
end
end

We note that the algorithm runs in O (n*¥*?) time.

Definition of &

1IG,i+1)=1, fori€N,

I(G,i-)=h=Mnm-k-1/(k+1) foriEN.
We note that

d(T*)=n.
We will show that for n > 3k + 1 we could have
d(T)>k|(n- k- D)/k|(h+1),
~n? k.
This shows that for fixed k, R,, is Q(n) after showing that in producing 7, we could
have Ty =(1,m,m- 1,...,3,2,1) after p executions of Step A where m = pk + 1 <
n- k. The result for T,, . .., T, follows by symmetry.
We first show that Hy = (1,k+1,%, ..., 3,2, 1) is a minimum length tour through

[k+1] ([m] ={1,2,...,m}).
To see this we note that for arc (i, )

dG,j)=min(j-i,(n- (j-i)h), ifji>i,
=min (G- j)h,n- (i-]), ifi>].
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Now for n > 2k we have d(Ho) = k(h +1). Nextlet H=(io =1,iy,...,ix, iy =1)
be any tour through [k + 1]. Letm; =i, - i, for 1 <t<k+1andletI*= {z:
m, >0} and I” = {t: m, <0}. We note that there exists p such that i, >k +1. It
follows then that

> my>kandhence Y. (-m,)>k,
=T =T

k+1
> m=0.
t=1

It now follows that

dH)= 3 min(m,, (n- my) k)+ Y min(-mh, n+my),

eIt =7
2 min (k, (n - k) h) + min (kh, n - k),
=k +kh
=d(H,).

The inequality follows from the fact that the minimum of a concave function
over a convex polyhedron occurs at a vertex.

Assume now inductively that after p iterations of Step A we have T} = (1, m,
m-1,...,3,2,1)wherem=pk+1<n- 2k.

If weinsert m+ 1,...,m +k between nodes 1, m so that T'; becomes (1,m+k, ...,
m+ 1, m, ..., 1) the increase in length is k(2 + 1). Now let S C N - [m], where
|S]=q < k. We consider inserting S into T},.

Case 1.
A({r,r-1),89)2qkr+1), re{2,...,m} @

Suppose (r = ip, iy, . . . , ig, igsy =7~ 1) is a path from r to r - 1 through S and let
my =iy - iy for1<t<q+ 1. As there exists i, >r +q we have

2. my>qandhence Y. (-m)>q+l
€1t 1"

and hence
h+A((r,r-1),8)2min(q,(n-q)h)+min((g+ 1) h,n-q-1)=q+(g+1h

which implies (4).
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Case 2.
A((1,m),$)=q(r+1) €))
Define m, as before. We see that there exists ip 2m+q and so

2 m2m+q-land Y, (-m)>q

eI <1
and so
m-1+A2min(m+q-1,(n-(m+q- 1)) k) + min (gh, n - q)
=m+q-1+qh
which implies (5).

It follows that A(S) > k(% + 1) for |S| = k and the inductive step is complete. For
the symmetric case Rosencrantz, Stearns, and Lewis [25] showed that for k = 1,
R,=2-1/n.

V. INTERCHANGE ALGORITHMS

The most successful heuristics to date are those based on trying to improve a given
tour by deleting some arcs and replacing them by others. This has been proposed by
several authors, e.g., Lin [19], Lin and Kernighan [20], Nicholson [22], and Reiter
and Sherman [24].

Given a tour T a proper k-swap T" is any tour such that ITNT'|>n - k. k being
some positive integer.

For the symmetric case it is quite satisfactory to define k-optimality by

T is k-optimal if d(T) = min (d(T"): T’ is a proper k-swap of T).

For the nonsymmetric case there are problems as exemplified by the fact that T
is its own unique 2-swap and so 2-optimality is trivial.

A more sensible definition of a k-swap must allow some subpaths of T to be tra-
versed in the opposite direction to that of 7.

We thus define for tour T rev (T) = {(j, {): (i, /)€ T} and a k-swap T' to be a tour
such that |T' N (T U rev (T))| > n - k, and NHD(T) = {T":T" is ak-swap of T}. A
tour 7 is k-optimal if d(T") = min (d(T"): T' € NHD(T)).

