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Abstract

We consider the problem of traveling among random points in Euclidean space, when only a
random fraction of the pairs are joined by traversable connections. In particular, we show a threshold
for a pair of points to be connected by a geodesic of length arbitrarily close to their Euclidean
distance, and analyze the minimum length Traveling Salesperson Tour, extending the Beardwood-
Halton-Hammersley theorem to this setting.

1 Introduction

The classical Beardwood-Halton-Hammersley theorem [2] (see also Steele [21] and Yukich [22]) con-
cerns the minimum cost Traveling Salesperson Tour through n random points in Euclidean space. In
particular, it guarantees the existence of an absolute (though still unknown) constant 34 such that if
X1,X,. .., is a random sequence of points, uniformly distributed in the d-dimensional cube [0, 1]%, the
length T'(X), 1) of a minimum tour through Xj,..., X, satisfies

d—1

T(anl) =~ Bgn 4 a.s.

The present paper is concerned still with the problem of traveling among random points in Euclidean
space. In our case, however, we suppose that only a (random) subset of the pairs of points are joined
by traversable connections, independent of the geometry of the point set.

In particular, we study random embeddings of the Erddés-Rényi-Gilbert random graph G, into the
d-dimensional cube [0, 1]¢. We let &, denote a uniformly random set of points X1, X», ..., X, € [0,1]%,
and we denote by &, , the random graph whose vertex set is &;, and whose pairs of vertices are joined
by edges each with independent probability p. Edges are weighted by the Euclidean distance between
their points, and we are interested in the total edge-weight required to travel about the graph.
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Figure 1: Paths in an instance of A}, , for d =2, n = 230 and p = 10 25 50 4pd

T , respectively. In
each case, the path drawn is the shortest route between the vertices  and y which are closest to the

SW and NE corners of the square. (See Q. 2, Section 5.)
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This model has received much less attention than the standard model of a random geometric graph,
defined as the intersection graph of unit balls with random centers X;,i € [n], see Penrose [17]. We
are only aware of the papers by Mehrabian [14] and Mehrabian and Wormald [15] who studied the
stretch factor of X, ;. In particular, let ||« —y|| denote the Euclidean distance between vertices z, y, and
dist(z,y) denote their distance in &}, ,,. They showed (considering the case d = 2) that if n(1 —p) — oo,
then the stretch factor

dist(z, y)

sup —————-

ﬂC,yeXn,p H‘r - yH

tends to co with n.

As a counterpoint to this, our first result shows a very different phenomenon when we pay attention to

d
long’ the distance between a typical

log?n
n(loglogn)24’

additive rather than multiplicative errors. In particular, for p >
pair of vertices is arbitrarily close to their Euclidean distance, while for p < the distance
between a typical pair of vertices in X, is arbitrarily large (Figure 1). (We write log® z for (logz)*.)
In particular, this means that when % < p < 1— ¢, the supremum in the stretch factor theorem of
Mehrabian and Wormald is due just to pairs of vertices which are very close together.

Theorem 1.1. Let w = w(n) — oco. We have for d > 2:

1 log¢ n
(loglogn)2d n

(a) Forp < — and u = X1, v = Xa, we have

w 1

dist(u,v) > Sl

wlog?n . . .
(b) For p > “=2= we have a.a.s. that uniformly for all pairs of vertices u,v € &,

dist(u,v) = ||u — v|| + o(1).

Theorem 1.1 means that, even for p quite small, it is not that much more expensive to travel from one
vertex of &}, ;, to another than it is to travel directly between them in the plane. On the other hand,
there is a dramatic dependence on p if the goal is to travel among all points. Let T'(X,, ;) denote the
length of a minimum length Traveling Salesperson tour in X, p, i.e. a minimum length Hamilton cycle.

LA sequence of events &, occurs asymptotically almost surely (a.a.s.) if limp o0 Pr(&,) = 1.



Theorem 1.2. There exists a sufficiently large constant K > 0 such that for all p = p(n) such that
p > @, d > 2, we have that

d—1
n d
(1) T(Xn’p) =0 <pl/d> a.a.s.

(Recall that f(n) = ©(g(n)) means that f(n) is bounded between positive constant multiples of g(n)
log n+log log n+w(n) (

for sufficiently large n.) As the threshold for Gy, to be Hamiltonian is at p =
e.g. Bollobds [3]), this theorem covers nearly the entire range of p for which a TSP tour ex1sts a.a.s.

see

Finally, we extend the asymptotically tight BHH theorem [2] to the case of &, , for any constant p. To
formulate an “almost surely” statement, we let X/, denote a random graph on a random embedding of
N =1{1,2,...,} into [0,1]%, where each pair {i, j} is independently present as an edge with probability
p, and consider X, , as the restriction of X, to the first n vertices {1,...,n}.

Theorem 1.3. If d > 2 and p > 0 is constant, then there exists B4, > 0 such that

d—1

T(Xnp) = Bapn @ a.s.

Karp’s algorithm [13] for a finding an approximate tour through X,, extends to the case &, ,, p constant
as well:

Theorem 1.4. For fized d > 2 and p constant, then there is an algorithm that a.s. finds a tour in X,
of value (1 + o(1))Bg,n D/ in polynomial time, for alln € N.

2 Traveling between pairs

In this section, we prove Theorem 1.1.

2.1 Proof of Theorem 1.1(a)

Outline of proof

This is straightforward. We show by the first moment method that any path between u and v with
“many” edges must contain a significant number of “long” edges and hence must be as long as claimed.
We then show that a.a.s. there are no paths between v and v without many edges.

Proof proper
Let v4 denote the volume of a d-dimensional unit ball; recall that v, is bounded (v < v5 < 6 for all d).

_ w(loglogn)? _
= “lellogn Let € =

Let an edge be long if its length is at least ¢; and let A be the event that

loglogn log

there exists a path with k edges, k > kg = wﬁg% from u to v that uses at most €k long edges. Then
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after using d > 2 and log®n = e.

Explanation of (2): Choose the k — 1 interior vertices of the possible path and order them in one of
(k- 1)!(/£1) ways as (u,us,...,ur_1). Then p* is the probability that the edges exist in Gy, ,. Now

choose the short edges e; = (u;—1,u;),7 € I in one of ((1f€)k) = (512) ways and bound the probability

o\ d (1—e)k
that these edges are short by (I/d (M) > viz. the probability that wu; is mapped to the

4edlogn
ball of radius ¢1, center u;_1 for i € I.

Now a.a.s. the shortest path in Gy, , from u to v requires at least kg edges: Indeed the expected number
of paths of length at most kg from u to v can be bounded by

ko n 1 ko log%n g

k=1 k=1

So a.a.s.
elogn w(loglogn)? L w

2dloglogn  4etlogn  8ded’

dist(u, v) > ekoly =

2.2 Proof of Theorem 1.1(b)

Outline of proof

We first consider two points w,v such that ||u — v|| > v = m. We then consider a set of small
disjoint balls with centers on the line joining u,v. We argue that a.a.s. (i) all of these balls contain
(relatively) giant components, (ii) there is an edge joining any pair of giant components inside each ball,
(iii) the diameter of each of these giant components is small and (iv) there is an edge between u and
one of the g giant components X closest to u and an edge between v and one of the g giant components
Y closest to v. This gives a path consisting of an edge from w to the giant component X plus a walk
inside X plus an edge to the giant component Y plus an edge to v. Because the balls are small the
length of this path is close to ||u — v||. We reduce the case where ||u — v|| < to the first case.

Proof proper
We begin by considering the case of vertices u,v at distance ||u — v|| > . Letting ¢ L

= Togn’ then, for



Figure 2: Finding a short path.

sufficiently large n, we can find a set B of at least %, C = {, disjoint balls of radius ¢ centered on the
line from w to v, such that % of the balls are closer to u than v, and % balls are closer to v than u
(Figure 2). Denote these two families of % balls by F, ., and Fy . (The sets B, F,, and F,, are fixed
for the rest of the argument.)

Given a ball B € Fy, ) = Fup U Fyu, the induced subgraph Gp on vertices of X' lying in B is a copy
of Gy p, where N = N(B) is the (random) number of vertices lying in B. Let

Ny

Sp be the event that N(B) € [2d+17

QNO] where Ny = v40%.

