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Abstract

We consider the mixing properties of the Swendsen-Wang process for the 2-

state Potts model or Ising model, on the complete n vertex graph Kn and for the

Q-state model on an a × n grid where a is bounded as n → ∞.

1 Introduction

We consider the mixing properties of the Swendsen-Wang process for the Markov chain
Monte Carlo estimation of the partition function of the ferromagnetic Q-state Potts
model, for two classes of graphs.

Gore and Jerrum [11] obtain negative results for the mixing properties of the Swendsen-
Wang process on the complete graph Kn on n vertices (the Curie-Weiss or Mean-Field
model) for Q ≥ 3 and certain values of the inverse temperature β (defined below). For
critical values of β the mixing rate is not rapid, but rather requires exp{Ω(

√
n)} steps

to move between the two most probable classes of states on the phase boundary.

Our first result is to show that when Q = 2, the Ising model, the mixing rate is rapid
on Kn for most values of the inverse temperature.
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Theorem 1 Let
p = 1 − e−β,

where np ≤ max{0, 2−ǫ} or np ≥ 2+ǫ and where |ǫ|√log n → ∞. The Swendsen-Wang
process applied to the Ising model on the complete graph is rapidly mixing for these values
of p. The mixing time is O(n.5+o(1)).

We define the Swendsen-Wang process and the term rapidly mixing later in the paper.

The critical temperature βc in this model satisfies limn→∞ nβc = 2. We note therefore
that Theorem 1 allows us to approach within an arbitrarily small distance of the limiting
critical case but not at an arbirtrary rate.. We do not obtain the tightest bounds on
mixing time and only deal with the case ǫ → 0 sufficiently slowly. We therefore leave
some interesting open problems.

A recent paper by Borgs et al [3] shows that when Q is sufficiently large, the mixing
rate of the Swendsen-Wang process is exponential on large n × n grids and tori in d
dimensions, d ≥ 2. Our second result is to show that on narrow grids i.e. a × n grids
where a is bounded as n → ∞, the mixing rate is polynomial in n.

Theorem 2 The Swendsen-Wang process mixes rapidly on a narrow grid for any posi-
tive integer value of Q.

We note that Cooper and Frieze [6], Huber [13] have shown rapid mixing on grids for
sufficiently high temperature and Martinelli [19] has shown rapid mixing for sufficiently
low temperature.

2 Models

We introduce the Q-State Potts Model (see [20],[22],[24]) on an arbitrary graph G =
(V,E), |V | = n as follows. Let U = (V1, V2, ..., VQ) be an ordered partition of (possibly
empty) disjoint subsets of V , whose union is V . This defines a configuration σ =
(σ1, ..., σn) where σ = σ(U). If vi ∈ Vj, the vertex vi is assigned colour σi = j. In the
notation of the Q-state Potts model, a vertex is a site and a colour is a spin. The type of
σ is t(σ) = (|V1|, |V2|, ..., |VQ|), the sizes of the colour classes. If an edge lies completely
within a colour class it is referred to as a bond. The components induced by the bond
edges within the colour classes are referred to as clusters.

Let D(σ) denote the set of edges between colour classes and d(σ) = |D(σ)|. The
measure of configuration σ is given by

µ(σ) = e−βd(σ).
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The constant β is called the inverse temperature, although more precisely |β| = 1/kT
where T is absolute temperature and k is the Boltzmann constant. We assume β is
positive, which is the ferromagnetic model. The bond edges make no contribution to
the measure of the configuration in the ferromagnetic model.

The set Ω of all configurations σ is [Q]n. However the measure assigned to configurations
is far from uniform. The total measure of Ω on G is denoted by Z(G) and is given by

Z(G) =
∑

σ∈Ω

e−βd(σ).

The quantity Z(G) is known as the partition function of the Q-state ferromagnetic Potts
model on the graph G. The probability that the system is in state σ is given by

Pr(σ) =
e−βd(σ)

Z(G)
. (1)

In order to assign the probabilities, in any specific instance, it is necessary to compute the
partition function Z(G). If the estimation of Z(G) is carried out using Markov chain
Monte Carlo (MCMC) methods (see [15]), the simplest approach is to move between
configurations altering one spin at a time, using a Metropolis rule. This Metropolis
process is not known to converge rapidly in the ferromagnetic model and only known to
converge rapidly in the anti-ferromagnetic model for G if

Q ≥ 2∆
(

1 − e−β
)

,

where ∆ is the maximum degree of G. An alternative approach, the Swendsen-Wang
process [21] offers the possibility of large scale structural alterations at each move.

Swendsen-Wang process.

(SW1) Let B = E − D(σ) be the set of bond edges induced within the colour classes
(V1, ..., VQ) of σ. Delete each edge of B independently with probability 1 − p,
where p = 1 − e−β. This gives subset A of B.