To find a k-optimal tour we start with an arbitrary tour T and search NHD(T) for
a better tour. If a better is found we repeat the process with this tour otherwise we
have a k-optimal tour.

As the verification that a tour is indeed k-optimal requires at the very least O(n*)
time a necessary condition for this process to be polynomial is that k be fixed inde-
pendent of n.

We show that under these circumstances R, is again O (n).
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Definition of &

We assume nisodd,n=2m+ 1l and n>2k* + 1

IG,i+1)=1, fori€EN,
l(i,i‘+ m)=h=(n-k)2k, fori€N,
1(i,i- m)=kh, foriEN,

Note that node i + m is node i + m mod n by our convention. With this definition of
1 the shortest distances d satisfy

d@,))=min(j-i,(n-j+i)h), 1<j-i<m,
=min(j-i,2(n-j+i)h,(2j-2i-n)kh), m+1<j-i<n,
=min(n-i+j,2(G-j)h,(n-2i+2j)kh), 1<i-j<m,
=min(n-i+j,(2i- 2% - n)h), m+l<i'—]'<n.

Now d(T*) = n and if
T=(1,m+1l,n,m2m,... m+2,1)={(Gi+m)i€EN}

then d(T) = nh and because T is k-optimal R,, = h = (n) for k fixed.

We must now show that T is indeed k-optimal. Let X C T with |X| =p < k and
Y CN? satisfy |Y|=p, YNT=¢ and T' = (T - X) U Y € NHD(T).

Now d(T") = d(T) - ph + d(Y) and so if Y Nrev (T) # ¢ d(Y) = kh implying
d(T")>d(T). We can thus restrict ourselves to proper k-swaps.

Next define for i, j € N t(i, j) = the number of arcs in the subpath from i to j in
Teg.t(l,m+1)=1landt(1,2)=n- 2.

Note that by symmetry t(i, j) = t(i’, j') = d(i, j) =d(i’,j'). Suppose now that
T'=(T- X)UY isaproper k-swap of T and Y = {(ig,jq): 1 <q<p}.

Now as T" is a tour we have

Z t(i,j)=an

LHET

for some integer a > 0 and as T’ uses n - p arcs of T we have
P
Zt(iq,jq)=bn+p, b=a-1. 6)
g=1

We can clearly restrict our attention to the case where d(i;, jo) < ph for 1 <q<p.
It follows that

() 1<t(q.ig)<p- Yandd(iq,jq) = t(ig,jq) h or
(i) n - 2(ph = 1)< tlig,jg) <n-2and d(iy,jq) = (n - t(iy,jg))2
(t(iq, jg) is even in this case).
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Partition [p] into Qy, Q, such that g € Q; (resp. Q,) if Case 1 (resp. Case 2) holds

forgq.
Then from (6) we have
2 tlig i) =@ - 1Q:lyn+p+ 2 (n-t(g.ig)). ™
q9€Q €,

We can now further restrict ourselves to the case where

Z d(iq;jq)gph' 1
QGQz

which implies that

2 (n-tlg.ig)<2(ph-1).
9€Q,

Using this in (7) together with the fact that p + 2(ph - 1) <nwe find thatb - |Q,] =0
and hence that

2 tlg.ig)>p.
qEQ,

Thus

2. d(ig,jg)>phand sod(T")>d(T)
9€Q,

and T is k-optimal.

In the symmetric case Rosencrantz, Stearns, and Lewis [25] describe an example of
an n/4-optimal tour which is 2 - 1/n times the lenigth of the optimum tour.

For maximum length tours Fisher, Nemhauser, and Wolsey [7] show that in the
symmetric case a 2-optimal tour is at least one-half the length of the optimum tour but
that in the nonsymmetric case 2-optimal tours can be a mere 4/n times the length of
the maximum tour.

Papadimitrou and Steiglitz [23] consider interchange algorithms when (1) does not
hold and give particularly nasty examples.

VI. REPEATED ASSIGNMENT HEURISTIC

In order to write the algorithm we need 2 additional procedures.