(Dividing by 2%+! accounts for points close to the boundary of [0, 1]%.)

Now N(B) is distributed as the binomial Bin(n,q) where ¢ € v46%[27%,1]. The following Chernoff
bounds will thus be useful:

(3) Pr(Bin(M,p) < (1 —e)Mp) < e M2 for 0 < £ < 1.
(4) Pr(Bin(M,p) > (1 +¢e)Mp) < e~ Mp/3 for 0 < e < 1.
The bounds (3) and (4) imply that for B € F, .y,

_pt—o()

Pr (=Sp) < e~ — ¢

This gives us that a.a.s. Sp occurs for all pairs u,v € X with ||u — v|| > 7. We now argue that for all
B e B:

(A) All subgraphs G'p for B € Fy, .} have a giant component Xp, containing at least No/ 242 vertices.
Indeed, the expected average degree in Gp is Np = Q(w) — oo (and with probability 1 — e—nt oW
we have N = nl_"(l)) and at this value the giant component is almost all of B a.a.s. In particular,

since Sp occurs, we have that

(5) Pr(|Xp| < No/272 | Sp) < e 2WNo) < o= 0%n) — =3y,



See [3] for the first inequality in (5). This can be inflated by n?- (2Clogn) to account for pairs u, v
and the choice of B € Fyy }-

(B) There is an edge between Xp and Xp/ for all B, B’ € Fluw)-
Indeed, the probability that there is no edge between Xp, Xp/, given (A), is at most

(1 . p)N02/22d+2 S 6—9(62d'ﬂ2p) S e_nl_O(l).
This can be inflated by n? - (C'logn)? to account for all pairs u,v and all pairs B, B'.

(C) For each B € Fy, ., the graph diameter diam(Xp) (the maximum number of edges in any shortest
path in Xp) satisfies

1001og N
Pr <diam(XB) > 00%og 0) <n7.

log(Nop)

This can be inflated by n?-(2C log n) to account for pairs u, v and the choice of B € F{uw}- Fernholz
and Ramachandran [5] and Riordan and Wormald [20] gave tight estimates for the diameter of the
giant component, but we need this cruder estimate with a lower probability of being exceeded. We
prove this later in Lemma 2.1. It will be convenient for the proof of Lemma 2.1 to assume that
Nop = O(log Ny). There is no loss in generality because Theorem 1.1(b) holds a fortiori for larger
p. This follows from a standard coupling argument, involving adding random edges to increase the
edge probability.

Part (C) implies that with high probability, for any u, v at distance > v and all B € Fy,, ,;; and vertices
z,y € Xp,

log Ny < 200 _ logn —dloglogn +logry

6 dist < 2006
(6) ist(e,y) < 8 log(Nop) ~ logn . logw + log vg

o(1).

As the giant components Xp (B € F,,) contain in total at least %22\@2 = Qd%udnédfl vertices, the

probability that u has no neighbor in these giant components is at most

(1 . p)Cudn6d_1/2d+2 < efCudnpéd_1/2d+2 _ nwayd/2d+2.
In particular, the probability is small after multiplication by n?, and thus a.a.s., for all pairs z,y € Xnp,
x has a neighbor in Xp for some B € F,, and y has a neighbor in Xp/ for some B’ € F,,. Now by
part (B) and equation (6), we can find a path

U, WOy W1y yWgy Bty Zt—14+-+4521520,V

from u to v where the w;’s are all in some Xp for B € F,, and the total Euclidean length of the
path wy,...,ws tends to zero with n, and the z;’s are all in some Xp/ for some B’ € F,,, and the
total Euclidean length of the path zg,...,w; tends to zero with n. Meanwhile, the Euclidean segments
corresponding to the three edges u, wq, ws, 2, and zp,v lie within ¢ of disjoint segments of the line
segment from u to v, and thus have total length < ||u — v|| + 64, giving

(7) dist(u,v) < |lu —v|| + 60 + o(1) = ||u — v|| + o(1).

We must also handle vertices u,v € &, , with ||u —v|| < . Given such a pair, we let B,,, B, denote any
choice of balls of radius « such dist(B,, B,) > v, dist(B,,u),dist(B,,v) < v(v/d + 2). (These bounds



are chosen to make such a choice trivially possible, even when u, v are close to a corner.) Observe that
we have: where C,, C, denote the giant components of B,, B,, and & ~ y means that {z,y} is an edge
of X p,

Pr(Vu,v € &), ,, 3w € Cy, z € C,, such that u ~ w,v ~ 2z) = 1

with n since a.a.s we have that B, and B, contain at least l/dn’yd / 9d+2 points for all u,v € &, , and we

have that 1 — 2n2(1 — p)"'l’d'yd/2ler2 — 1. In particular, we can a.a.s for all pairs u,v € &), , find w ~ u
within distance v(v/d 4 4) of u, z ~ v within Euclidean distance v(v/d + 4) of v, such that

v < Jlw— 2| < (2Vd + 8).
Now, we can use the previous case (7) to see that
dist(u,v) < (2Vd 4 9)y + 66 + o(1) = o(1).
In particular, dist(u,v) — ||u — v|| = o(1). O
We complete the proof of Theorem 1.1 by proving

Lemma 2.1. Suppose that Np = w — oo,w = O(log N) and let C denote the unique giant component
of size N — o(N) in Gy, that ¢.8.2 exists. Then for L large,

Llog N
log Np

Pr <diam(01) > ) < O(N~L/10y,

Proof. Let B(k) be the event that there exists a set S of k vertices in Gy, that induces a connected
subgraph in which more than half of the vertices have less than w/2 neighbors outside S. Then for
k = o(N) we have

(8)  Pr(B(k)) < @7 ) PP 228 Pr(Bin(N — k,p) < w/2)F/?
k

ekw
pk?
k .k
< ep]:; ok (e—(.99w—w/2)2/2w>k/2

(9) §p71(26w67w/20)k < Nefkw/21'

ok <€—((N—k)P—w/2)2/(2(N—k)P))k/Z’ from (3) with e =1 — v

< -
- 2(N —k)p’

Explanation of (8): (J,g ) bounds the number of choices for S. We then choose a spanning tree T' for S
in k=2 ways. We multiply by p*~1, the probability that T exists. We then choose half the vertices X of
S in at most 2 ways and then multiply by the probability that each 2 € X has at most w/2 neighbors
in [N]\ S.

If Kk =k(L) = %Olg%z then (9) implies that Pr(B(x)) < N1~L.

2A sequence of events &, occurs quite surely q.s. if Pr(=&,) = O(n~*) for all positive constants K.



Next let D(k) = Dy (k) be the event that there exists a set S of size k for which the number of edges
e(S) contained in S satisfies e(S) > 2k. Then,

reow < ()= (- () ) - (5

Since w = O(log N) we have that q.s.

Ak € [k(1), N**] such that D(k) occurs.

Now let B(ki, ks) = ]Zikl B(k) and D(kq, ko) = Uﬁikl D(k), and suppose that
B(k1,k2) UD(k1, ke) does not occur,

where ki = k(L/4) and ky = N3/*. Fix a pair of vertices v,w and define sets Sp, S1, Sz, ... where S; is
the set of vertices at distance i from v. If there is no i < k; with w € S; then we must have Sy, # 0
and |S<g,| > ki1 where S<; = UE:O S; for t > 0. This is because v,w € C7 and (1 is connected and
0 |S<iv1| > |S<i| + 1. We also see that k; < |S<¢| < N3* implies that |Syy1| > w|S<¢|/10. Indeed,
if [Si+1] < w|S<¢|/10 then S<;+1 has at most (w + 10)|S<¢|/10 vertices and more than w|S<;|/4 edges,
contradiction.