(SW2) The graph (V,A) consists of connected components. For each component a colour
is chosen uniformly at random from [Q] and all vertices within the component are
assigned that colour.

2

The applicability of the Swendsen-Wang process as a MCMC algorithm arises from
the fact that transitions using the Swendsen-Wang process preserve the steady state
probabilities given by (1). We prove this by showing the equivalence under certain
conditions of the Q-state Potts model and the Random Cluster model of Fortuin and
Kasteleyn [10], which we now describe.
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Given a graph G = (V,E), let G(A) = (V,A) denote the subgraph of G induced by the
edge set A ⊆ E. In the Random Cluster model, the set A is regarded as the bond edges,
and G(A) is given measure

µ(G(A)) = p|A|(1 − p)|E|−|A|Qc(A),

where c(A) is the number of components of G(A) and p is a probability.

The relationship between the two models is nicely brought out in a paper by Edwards
and Sokal [7] in which the Potts and Random Cluster models are defined on a joint
probability space [Q]n × 2E. The joint probability π(σ, A) is defined by

π(σ, A) =
1

Z

∏

(i,j)∈E

((1 − p)δ(i,j) 6∈A + p δ(i,j)∈Aδσi=σj
)),

where Z is a normalizing constant. By summing over σ or A we see that the marginal
distributions are correct and (remarkably) the normalising constants in both Potts and
Cluster models, are the value of Z given in the expression above.

The Swendsen-Wang process can be seen as given σ, (i) choose a random A′ according
to π(σ, A′) and then (ii) choose a random σ

′ according to π(σ′, A′).

3 Mixing Time

Let M be an ergodic Markov chain on a finite state space Ω, with transition probabilities
P (x, y), x, y ∈ Ω. For ω ∈ Ω, let π(ω) denote the stationary probability of ω under M.

The variation distance ∆(π1, π2) between two distributions π1, π2 on Ω is defined by

∆(π1, π2) = max
S⊆Ω

|π1(S) − π2(S)| = 1
2

∑

ω∈Ω

|π1(ω) − π2(ω)| .

Let x ∈ Ω be an arbitrary fixed state, and denote by Pt,x(ω) the probability that the
system is in state ω at time t given that x is the initial state. The variation distance at
time t with respect to the initial state x is then defined as

∆x(t) = ∆(Pt,x, π).

We define the function d(t) = maxx∈Ω ∆x(t) and the mixing time τ(ξ) by

τ(ξ) = min{t : d(t) ≤ ξ}.
In particular we let τ = τ(e−1). By a useful property of d(t) given in [1]

d(s + t) ≤ 2d(s)d(t).

By iterating this inequality we see that for any ǫ < e−1, τ(ǫ) < τ(e−1)ǫ exp(2 log 1/ǫ).

For our purposes, the Swendsen-Wang process is rapidly mixing, if the mixing time
τSW = τSW (G, β) is bounded by a polynomial in n, the number of vertices of G.
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3.1 Coupling

We prove our first result by a coupling argument. We have two copies (Xt, Yt), t =
1, 2, . . . , of the chain M defined jointly but not necessarily independently on Ω × Ω.
The relationship between the chains ensures that if Xt = Yt then Xs = Ys for all s ≥ t.
Coupling is a method for proving convergence in distribution. This follows because

∆(Pt,X0, Pt,Y0) ≤ Pr(Xt 6= Yt). (2)

where X0, Y0 are the initial states of (Xt), (Yt) respectively.

We can therefore prove rapid mixing by exhibiting a coupling such that if t ≥p(n) for
some polynomial p(n), then Pr(Xt 6= Yt) ≤ e−1.

3.1.1 Path Coupling

Bubley and Dyer [5] have recently introduced the notion of path coupling, a simple idea
which can greatly reduce the difficulty in the design and analysis of good couplings. We
use the basic version where Ω = Sn for some set S and positive integer n. Specifically,
in Section 4.6 we take S = Q and n = |V | so that Ω is the set of Potts configurations.

For x, y ∈ Ω we define the Hamming distance h(x, y) = |{j : xj 6= yj}|, so that
Pr(Xt 6= Yt) ≤ E(h(Xt, Yt)). Now suppose we define a coupling of the chains (Xt, Yt)
only for the case where h(Xt, Yt) = 1. Suppose then that

E(h(Xt+1, Yt+1)) ≤ 1 − α

whenever h(Xt, Yt) = 1. Then Theorem 1 of [5] yields a coupling where

E(h(Xt+1, Yt+1)) ≤ (1 − α)h(Xt, Yt), (3)

in all cases. If α is not too small, then this gives rapid mixing. Indeed the mixing time
is O(α−1 log N) where N = |Ω|.
Equation (3) is shown by choosing an arbitrary sequence Xt = Z0, Z1, . . . , Zh = Yt, h =
h(Xt, Yt) and h(Zi, Zi+1) = 1. Then Xt+1 = Z ′

0, Z
′
1, . . . , Z

′
h = Yt+1 can then be defined

so that the transformation Zi → Z ′
i has transition matrix P and E(h(Z ′

i−1, Z
′
i)) ≤ 1−α.