Procedure ASSIGN (C, D) solves the assignment problem defined on G by the cost
matrix D (where dj; = e to exclude loops) i.. it finds a subset S of N? or minimum
cost such that in the graph G’ = (¥, S) every vertex has in degree and out degree equal
to 1. § defines, in general, a set of disjoint tours P; . .., Px and it is a solution of the
directed non symmetric T.S.P. if X = 1.

Let T be a subset of A such that the graph G” = (V, T) is connected and for every
nodeveEV,
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(i) in degree (v) = out degree (v) = k(v).

(i) the deletion of node v from G" leaves k(v) connected components.

Observe that these properties imply that for each connected component C; obtained
by deleting any node v there are nodes u;, w; € C; such that (u;, v) and (v, w;) arein T

(Fig. 1).

The following procedure modifies 7 until a tour of G is obtained.

Procedure TOUR (G, T).
while there exists a vertex v € V with k(v) > 1 do
begin
add arc (uy, wy);
delete arcs (4, v) and (v, w,)
end
end

Notice that after execution of every add and delete operations the graph G"(V, T)
is connected and maintains the initial properties and therefore if k(v) > 1 it is always
possible to find node u,, wy, 4z, w, as in Fig. 1.

Let G, be the given graph, Dy be the given cost matrix and T, be the tour to be
found.

The algorithm follows.

FIG. 1
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Procedure DTSP (T, G,, Dy).

begin
T+g;
D « Cy;
G < Gy;
k<2
while k # 1 do
begin
{P,P,,...,P,} < ASSIGN(G, C);
Veg;
Jori=1until hdo
begin
choose any node v; of P;;
VeVuU {y}
T«TuU{P}
end

Let G be the complete subgraph of G, induced by ¥
and D be the induced cost matrix of G;
k<h
end
Ty, <« TOUR (Go, T)
end

Let T be the set of arcs of G, to which TOUR is applied. It is straightforward to see
that G = (V, T) is connected and has properties (i) and (ii).

Notice that ASSIGN is applied no more than [log, n] times and that the cost of the
solution of every assignment problem is always not greater than the cost of the opti-
mum tour T* of G,. It follows that the cost of the set of arcs T is bounded from
above by [log, n] times the costs of 7* and so R, < [log, ].

For what concerns the complexity of the algorithm, we know that the assignment
problem can be solved in time O(1#*). Since the algorithm applies ASSIGN on graphs
whose number of vertices is at worst only halved at each iteration the total computing
time spent on solving the assignment problems remains of the same order.

Since the complexity of TOUR is O(n), the overall complexity of the algorithm is
o).

This algorithm can be easily generalized for solving the multisalesman problem with
R, < [log, n].

This problem asks for a minimum cost spanning connected subgraph of G having in
degree and out degree equal to one at every vertex except vertex 1 which is allowed to
have equal in and out degrees not exceeding a given constant m.

For the symmetric multisalesman problem Frieze [10] has modified Christofides
heuristic to get R,, < 3/2.

Vil. DATA DEPENDENT BOUNDS

We give here some upper bounds for algorithms that depend on the values L.
(i) Suppose that in addition to (1) we have
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Ii‘ <0di,~, for l,] EN, (8)

where necessarily o 2 1.

For a given problem it will be easy to compute the smallest « satisfying (8). (e will
be finite unless there exists 7, j such that ¢;; > 0 and ¢;; = 0.)

We now give a simple modification of Christofides heuristic such that

R, <30/2 )]
holds.

Modified Christofides Heuristic

begin
fori,j € Ndody =min(l, l;;);

Apply Christofides heuristic to the symmetric problem using arc lengths dj;: ie.,
(a) Construct a minimum length spanning tree T, (b) Construct a minimum weight
matching M of the odd nodes X of T, (c) The graph defined by T U M is eulerian.
Orient the edges of T U M to conform with the direction of some eulerian tour C.
(d) Reduce the directed cycle C to a hamiltonian cycle H by traversing it and deleting
repeated nodes.

We note that the time complexity is O(n3). (Note also the d need not satisfy (1)
but this does not matter.)