Thus if L is large, then we find that there exists t < k; + x(3/4) < N3/* such that |S<¢| > N3/* and
so also that |S;| > (1 — o(1))N3/%. Now apply the same argument from w to create sets Tp, 11, .. ., Ts,
where either we reach v or find that |Ti| > N3/4 where s < ki +£(3/4). At this point the edges between

S and Ty are unconditioned and the probability there is no S; : Ty edge is at most (1 — p)N i

O(e" N2, O

3 Traveling among all vertices

Our first aim is to prove Theorem 1.3; this will be accomplished in Section 3.2, below. In fact, we will
prove the following general statement, which will also be useful in the proof of Theorem 1.2:

Theorem 3.1. Let y;l C [0,1]¢ denote a set of points chosen from any fived distribution, such that the
cardinality Y = |V{| satisfies BE(Y) = u > 0 and Pr(Y > k) < Cp* for all k, for some C > 0,p < 1.
Fort >0 let ytd denote a random set of points in [0, t]d obtained from the union of t¢ independent copies
Vit (xef0,---,t—1}9).

If p > 0 is constant, d > 2, and yg{p denotes the random graph on ytd with independent edge probabilities
p, then 3B > 0 (depending on p and the process generating yf) such that

(i) T(ygp) ~ Bt? a.a.s., and

(ii) T(y;{p) < Bt + o(t?) ¢.s.3

31n this context O(nf‘”(l)) is replaced by O(t*“’(l)),




Note that as a probabilistic statement, Part (i) above asserts that there exists a choice for o(1) (a
function of ¢, say, tending to 0) such that (1 —o(1))8t? < T(V{,) < (1+ o(1))Bt? holds a.a.s. Similarly
for Part (ii), the statement asserts the existence of a suitable fixed choice of o(t¢) (a function of ¢, whose
ratio to t¢ tends to 0).

The restriction Pr (D}fl | > k’) <C pk simply ensures that we have exponential tail bounds on the number
of points in a large number of independent copies of yf:

Observation 3.2. For the total number T,, of points in n independent copies of yfl, we have for some
absolute constant Ac, >0,

PI‘(’Tn — ,un‘ > 5'un) < e*AC,p(sQ,uQn'

O]

This is straightforward to prove, but we do not have a reference and so we give a sketch proof in the
appendix.

Note that the conditions on the distribution of J{ are satisfied for a Poisson cloud of intensity 1, and it
is via this case that we will derive Theorem 1.3. Other examples for which these conditions hold include
the case where ) is simply a suitable grid of points, or is a random subset of a suitable grid of points
in [0,#]%, and we will make use of this latter case of Theorem 3.1 in our proof of Theorem 1.2.

Outline of proof of Theorem 3.1

Our proof uses subadditivity, but some of the standard properties of the classical case (e.g., monotonic-
ity) fail in our setting, requiring us to use induction on d to achieve the result. For technical reasons (see
also Question 4 of Section 5) Theorems 3.1 and 1.3 are given just for d > 2, and before beginning with
the induction, we must carry out a separate argument to bound the length of the tour in 1 dimension.

When d = 1 all we can prove is an O(n) bound on the length of the minimum tour. We do this by
examining a natural greedy algorithm for finding a tour. This is the content of Lemma 3.4. After
this we prove a sort of Lipschitz condition for the tour length, see Lemma 3.7. This will substitute for
monotonicity. After this we can push ahead using subadditivity.

3.1 Bounding the expected tour length in 1 dimension

We begin with the following simple lemma.

Lemma 3.3. Let o be a permutation of [n], and let £(0) = 3" |oiy1 — 0y]. Then
l(o) < op+4-inv(o),
where inv (o) is the number of inversions in o (i.e. |{(i,7) i < j and o; > 0;}]).

Proof. We prove this by induction on n. It is trivially true for n = 1 since in this case £(c) = 0. Assume
now that n > 1, and given a permutation o of [n], consider permutation ¢’ of [n — 1] obtained by

truncation:
, ; if o < oy,
Ui ==

o, —1 ifo; >0,



We have by induction that
(10) o)y <ol _y+4-inv(d’).
Now observe that

o) =L(c") + |op — 01| + | {iloi < op < 0441 OR 07 > 0y > 011} |
< (o") + |op — on_1] + 2(inv(o) — inv(c”)),
since | {i|o; < 0y < 0441} | and |{i|oi11 < 0y < 05} | are each bounded by inv(c) — inv(o’). Recalling

that inv(c) = inv(oc~1), we have
inv(o) —inv(e’) = n — o,.

Since o0],_; < oy—1, (10) gives that

lo)<op1+4-inv(d’) + |oy — op1| + 2(inv(o) — inv(c”))
')+ 2(inv(c) —n+op) + |on — 01| + 2(inv(o) — inv(c’))

(

=0p-1+2-inv(

On—1+4-inv(o) —2n+ 20, + |op — op—1]
)
)

on+4-inv(e) — (2n — o, —op—1 — |op — on-1l)

A

op +4-inv(o). O

For the 1-dimension case of Theorem 1.3, we have, roughly speaking, a 1-dimensional string of points
joined by some random edges. Lemma 3.3 allows us to prove the following lemma, which begins to
approximate this situation.

Lemma 3.4. Consider the random graph G = Gy on the vertex set [n] with constant p, where each
edge {i,j} € E(G) is given length |i — j| € N. Let Z denote the minimum length of a Hamilton cycle
in G starting at vertex 1, assuming one exists. If no such cycle exists let Z = n?. Then there exists a
constant A, such that

E(Z) < Apn and Z < Apn, g.s.

Proof. We first write G = G1 U G2 U G3 where the G; are independent copies of G, p,, where 1 — p =
(1—p1)3. Note that p; > p/3. We consider G to be the restriction to [n] of a random graph G = Gurp,
on the set of all natural numbers, and will begin by constructing a path in G via the following algorithm:
We start with v1 = 1. Then for j > 1 we let

¢(j) =min{k e N : k ¢ {v1,v2,...,v;} and {v;,k} € E(G1)}

and let vj11 = ¢(j) i.e. we move from v; to the lowest index k that has not been previously visited.
This constructs an infinite path in A, and we define jy by

jo=max{jeN:i<j = v; <n}.

In particular, observe that Py = v1,v2,...,vj, is a path in G; of length Ay = Z;‘):_ll lvj1 — vj]. Tt
is convenient to extend the sequence vy,...,vj, to a permutation of [n]; to do this, we let o; = v; for
i < jo, and then let ojo41,...,0p be [n] \ {v1,...,vj,} in increasing order. Applying Lemma 3.3 to o

gives that the length A; of the initial part corresponding to the path is at most ¢(c) < n + 4 - inv(o).
So we would like to bound inv(o).

10



Observe first that Pr(jo < n — k) < n(1 —p1)*. This is because at jo we find that v;, has no neighbors
in the set of unvisited vertices and the existence of such edges is unconditioned at this point. So,

log?n

(11) Jo=mn— q.s.

b1

Now let oj = [{i > j: 0y < oj}| for all 1 < j <mn, so that inv(c) = oy + a2 + - - - + a,. In fact, by our
definition of o, we have that a; = 0 for all j > jo, giving

inv(o) = o1 +ag + -+ + aj,

since o contains no inversions of ¢ < j where i > jyo. Next we define an approximation a; to oj. We
let aj = [{t <wvj:t ¢ V;}|forall j > 1, where V; = {vi,v2,...,v;}. Observe that o; < a; for j < jo.
Moreover,

(12) Pr(a; =k) = (1 —p1)fpy for k> 0.

To see this, observe that the vertex v; was chosen as the leftmost vertex available to the algorithm, and
determining this vertex involves querying edges which have not yet been conditioned by the running of
the algorithm. Observe that (12) holds even when conditioning on any previous history of the algorithm.

So a; = 0 and ag,as,... is a sequence of independent copies of Geo(p;) — 1 where Geo(p;) is the
geometric random variable with probability of success p;. We thus have:

Jo J0 n
1—
(13) E(inv(o)) <E Z aj | <E Zaj <E Zaj <n plpl'
=0 =0 =0

Moreover, standard concentration arguments give then that

Jo Jo n
(14) inv(o) < E aj < E a; < E a; < n q.5.
- : - D1
j:1 ]:1

7j=1
It follows from Lemma 3.3, (13), and (14) that

(15) E(A;) < n (4 - 3) and Ay < n <1 + 4) q.s.

b1 p1

It remains to show that there is a Hamilton cycle of length not much greater then A;. We show that
we can cheaply insert all o;,j > jo into P; by replacing edges by paths of length two.