3.2 Conductance

We prove our second result by bounding the conductance of the chain in question. The
conductance Φ of M is defined by

Φ = min{ΦS : S ⊆ Ω, π(S) ≤ 1/2}
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where if Q(x, y) = π(x)P (x, y)

ΦS =
1

π(S)

∑

x∈S, y/∈S

Q(x, y).

Jerrum and Sinclair showed that if the chain is reversible i.e. Q is symmetric, then the
second eigenvalue λ of the transition matrix P satisfies

λ ≤ 1 − Φ2

2

and that for all t ≥ 0 and x, y ∈ Ω,

|Pt,x(y) − π(y)| ≤
(
√

π(y)

π(x)

)

λt.

In our case we have
√

π(y)
π(x)

≤ eβ|E|/2 and so

d(t) ≤ eβ|E|/2

(

1 − Φ2

2

)t

.

The Swendsen-Wang chain (and the Wolff chain considered in Section 5) are both re-
versible. To prove rapid mixing it is therefore sufficient to prove that Φ ≥ 1/p(n) for
some polynomial p(n).

4 Ising Model for the Complete Graph

We separate the proof of Theorem 1 into two cases, namely np < c0 and np ≥ c0, where
c0 > 2 is a suitable constant. The case np ≥ c0 is based on a straightforward path
coupling. The analysis of this case, given in Section 4.6, allows us to choose c0 = 4.

The analysis of the case np < c0 follows below.

4.1 Introduction to the case np < c0

Let X = Xt, Y = Yt denote two copies of the Swendsen-Wang process. Let k(X) ≤ n/2
be the size of the smaller colour class, R(X), say. Let B(X) = [n] \ R(X). We use the
following coupling.

Begin {Description of Coupling}

(a) Run the two chains independently until k(Xt) = k(Yt).
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(b) Once k(Xt) = k(Yt) we maintain this relationship and couple the processes until
R(Xt) = R(Yt). Let

P = R(Xt) ∩ R(Yt) Q = B(Xt) ∩ B(Yt)
S = R(Xt) \ P T = B(Xt) \ Q

= B(Yt) \ Q = R(Yt) \ P

W = Wt = P ∪ Q.

We define the following bijection ft : Xt −→ Yt. If a ∈ W then f(a) = a. Choose
any bijection from S to T . If a ∈ S, b ∈ T are such that f(a) = b then choose
f(b) = a in the bijection from T to S.

We couple edge deletion (a, b) ∈ X to (f(a), f(b)) ∈ Y as follows. We delete both
edges (a, b) in X and (f(a), f(b)) in Y with probability 1 − p and retain them
both with probability p in the application of Step SW1 to the chains. We also
couple the colouring of the resulting components so that |R(Xt+1)| = |R(Yt+1)|.
We choose colours cX(a) = cY (f(a)) with the following exception. Suppose a ∈
S ⊂ R(X) and b = f(a) ∈ T ⊂ B(X) become isolated after step (SW1). Set
cX(v) = cY (v), v = a, b thus assuring |Wt+1| ≥ |Wt| + 2.

End {Description of Coupling}

Theorem 1 for c < c0 follows from the following two lemmas:

Lemma 3 Pr(k(Xt) 6= k(Yt), 1 ≤ t ≤ n3/5 | X0, Y0) = o(1).

Lemma 4 If k(Xt) = k(Yt) then whp Xt+t′ = Yt+t′, where t′ = 2e2c log n.

The details of the proof are as follows: In Section 4.2, Lemma 5, we find the most likely
value for k(X) in the steady state. We find that there is a value α defined in the lemma
such that whp k(X) ≈ αn. We show in Lemma 15 that regardless of initial state, using
the Swendsen-Wang process, whp k(Xt) moves quickly to within O(ω

√
n) of αn, where

from now on
ω = (log n)1/3,

and tends to stay there. We then show in Lemma 16 that while k(Xt), k(Yt) are both
close to αn, there is a good chance that k(Xt+1) = k(Yt+1). This will prove Lemma 3.
The proof of Lemma 4 follows easily.

4.2 Most probable state of the Ising model

Assume from now on that c < c0 where it will turn out that we can take c0 = 4.
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For convenience, we assign the colours red and blue to the colour classes, which are
denoted R,B. Let

Ak = {σ : (|R|, |B|) = (k, n − k), or (|B|, |R|) = (k, n − k)}

be all partitions with smallest set of size k ≤ n − k, so that d(σ) = k(n − k), and

µ(Ak) = 2

(

n

k

)

e−β k(n−k).