Now

IH)<I(C) by (1)
<od(C) by(8)
= ad(T) + ad (M)
But clearly d(T) < d(H*) and by considering the “reduction” of H * to a tour
through X we see that I(H*) > 2d(M).
We thus deduce that
IH)<oadH*)+al(H*)/2,
<od(H*) +ad(H*)/2
which implies (9).

We note that [4] shows that (9) is (almost) tight fora = 1.
(ii) Suppose now that in addition to (1) we have

lki+lki>ﬁlij’ fori,f,kGN. (10)
For a given problem it will again be easy to compute the largest § satisfying 0.1.

This will satisfy 8 < 2 which can be deduced by considering all 6 possible inequalities
(10) for a given set of nodes x,y,z EN.



TRAVELING SALESMAN PROBLEM 37
We now give a modification of a heuristic described in [8] for which

R,<1+1/8, 1<8<2,

11
<2/8, 0<g<1. (n

Branching Heuristic

Begin

Construct a minimum length branching B rooted at node 1 and spanning N, i.e., a
minimum length set of n - 1 arcs containing no cycle and for which node 1 has in-
degree O and every other node has in-degree 1. This can be constructed in O(n?)
time—see Edmonds [6];

Let I(k, 1) = min (I(j, 1));
j#1
- H:=HU {(k, )}

At this stage H consists of a directed cycle C plus for each node x in C a (possibly
empty) branching B, rooted at x. These branchings are disjoint and for each node y
not in C let b(y) be the unique node in C such that y is a node of By (y) and let P(y)
be the unique path from b(y) to y in By (,).

For a node x of C let z(x) be the terminal node of the unique arc of C which has x
as its initial node.

During subsequent iterations of the algorithm H and C will change and it is conve-
nient to assume that the values of b(y), P(y), u(x), z(x) are updated in concert.

The algorithm continues with

while H is not a hamiltonian cycle do

begin
Choose y not in C such that the outdegree of y is zero;

B:  H=MHU {3,z - {6(),2(6(»))} [see Fig. 2]

end

end.

One can easily implement the while loop so that the overall time complexity is
O(n?). It remains to verify (11). It is clear that if H C are the values of H, C imme-
diately after Step A that I(H) <IH™).

A single iteration of the while loop with a given y and b = b(y), z = z(b) changes

Y \—m == = = = —

FIG. 2
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I(H) by
I(y,2)-1(b,2)

<, y)+1b,2))/- 1(b,2), by (10),
<IPO)B+1(b,2)(A/B-1), by (D).

We first consider A; = Z,/(P(y)) where the summation is over the y occurring in an
execution of the whole algonthm Now A, = I(H C) This is because the arcs occur-
ing in P(y) are all in H-C prior to execution of Step B of the algorithm and after
execution ofASte;P B these arcs will now be in C. Thus the arcs that contribute to A,
are those of H ~C

Next let A, = E I(b, z), where the summation is over the same set of y as before.
Now an arc can contnbute at most once to A, as after an execution of Step B (b, 2)
is deleted from H and it will never reappear as both b, z are in C.

Also before execution of Step B the out- degree of b is at least 2. But this implies
that (b, z) must be an arc of H It cannot be one of the arcs (¥, 2) added in a previous
execution of Step A as this  will have out-degree 1 for the remainder of the algo-
rithm. Thus A; < I(H) and so the length of H on termination of the algorithm is
bounded above by

Case 1.8 1. I(H)+A,/8= @) +1H- C)B,
<I@) +I1@E)B.

Case2.0<B<1. I(H)+A,/B+A,(1/8- 1),
<1 +1@H- Oy +1H)Q1/B - 1),
< 21(E)/B.

and (11) follows immediately.
We note that [8] shows that 7.4 is (almost) tight for § = 1.

Vill. CONCLUSION

We have examined many polynomial time heuristics and found that most have worst-
case ratio R,, which is O(n) and only one, the repeated assignment heuristic of Sec. VI
which has R,, < [log, n] is better than this.

Thus the question as to whether there is a polynomial time heuristic for which R,, is
bounded by a constant posed in Karp [17] is still open.
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