We let I = {i < jo: |v; — vi—1l, |vi — viga]| < n2/3} and m = |I|. It follows from (15) that m > ng —
O(n'/?) q.s. For J = {0j,41,---,0n}, our aim is to use the edges of Go to insert J into the path
Vi,...,Vj, = 01,...,0j,, thus extending it to all of Gj.

Let vj € J be a vertex to be inserted. Without loss of generality, assume v; > n/2; the reverse case is
essentially the same. We proceed by examining v; — 1,v; — 2,v; — 3, ... until we find a ¢ satisfying

(i) tel

11



(ii) {wve, v}, {ve—1,v;} € E(G2).

When examining a vertex v, for which ¢ satisfies (i), there is a p? chance that v, satisfies (ii). In
particular, after examining log? n vertices v = vy which satisfy (i), we will g.s. find a v which satisfies
both (i) and (ii). Thus there is q.s. a vertex vy < v; satisfying (i) and (i) with v; —v, < log? n+0(n'/3).
Thus, we can replace the edge (ve—1,v¢) by a path ve_1,v;,v¢ to g.s. incorporate v; into our path at
a cost of at most O (log2 n+ nt/3 4 n?/ 3). Finally, (11) implies that we can insert all vertices of J in
this manner one-by-one (even when we avoid re-using a candidate vy, this only increases the patching

log n

distance by at most a additive factor). In the end, we get a Hamilton path 1, xo, ..., z, in G1UG2

q.s. (withvy...,vj a subsequence of z1,...,x,) and the total added cost over A; is q.s. O(n?/?log?n).
There is only an exponentially small probability that we cannot find Gs-edges {x1, zj+1}, {2, 2, } which
now give us a Hamilton cycle; since the maximum value of of Z is just n?, this gives E(Z) < Apn, as
desired. O

We have:

Corollary 3.5. Suppose that we replace the length of edge (i, ) in Lemma 3.4 by &+ - - - + &j—1 where
&1,&, ..., &, are random variables with mean bounded above by u and exponential tails. If &1, ... ,&, are
independent of G, then E(Z) < A,un.

Proof. The bound on the expectation follows directly from Lemma 3.4 and the linearity of expectation.
O

Let us observe now that we get an upper bound E(T'()},)) < Ayt on the length of a tour in 1 dimension.
We have

ytvp ZE (ytlvaytlﬂ :n) Pr(|yt1,p‘ =n).
When conditioning on |V} | = n, we let Py < P, < --- < P, C [0,t] be the points in Y},. We choose

k € {0,n — 1} uniformly randomly and let & = ||Pyyit1 — Pril|, where the indices of the P; are
evaluated modulo n. We now have E(&;) < % for all ¢, and Corollary 3.5 gives that

2t
E (T(ytl,p)“yt{p’ == n) S Apn . E’

(16) E (T(YV},)) < 24t.

3.2 The asymptotic tour length

Our proof of Theorem 3.1 uses recursion, by dividing the [t]% cube into smaller parts. However, since
our divisions of the cube must not cross boundaries of the elemental regions J{, we cannot restrict
ourselves to subdivisions into perfect cubes (in general, the integer ¢ may not have the divisors we like).

12



To this end, if L = T1 x Ty x -+ x Ty where each T is either [0,¢] or [0,¢t — 1], we say L is a d-
dimensional near-cube with sidelengths in {t — 1,¢}. For 0 < d’ < d, we define the canonical example
L4 = [0,6] x [0, — 1]*=% for notational convenience, and let

o (1) = B (T(ygp N Lﬁ’)) .

so that

dipy . addiy _ 5d0
Dy (t) == @(t) = @7 (E+ 1).

In the unlikely event that y;{p N Lg/ is not Hamiltonian, we take T(y;fp N ijl/) = 19t1y/d, for technical
reasons.

Our first goal is an asymptotic formula for ®:

Lemma 3.6. There exists 3 = 3,4 > 0 such that

d,d’ ~ d
&% (1) ~ Bt

The proof of this is deferred until after the proof of Corollary 3.9 below.

The proof is by induction on d > 2. We prove the base case d = 2 along with the general case. We
begin with a technical lemma.

Lemma 3.7. For every fized p,d > d' > 0, there is a constant F, g > 0 such that
(17) S (1) < ST + Fpat®!

for all t sufficiently large. Here we interpret @g’d/ (t) = @Z’O(t) for d < 0. In particular, this implies
that there is a constant Ay, q > 0 such that

(18) OI(t+ h) < BLUt) + Apght?™

for sufficiently large t and 1 < h < t.

Proof. We let S denote the subgraph of yg{p N Lg/ induced by the difference Lg/ \ Lgl_l.

By ignoring the d'th coordinate of S if ' > 0 and the dth coordinate otherwise, we obtain the (d — 1)
dimensional set 7(S), for which induction on d (or equation (16) if d = 2) implies an expected tour

T'(S) of length q)g_l’dl_l(t) < Bg_ltd_l, and so changing notation, we can write

We have that
E(T(S)) < E(T(n(S)) + dY>E(|7(S)]) < Dpa_1t* + d¥/?t?L,

The first inequality stems from the fact that the points in L% \ Lg_l have a d’' coordinate in [t — 1,1].
Now if y;fp N Lglfl and S are both Hamiltonian, then we have
(19) TV NLY) < TV, NLYY) + T(S) + Oa(t)

13



which gives us the Lemma, by linearity of expectation. We have (19) because we can patch together
the minimum cost Hamilton cycle H in yg{p N Lzl_l and the minimum cost path P in S as follows: Let
u1,v1 be the endpoints of P. If there is an edge u, v of H such that (u1,u), (v1,v) is an edge in yg{p then
we can create a cycle H; through ygp N Lgl_l U P at an extra cost of at most 2d'/2t. The probability
there is no such edge is at most (1—p?)%/2, which is negligible given the maximum value of T (ygfp ﬂLgl).

On the other hand, because p is a constant, the probability that either of yg{p N Lg*l or S is not Hamil-
tonian is exponentially small in ¢, (see for example [9]), which is again negligible given the maximum
value of T(y;{p N L%). This completes the proof of (17).

To obtain (18) we use (17) to write

h
LAt +h) < BFO(t+h) +dF,q(t+h)" = &Lt +h—1)+dF,q(t+h)" < OL(t)+dFq Y (t+i)" .
=0

O]

Our argument is an adaptation of that in Beardwood, Halton and Hammersley [2] or Steele [21], with
modifications to address difficulties introduced by the random set of available edges. First we introduce
the concept of a decomposition into near-cubes. (Allowing near-cube decompositions is necessary for
the end of the proof, beginning with Lemma 3.10). Simplifications relying on Boundary Functionals as
in Yukich [22] do not appear to be available due to missing edges.

We say that a partition of Lg/ into m? near-cubes S, with sidelengths in {u,u + 1} indexed by a € [m]?
is a decomposition if for each 1 < b < d, there is an integer Mj; such that, letting

au if a < My
fola) = :
(a — My)(u+ 1) + Myu if a > M,

we have that

Sa = [fi(ar = 1), fia1)] X [fo(ae — 1), fa(a2)] X - X [fa(aa — 1), fa(ed)].

Observe that so long as u < ¢, Lgl always has a decomposition into near-cubes with sidelengths in
{u,u+ 1}. Indeed, if t = ru — s for 0 < s < u then we can take My = s for b < d’ and M, = s — 1 for
b > d’, unless s = 0, in which case M, = u — 1.

First we note that tours in not-too-small near-cubes of a decomposition can be pasted together into a
large tour at a reasonable cost:

Lemma 3.8. Fiz 6 > 0, and suppose t = mu for u = t7 for § <y <1 (m,u € Z), and suppose S,
(a € [m]d) is a decomposition of Lgl. We let ygff = ygp NS,. We have

T(ygp nrd) < Z T(yff;‘) + 4muvd with probability at least 1 — e~ Xw'P?),

ag[m]?

Proof. Let B,C denote the events

B= {Ela : ygf ’pa is not Hamiltonian}

14



C= {Ela: ‘|y§ff| fud‘ > 5ud},
and let £ =B UC.

Now Pr(B) < mie?uP) and, by Observation 3.2, Pr(C) < mde 2" and so Pr(€) < e '),
Assume therefore that =& occurs. Each subcube S, will contain a minimum length tour H,. We now
order the subcubes {S,} as T1,...,T,,q, such that for S, = T; and S, = T;+1, we always have that
the Hamming distance between a and o/ is 1. Our goal is to inductively assemble a tour through the
subcubes 17,75, ..., T} from the smaller tours H, with a small number of additions and deletions of
edges.

Assume inductively that for some 1 < j < m? we have added and deleted edges and found a single cycle
C; through the points in 7T7,...,7}; in such a way that (i) the added edges have total length at most
4v/dju and (ii) we delete one edge from 7(71), 7(T};) and two edges from each 7(T}),2 < < j—1. To add
the points of Tj11 to create Cj;1 we delete one edge (u,v) of 7(7;) N C; and one edge (z,y) of 7(Tj41)
such that both edges {u,x},{v,y} are in the edge set of yg{p. Such a pair of edges will satisfy (i) and

(ii) and the probability we cannot find such a pair is at most (1 — p?)@/2=1)u?/2 Thys with probability
at least 1 — e2(u“P*) we build the cycle C,,« with a total length of added edges < 4 dmu. O

Linearity of expectation (and the upper bound t%+!/d on T(yffp) when there is no tour) now gives a
short-range recursive bound on @Z(t) when ¢ factors reasonably well:

Corollary 3.9. For all large u and 1 < m < u'® (m,u € N),

@g(mu) < md(CI)g(u) + By qu)
for some constant By. O
Proof of Lemma 3.6.

Note that here we are using a decomposition of [mu]? into m? subcubes with sidelength u; near-cubes
are not required.

To get an asymptotic expression for @g(t) we now let

Do (t)
o 1 . p
B=PBpd= hmtlnf W

Choose ug large and such that
(I)d
p<3°) <B+e¢
Ug

and then define the sequence ug, k > —1 by u_; = ug and ugy1 = u,1€0 for kK > 0. Assume inductively
that for some 7 > 0 that for A, 4 as in Lemma 3.7 and B, 4 as in Corollary 3.9,

4 (u; (A B
0 Pt <orer Y (e )
i =\ Y

This is true for ¢ = 0, and then for i > 0 and 0 < u < w; and d < m € [u;—1,u;+1] we have

Od(mu; +u)  Ph(mug) + Ap qu(mu;)?~!

(21) 7 ;

from Lemma 3.7,

(mu; +u)d — (mu;)



md(fbg(ui) + By au;) + Ap qu(mu;)??

) from Corollary 3.9,

(mu;)d

i—2
A B B A
<B+e+ E ( upfd + f_’i) + dp_’ai + ;;d’ by induction,
j : :

u U,

j=—1 j i

i—1
A,y B
(22) §ﬁ+e+z<jfd+ p’“’).
J

d—1
j=-1 U

Putting m = u;+1/u; and v = 0 into (21) and (22) completes the induction. We deduce from (20), (21)
and (22) that for ¢ > 0 we have

ot < [A B
f;g ) <B+e+ Z ( up,d + dp_,ci < B+ 2 forte J;, = [ui,lui,ui(uiﬂ + 1)]
=1\ 7 Y

Now 2, J; = [u3, oc] and since ¢ is arbitrary, we deduce that

(23) B = lim 10

t—oo td

We can conclude that

od(t) ~ Bt
which, together with Lemma 3.7, completes the proof of Lemma 3.6, once we show that 8 > 0 in (23).
To this end, we let p denote Pr(|){| > 1), so that E(|V{|) > pt?. We say = € {0,...,t — 1} is occupied
if there is a point in the copy V{ + x. Observing that a unit cube [0,1]¢ + 2 (z € {0,...,t — 1}%) is at
distance at least 1 from all but 3¢ — 1 other cubes [0, 1]¢ + y, we certainly have that the minimum tour

length through V¢ is at least BTO—P where where O is the number of occupied z. Linearity of expectation

now gives that 8 > p/(3% — 1), completing the proof of Lemma 3.6. O

Before continuing, we prove the following much cruder version of Part (ii) of Theorem 3.1:

Lemma 3.10. For any fized € > 0, T(ygfp) < tdte gs.

Proof. We let m = [t'=%/2], u = |t/m], and let {yﬁ;ﬁ} be a decomposition of ygp into m? near-
cubes with sidelengths in {u,u 4+ 1}. We have that q.s. each yf.l;;," has (i) ~ u? points, and (ii) a
Hamilton cycle H,. We can therefore q.s. bound all T(yf-lf) by du - u?, and Lemma 3.8 gives that q.s.
T(Vi,) < 4dut® + 4mPu/d. m

Proof of Theorem 3.1.
We consider a decomposition {S,} (a € [m]?) of Y into m? near-cubes of side-lengths in {u,u + 1},
fory=1-5, m=[t"], and u = |t/m].

Lemma 3.6 gives that
ET(yg;‘) ~ Bu? ~ pt=7d,

Let
S,(¥,) = min {T(y;f;),gdtu-v)(dﬁ)}

ag[m]?
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Note that Sv(yffp) is the sum of ¢7¢ identically distributed bounded random variables.

Now, since q.s. T(yg};a) < 2dt1-M+e) for all o by Lemma 3.10, we have that q.s. Sw(y;{p) =

>ouT (ygf ;,a). Applying Theorem 1 of Hoeffding [11] for the sum of independent bounded random
variables, we see that for any £ > 0, we have

2 2
Pr(S, (%) - m! BTV, 2 ©) < 200 )

Amdd22(1—
Putting ¢ = t% for small €, we see that
(24) Sy (V) =Bt +o(t!) g
Note next that Lemma 3.8 implies that

(25) T(yffp) < Sv(y;{p) + 05 where &5 = o(t?) q.s.

It follows from (24) and (25) and the fact that Pr(|V¢| = t4) = Q(t~%?) that

(26) T < Btl+o(th) g

which proves part (ii) of Theorem 3.1.

Of course, we have from Lemma 3.6 that

(27) E(T(Y{,)) = Bt* + 61 where &1 = o(t?),

and we show next that that this together with (25) implies part (i) of Theorem 3.1, that:

(28) T=TY) =5t +o(t") aas.

We choose 0 < d3 = o(t?)) such that 0 < &y, |51 = 0(d3). Let I = [Bt? — 03, Bt? + d3]. Then we have

Bt + 6, = E(T(VE) | T(VE,) > Bt + 62) Pr(T(Vy,) > pt* + 62)
E(T(ygp) ’ T(ytcfp) € I) PI‘( (yt p) € )
E(T(VE,) | T < Bt — 63) Pr(T(Vf,) < Bt — d3).

Now e1 = E(T(V2,) | T(VE,) = Bt? + 62) Pr(T(V,) = Bt? + 62) = O(t~~W) since |V | < 2d'/%t¢ and
Pr(T(V,) > Bt? +6y) = O(+~M), from (26).

So, if A =Pr(T(Y{,) € I) then we have

Bt + 6 < ey + (Bt + 5)\ + (Bt — 83)(1 — N)

o 51— 2140
1—¢€1+03
A> LTI o),
B 09 + 03 ( )
and this proves (28) completing the proof of Theorem 3.1. O
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Proof of Theorem 1.3.
We now let ng be the graph on the set of points in [0,#]% which is the result of a Poisson process of

intensity 1. Our first task is to bound the variance V(t) of T(ng). Here we follow Steele’s argument

[21] with only small modifications. We approximate T(Wgt,p) as the sum over 2¢ half-size cubes of
T (ng) and use this to show that > 77, % < 00. This deals with n of the form 2t for some value
of ¢t and we then have to fill in the gaps.

Let & denote the event that
(29) TWS,,) < > TWE) + 2421,
agl2]d

Observe that Lemma 3.8 with m = 2,4 = t/2 implies that
(30) Pr(—=&) < e P,

We define the random variable A(t) = T(W{,) + 10t\/d, and let ); denote independent copies of A(t).
Conditioning on &, we have from (29) that

2d 2d
A2t) <Y ONi(t) - 6:29Vd <Y N(t)
1=1 =1

In particular, (30) implies that letting T(t) = E(A(t)) = Q(t?) (see (27)) and ¥(t) = E(\(t)?), we have
for sufficiently large ¢ that
2

v <E( [ Y TOVE) + 242 d + 21tVd

agl2]d

= ZE —10tVd)?) + ZE —10tvVd) B(\ (1) — 106Vd)+
i#]
2d
+ (272 4 20)tVd Y CE(N(2) — 106Vd) + (2472 + 21)tvd)?
=1
= 29 E((\(t) — 10tVd)?) + 2429 — 1) E(\(t) — 10tVd) >+
+ 27242 L 2 VA E(A(t) — 10t6V/d) + (22 + 21)tVd)?
=200 (1) + 292 = )Y (1)* — QR E\(®)) + O(+*))
29 (1) + 2929 — )Y ()%
For
V(t) := Var(T(W})) = ¥(t) — T(t)?,

we have Ve2t) 1V YT()?  T(2t)?

_ < _ .
(2t)2d 2d t2d — t2d (Qt)Zd

Now with ¢ > 1 arbitrary, summing over 2¥¢ for k = 0,..., M — 1 gives

VERk) 1A vEM)  Tr)? TEMH? T2

— <
— <2kt)2d 2d — (2kt>2d — t2d <2Mt)2d — t2d
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and so, solving for the first sum, we find
V(2Ft) 1\ 7 /VE) T2
(2kt)2d s({1-% pd T pd ) S

Still following Steele, we let N () be the Poisson counting process on [0, 00). We fix a random embedding
U of N in [0, 1]d as u1,us,... and a random graph U, where each edge is included with independent
probability p. We let U, , denote the restriction of this graph to the first n natural numbers. In partic-
ular, note that Uy a), is equivalent to W, scaled from [0,¢]% to [0,1]¢. Thus, applying Chebychev’s
inequality to (31) gives, in conjunction with Lemma 3.6, that

M

(31)
k=1

e tsz(uN((tZk)d) p)
ZPr( (128)d — Bpd| > ] < oo
k=0
and so for t > 0 that
. TUN(@2ry4),p)
(32 NGO

Now choosing some large integer ¢, we have that (32) holds simultaneously for all the (finitely many)
integers t € Sp = [2¢,2¢1); and for 2¢ < r € R, we have that

(33) r e [26t,2%(t + 1)) for t € S; and some k.
(We simply choose k such that 2t <2 kp < 2“1.)

Unlike the classical case p = 1, in our setting, we do not have monotonicity of T'(U,, ). Nevertheless,
we show a kind of continuity of the tour length through T'(U, p):

Lemma 3.11. For all ¢ > 0, 30 > 0 such that for all 0 < k < dn, we have

d—1

(34) TUnkp) <TUnp) +en @, q.S.

Proof. We consider cases according to the size of k.

Case 1: k < n%
Note that we have T(Uy11,) < T(Un,p) + Vd q.s., since we can q.s. find an edge in the minimum tour

though U, ,, whose endpoints are both adjacent to (n + 1). ns applications of this inequality now give
(34).

Case 2: k > n3.
In this case the restriction R of Up4k,p to {n+1,...,k} is q.s. (with respect to n) Hamiltonian [4]. In

particular, by Theorem 3.1, we can q.s. find a tour 7" though R of length < 255%%1. Finally, there are
q.s., edges {z,y} and {w, z} on the minimum tours through ¢, , and R, respectively, such that z ~ w
and y ~ z in Uy 41 p, giving a tour of length

T(Unsip) < TUny) +2Bpak’ ™ +4Vd. 0

This gives the lemma with § = (¢/38)%(4=1),
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Let g4, = 1,2,... be a sequence of positive reals, tending to aero. We apply Lemma 3.11 with € = &

and § = (14+3)9—1 = O(%), assuming ¢t is large. Then we have (2")¢ < rd < (2k)4(1+6) = (2F(¢t+1))¢

by (33), and using the fact that
(1 =25)N(r?) < N((1 = &)r?) < N((1 +8)r?) < (1 +28)N(r?) ¢.s. (with respect to r),
gives that for large enough ¢, we have q.s.
1

TUn((+1)2y0)p) — €r ™ < TUnpayp) < TUn(aryayp) +eer®,

and so dividing by 7%~ and using (32) and taking limits we find that a.s.

U U
Bp,a — 2&¢ < lim inf w < limsup w < Bp.a + 2ey.
r—oo r r—00 r
Since ¢ may be arbitrarily large, we find that
. TUnga))
rlggo T‘dil - ﬁp,d-
Now the elementary renewal theorem guarantees that
N~Y(n)~n, a.s
So we have a.s.
 TUny) o TUnv-1)p) (N7H0) T
li i = U d—1 a1 - IBP,d 1= ﬁpd
r—00 n d r—00 (N—l(n)) a n d

3.3 The case p(n) — 0

We will in fact show that (1) holds q.s. for np > wlogn, for some w — oo. That we also get
the statement of Theorem 1.2 can be seen by following the proof carefully, but this also follows as a
consequence directly from the appendix in Johannsson, Kahn and Vu [12].

We first show that q.s.

(35) T(X,p) = Q(nld=1/d pl/dy,

—L-. Observe

(np)

first that if 7 = 1/(np)'/¢ then with probability at least (1 - udrdp) i e~ "4, there are no points within
distance 1/(np)'/? of any fixed v € &, . Thus E(Y;) > ne™¢/2 and one can use the Azuma-Hoeffding
inequality to show that Y; is concentrated around its mean. Thus q.s. T(X,,) > nld=1/de=va /4pl/d,
proving (35).

Let Y7 denote the number of vertices whose closest G, ,-neighbor is at distance at least

We will for convenience prove the following theorem. After which Theorem 1.2 follows in a couple of
lines.
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Theorem 3.12. Let Y{ C [0,t]¢ denote a set of points chosen via a Poisson process of intensity one in
[0,t]¢ where t = n'/®. Then there exists a constant 'yg such that

td
T(y,ffp) < ng q-S.

Proof. We let pg = p1 = p/3 and p; = p1/2°1,i = 2,...,k = logyt and define pj,1 so that 1 —p =
Hfill(l —pj). Welet G; = yg{pi, i=0,1,...,k + 1, where each G; has the same vertex set Y{, but in
which the edges are independently chosen. Observe that with this choice, we have that y;{p decomposes

k+1
as ygfp = Ui, Gi

/X

A
<
W

N\
%L

X
X
X N

Figure 3: (Applying Theorem 3.1 to prove Theorem 3.12.) The shaded S, are those which are heavy
(with not too few vertices) and typical (with a large cycle). Theorem 3.1 implies that we can find the
(short) cycle of bold edges through the S,—these edges indicate the presence of patchable pairs which
can be used to construct a large cycle. We then repeat this process on remaining vertices with a new
set of random edges, with coarser and coarser divisions of the square, to cover most vertices with large
cycles, which must then be merged.

Proof Strategy: We partition [0,#]¢ into small subcubes. Most of these will induce subgraphs of Gy
that contain relatively large cycles. We then use Theorem 3.1 to find a tour through these subcubes
that can be used to patch together the subcube cycles into one large cycle H;. We then use this idea
and coarser and coarser partitions into subcubes to create cycles Ho, H3, ..., Hy where we use G; edges
to create H;. We then use the extensions and rotations of Pdsa [18] and the edges of Gy to merge the
H; and the relatively few vertices not in any of the H; into a hamilton cycle of the required cost.

We begin by constructing a large cycle, using only the edges of G;. We choose ¢ small and then choose an
absolute constant K sufficiently large for subsequent claims. In preparation for an inductive argument
we let t; =t, Ty = t¢, my = |(Tip1/K)Y%] and consider the partition Ay = {S,} (o € [my]%) of [0,]¢
into m{ subcubes of side length u = t/m;. (Note that ¢ will not change throughout the induction).
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Now each S, contains ~ K/p; vertices, in expectation and so it has at least (1 — &) K /p; vertices with
probability 1 — e ®(E/P1) = 1 — o(1). Let a be heavy if S, has at least this many vertices, and light
otherwise. Let I'y, be the subgraph of G| induced by S,. If « is heavy then for any ¢ > 0 we can if K
is sufficiently large find with probability at least 1 — e~2(K/P1) =1 — o(1), a cycle C,, in I, containing
at least (1 — £)2K/p; vertices. This is because when « is heavy, ', has expected average degree at
least (1 — ¢)K (see [8] Chapter 6.3 for an explanation). We say that a heavy « is typical if it T,
contains a cycle with (1 — ¢)|S, N X| edges; otherwise it is atypical. We bound the length of aa C, by
Ca = |Sa N X| x t1d*/?/my, where the second factor is the Euclidean diameter of S,.

We now let N denote the set of vertices in | JC,, where the union is taken over all typical heavy «.
Our aim is to use Theorem 3.1(ii) to prove that we can q.s. merge the vertices N into a single cycle C1,
without too much extra cost, and using only the edges of Gy. Letting g, = Pr(S, is typical) > 1 — ¢,
we make each typical heavy a available for this round with independent probability 11:(12, so that the
probability that any given « is available is exactly 1 — e. (This is of course rejection sampling.) Now
we can let Y = yf in Theorem 3.1 be a process which places a single point at the center of [0, 1]d
with probability 1 — ¢, or produces an empty set with probability €. Let now Y, (a € m‘li) be the
independent copies of Y which give y;;l“. Given two cycles C1,Cs in a graph G we say that edges
u; = (x3,v;) € Cy,i = 1,2 are a patchable pair if f, = (x1,22) and f, = (y1,y2) are also edges of G.
Given x € Y,,y € Y3, we let  ~ y whenever there exist two disjoint patchable pairs o, g between
Ca,Cg. Observe that an edge between two vertices of y;l is then present with probability

da,p > Pr(Bin((1 — €)4K2/4p%,p%) >2)>1—c¢.

In particular, this graph contains a copy of ygu (1—e) for which Theorem 3.1(ii) gives that q.s. we have a

tour of length < Blm‘f for some constant Bi; in particular, there is a path P = (ay, ag, ..., apr) through
the typical heavy a with at most this length. Using P, we now merge its cycles Cy,,7 = 1,2,..., M
into a single cycle.

Suppose now that we have merged Cy,,Cla,,...,Cq; into a single cycle C; and have used one choice
from Oa;_1,a; t0 patch C’a]. into Cj_1. We initially had two choices for patching Caj .. into Caj, one may
be lost, but one at least will be available. Thus we can q.s. use (G; to create a cycle H; from Cy,, Cy,,
by adding only patchable pairs of edges, giving a total length of at most

t1d/? tydY/? LTyd?
(36) 2Ty x ——— +mf <31 4+ < 117/11
mi mi D1

where [ = 4K1/d,

The first term in (36) is a bound on the total length of the cycles C, where « is available, assuming
that ) cq < D)ffp] < 2t%. The second smaller term is the q.s. cost of patching these cycles to create
H,. This consists of the length of P plus a term bounding the cost of joining the center of a subcube
C,, to the ends of an edge of C,. This latter value, bounds the cost of adding C,, to Hj.

Having constructed Hp, we will consider coarser and coarser subdivisions D; of [0, t}d into mf subcubes,
and argue inductively that we can q.s. construct, for each 1 <+ < £ for suitable ¢, vertex disjoint cycles
Hy, Ho, ..., Hy satisfying:

P1 T; < 3eT;_; for i > 2, where T} = t¢ — Zi;ll |Hil,
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P2 the set of points in the ath subcube in the decomposition D; occupied by vertices which fail to
participate in H; is given by a process which occurs independently in each subcube in D;, and

P3 the total length of each H; is at most LTQC/IZ/Q.

k3

Note that H7, above, satisfies these conditions for ¢ = 1.

Assume inductively that we have constructed such a sequence Hy, Ho,...,H;—1 (j > 2). We will now
use the G; edges to construct another cycle H;. Suppose now that the set 7; of points that are not
1/d

in Uf;ll H; satisfies Tj = |T;| > t47'/logt. We let mj = (Tjp;/K)"/? and t; = T;"". The expected
number of points in a subcube will be K/p; but we have not exercised any control over its distribution.
For i > 2, we let a € [m;]? be heavy if S, contains at least eK/p; points. Now we want K to be
large enough so that eK is large and that a heavy subcube has a cycle of size (1 —¢)|7; N S,| with
probability at least 1 —¢, in which case, again, it is typical. We define I'; as the set of typical heavy pairs
{a, B} for which there are at least two disjoint patchable pairs between the corresponding large cycles.
Applying the argument above with T},t;, m;,I'; replacing T1,t1,m1,I'1 (note that P2, above, ensures
that Theorem 3.1 applies) we can g.s. find a cycle H; with at least (1 — 3¢)Tj vertices and length at

g1/2
most Lij/ld , giving induction hypothesis part P3. Part P1 is satisfied since the light subcubes only
p,

J
contribute ¢ fraction of points to 7;, and we q.s. take a (1 — ¢) fraction of the heavy subcubes. Finally,
Part P2 is satisfied since participation in H; is determined exclusively by the set of adjacency relations
in G; N 7T;, which is independent of the positions of the vertices.

Thus we are guaranteed a sequence Hy, Hy, ..., H; as above, such that Tj,; < t?! /logt. The total
length of Hy, Ho, ..., H; is at most

S LT L3V & i oifdit_ o 1
Z d S T i7d 327 =0 5 |
i=1 P; p i=1 p

We can now use Gy to finish the proof. It will be convenient to write Gy = U?:o A; where A;,1=1,2,3
are independent copies of yg{q where 1 — pg = (1 — ¢)3. Also, let R = {z1,79,..., 2.} = yg{p \ Ule H;.

We first create a Hamilton path containing all vertices, only using the edges of A;UAs and the extension-
rotation algorithm introduced by Pésa [18]. We begin by deleting an arbitrary edge from H; to create
a path Pi. Suppose inductively that we have found a path P; through Y; = Hy U--- H,, U X, where
X; C R, at an added cost of O(jt). We let V; denote the vertices of P; and promise that Vi, = ygp.
We also note that |V;| > V| = Q(¢4) for j > 1.

At each stage of our process to create Pj;1 we will construct a collection @ = {Q1,Q2, ..., Q,} of paths
through Vj. Let Zg denote the set of endpoints of the paths in Q. Round j of the process starts with
P; and is finished when we have constructed Pji.

If at any point in round j we find a path @ in Q with an endpoint x that is an As-neighbor of a vertex
in y ¢ V; then we will make a simple extension and proceed to the next round. If € H; then we delete
one of the edges in H; incident with y to create a path " and then use the edge (x,y) to concatenate
Q, Q" to make Pjq. If y € R then Pj1; =Q +y.

If Q= (vi,v2,...,v5) € Q and (vs,v1) € Ay then we can take any y ¢ V; and with probability at least
1—(1—¢)°=1-0@tW) find an edge (y,v;) € Ag. If there is a cycle H; with H; N V; = () then
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we choose y € H; and delete one edge of H; incident with y to create a path Q' and then we can take
Pji1 = (Q,vi,vi—1,...,vi41) and proceed to the next round. Failing this, we choose any y € R\ V;
and let Pjy1 = (y,vs,vi—1,...,vit1) and proceed to the next round. Note that this is the first time we
will have examined the Ay edges incident with y. We call this a cycle extension.

Suppose now that @ = (vi,ve,...,vs) € Q and (vs,v;) € A where 1 < i < s — 1. The path Q' =
(U1, ., V4, Vs, Vs—1, . ..,Vi4+1) is said to be obtained by a rotation. v; is the fized endpoint. We partition
Q=0QyUQ1U---UQy, ko = logt where Qy = {P;} and Q; is the set of paths that are obtainable from
P; by exactly i rotations with fixed endpoint v;. We let N; denote the set of endpoints of the paths in
Q;, other than vy, and let v; = |IV;| and let Ng = |J; IV;. We will prove that g.s.

viltiq

il < .

1010q implies that |v;41]| >
It follows from this that q.s. we either end the round through a simple or cycle extension or arrive
at a point where the paths in Q have Q(t?) distinct endpoints. We can take an arbitrary y ¢ V;
and find an Ay neighbor of y among Ng. The probability we cannot find a neighbor is at most
(1- q)Q(td) = O(t~“M). Once we prove (37) we will have shown that we can create a Hamilton path
through yg{p from Hy, Ho, ..., Hy, R at an extra cost of

O(d*?t x logt x (£ 4t /logt) = O(t).

Explanation: Each edge added because of a rotation or through extending the current path costs at
most d'/?t. The logt factor comes from the fact that each path is obtained by at most kg rotations. We
extend into another cycle at most £ — 1 times and into R at most t¥~!/logt times.

We will not have used any As edges to do this.

Proof of (37): We first prove that in the graph induced by A; we q.s. have

S|td
implies that |Na, (S)] > | 1'()0“’.

1
<
(39) 51 < So5c

Here Ny, (S) is the set of vertices not in S that have at least one Aj-neighbor in S.

Indeed, if sg = Wloq = o(n = t%) then
S|t N st
Pr (EIS:|NA1(S)|< |1‘00q> < <s) <an —s,l—(l—q)s)glog>

s=1
N sq stlq

< Pr | Bi -5, — ) < —

_s:1<3> < in (- 5,5) < 100>

< ( e <tdq)>
s=1 §

= o(tW).

Now (37) holds for i = 0 because q.s. each vertex in Y, is incident with at least t%q/2 A; edges. Given
(38) for : =0,1,...,i — 1 we see that v1 +--- 4+ v,_1 = o(v;). In which case (38) implies that

> INa, (Ng)| — (vo + -+ vi—1) > tlqu;
- 2 ~ 200+ o(1)
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completing an inductive proof of (37).

Let P* be the Hamilton path created above. We now use rotations with vy fixed via the edges Ay to
create (t?) Hamilton paths with distinct endpoints. We then see that q.s. one of these endpoints is
an As-neighbor of v; and so we get a tour at an additional cost of O(d/?t).

This completes the proof of Theorem 3.12. O

The upper bound in Theorem 1.2 follows as before by (i) replacing yg{p by X;ip, allowable because our
upper bound holds g.s. and Pr(\ygp| = t4) = Q(t~%?) and then (ii) scaling by n~'/% so that we have
points in [0, 1]%.

4 An algorithm

To find an approximation to a minimum length tour in A, ,, we can use a simple version of Karp’s
algorithm [13]. We let m = (n/Kwvglogn)Y/? for some constant K > 0 and partition [0,1]¢ into m?
subcubes of side 1/m, as in Lemma 3.8 . The number of points in each subsquare is distributed as the
binomial Bin(n,q) where ¢ = K logn/n and so we have a.a.s. that every subsquare has K logn 4 logn,
assuming K is large enough. The probability that there is no Hamilton cycle in S, is O(e~5m/2)
and so a.a.s. every subsquare induces a Hamiltonian subgraph. Using the dynamic programming
algorithm of Held and Karp [10] we solve the TSP in each subsquare in time O(c?2) < n| where
0 = 04 = |SaNX, ,|. Having done this, we can with probability of failure bounded by m?(1—p?)(K g n)?
patch all of these cycles into a tour at an extra O(m?~1) = o(nd%il) cost. The running time of this step
is O(m?log® n) and so the algorithm is polynomial time overall. The cost of the tour is bounded q.s. as
in Lemma 3.8. This completes the proof of Theorem 1.4.

5 Further questions

log? n

Theorem 1.1 shows that there is a definite qualitative change in the diameter of &}, ;, at around p = =5—,

but our methods leave a (loglogn)?? size gap for the thresholds.

1. What is the precise threshold for there to be distances in X, , which tend to co? What is the precise
threshold for distance in &}, ;, to be arbitrarily close to Euclidean distance? What is the behavior of the
intermediate regime?

One could also analyze the geometry of the geodesics in X, , (Figure 1). For example:

2. Let £ be the length of a random edge on the geodesic between fixed points at at constant distance
in &), ,. What is the distribution of £7

Improving Theorem 1.2 to give an asymptotic formula for T'(&,, ) is another obvious target. It may
seem unreasonable to claim such a formula for all (say, decreasing) functions p; in particular, in this
case, the constant in the asymptotic formula would necessarily be universal. The following, however,
seems reasonable:
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Conjecture 5.1. Ifp = n% for some constant 0 < o < 1 then there exists a constant o q such that
d—1

a.a.s. T(Xyp) ~ ﬂa,d%'

We note that T'(&X, 1) is known to be remarkably well-concentrated around its mean; see, for example,
the sharp deviation result of Rhee and Talagrand [19].

3. How concentrated is the random variable T'(X), ;)?

The case of where p = o(1) may be particularly interesting.

Even for the case p = 1 covered by the BHH theorem, the constant 51 4 (d > 2) from Theorem 3.1 is
not known. Unlike the case of p = 1, the 1-dimensional case is not trivial for our model. In particular,
we have proved Theorems 1.3 and 1.2 only for d > 2. We have ignored the case d = 1 not because we
consider the technical problems insurmountable, but because we hope that it may be possible to prove
a stronger result for d = 1, at least for the case of constant p.

4. Determine an explicit constant /3,1 as a function of (constant) p such that for d =1,

lim T(Xn,) = Bp1.

n—oo

Our basic motivation has been to understand the constraint imposed on travel among random points
by the restriction set of traversable edges which is chosen randomly independently of the geometry
of the underlying point-set. While the Erdds-Rényi-Gilbert model is the prototypical example of a
random graph, other models such as the Barabdsi-Albert preferential attachment graph have received
wide attention in recent years, due to properties (in particular, the distribution of degrees) they share
with real-world networks. In particular, if the random graph one is traveling within is the flight-route
map for an airline, the following questions may be the most relevant:

5. If the preferential attachment graph is embedded randomly in the unit square (hypercube), what is
the expected diameter? What is the expected size of a minimum-length spanning tree?

Similarly, one could examine a combination of geometry and randomness in determining connections
in the embedded graph. Our methods already give something in this direction. In particular, we can
define &), ;, » as the intersection of the graphs X, , with the random geometric graph on the vertex set
X,,, where a pair of points are joined by an edge if they are at distance < r. Following our proof of
Theorem 1.3, one sees that we find that

Theorem 5.2. Ifd > 2, p > 0 is constant, and r = r(n) > nc=? for some ¢ > 0, then

d—1
T<Xn,p,r) ~ ﬂp,dn d a.a.s.

[un

This is because we have shown that a.a.s. we can find a near optimum tour that only uses edges much
smaller than the radius r.

Of course, the ideas behind Question 5 and Theorem 5.2 could be considered together; note that
Flaxman, Frieze and Vera [6] considered a geometric version of a preferential attachment graph.
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The proof of Theorem 1.4 is relatively painless. We are reminded that Arora [1] and Mitchell [16] have
described more sophisticated polynomial time algorithms that are asymptotically optimal even with the
worst-case placing of the points. It would be interesting to see whether these algorithms can handle the
random loss of edges.

6. Do the methods of Arora and Mitchell allow efficient approximation of the tour length through &, ,,
when the embedding X, is arbitrary?
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Appendix: Proof of Observation 3.2

Assume without loss of generality that we have scaled so that u = 1. We write, for A > 0 such that
A
e’ <1/p,

BOPY) = YR PrY < k) < OY R <
k=0 k=0

Now e® < 14 x + x%e® and so, using the above, we have

3C
AYY 2 '
E() <1+ A+ A <1+(1_pek)3)

So,if Z=Y1+Ys+---+Y, where Y1, Y5,...,Y, are independent copies of Y,

Pr(Z > n+6n) < e MO g7

3C
cetsmenf (v (o) ) )

< e M exp {N*(1+3Ce?)n}

assuming that

(39)

< (1-2)/p.

Now choose A = §/(1 + 3Ce~3) and ¢ = £(§) such that (39) holds. Then

5n
Pr(Z>n+dn)) <exp 21 42e9) [
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To bound Pr(Z < n — jn) we use

Pr(Z <n—én) < O E(e )"

3C
A(1-8)n . 2
¢ eXp{( AtA (”(1—;@)3))”}

< e M exp {N*(1+3Ce7?)},

IN

and we can proceed as before.
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