Without loss of generality, we can assume |R| ≤ |B| in the discussions below. Let
e−β = 1 − p where p = c/n and let α = k/n.

µ(Aαn) = 2

(

n

αn

)

e
−cnα(1−α)−α(1−α) c2

2
−O

“

c3

n

”

.

As c ≤ c0 we have

µ(Ak) = O(1)
√

2
nπα(1−α)

[

1
αα(1−α)1−α e−cα(1−α)

]n

= O(1)
√

2
nπα(1−α)

exp (nΦ(α)) ,

where
Φ(α) = −α log α − (1 − α) log(1 − α) − cα(1 − α).

Lemma 5 The extrema of Φ(α) are given by the solutions of

αc e−αc = (1 − α)c e−(1−α)c. (4)

The maximum in [0, 1
2
] occurs at the unique value of α given below.

(i) If c ≤ 2 then α = 1
2
.

(ii) If c > 2 then α(c) is the unique solution in (0, 1
2
) of c(α) = 1

1−2α
log 1−α

α
.

Proof
Φ′(α) = − log α + log(1 − α) − c(1 − 2α).

The values of α given in the statement of the Lemma satisfy Φ′(α) = 0. We see that
Φ′(α) = 0 iff Φ′(1 − α) = 0, so the roots are paired. Let

f(α) = αec(1−2α) + α − 1.

Note that (4) is equivalent to f(α) = 0. Next let

h(α) = αc e−αc − (1 − α)c e−(1−α)c.
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Then
Φ′(α) = 0 ⇐⇒ f(α) = 0 ⇐⇒ ce−c(1−α)f(α) = 0 ⇐⇒ h(α) = 0.

Now
f ′(α) = 0 =⇒ (2cα − 1)e−(2cα−1) = e1−c.

As xe−x < e−1 for all x 6= 1, f ′(α) = 0 has no solutions for c < 2. Furthermore there is
one solution for c = 2. Thus for c ≤ 2, f(α) is monotone increasing from f(0) = −1 to
f(1

2
) = 0.

For c > 2, 1 − c < −1 and f ′(α) has exactly two solutions. We now show that when
c > 2 there is a unique solution to f(α) = 0 in (0, 1

2
). We know that f(1

2
) = 0, and

f(α) = 0 iff f(1−α) = 0. As f ′(α) has exactly two roots, by Rollé’s Theorem there is at
most one root of f(α) in (0, 1

2
). We claim this root exists, because f(0) = −1, whereas

f(1/c) > 0 for c > 2. This follows because

cf(c−1) = ec−2 − (1 + (c − 2)) > 0

as ex > 1 + x for x > 0. 2

For c > 2, α ∈ (0, 1
2
) satisfies (4). An equation of the form

xe−x = ye−y

has no solutions x < y < 1 or 1 < x < y. As 1 − α > α for c > 2 we conclude that as a
solution α exists, we must have x = αc < 1 and y = (1 − α)c > 1.

For future reference, we give the expansion of c(α) about α = 1
2
.

Lemma 6 Let α = 1
2
(1 − ξ), where 0 < ξ < 1. Then

c = 2

(

1 +
ξ2

3
+ O(ξ4)

)

. (5)

cα = 1 − ξ +
ξ2

3
+ O(ξ3). (6)

c(1 − α) = 1 + ξ +
ξ2

3
+ O(ξ3). (7)

In particular, if c = 2 + λ then

λ =
2

3
ξ2 + O(ξ4). (8)

Furthermore
1 − 2α

2(1 − α)(1 − cα)
≤ 1

1 + 2ξ/3
(9)

9



Proof

c =
1

ξ
log

1 + ξ

1 − ξ
(10)

= 2

(

1 +
ξ2

3
+ · · · +

ξ2j

2j + 1
+ · · ·

)

.

Equations (5) – (9) follow immediately. Furthermore

1 − 2α

2(1 − α)(1 − cα)
=

1

1 + 2ξ
3

+ · · · + ξ2j−1
(

1
2j−1

− 1
2j+1

)

+ · · ·

2

4.3 Structure of the random graphs resulting from Step 1 of
the Swendsen-Wang process

Suppose that at the start of an iteration of the Swendsen-Wang process the colour classes
have sizes γn and (1 − γ)n, γ ≤ 1/2. After edge deletion with probability 1 − p, the
graphs induced by the colour classes are distributed as Gγn,p and G(1−γ)n,p respectively.
We establish some results on the likely structure of a random graph GN,p.

For d ≥ 1 let ζ = ζ(d) be defined by

ζ ≤ 1 and ζe−ζ = de−d, (11)

and let

g = g(d) = 1 − ζ(d)

d
,

so that
1 − g − e−dg = 0. (12)

4.3.1 Component Structure

The following lemma can be obtained from [8], [4] and [16].

Lemma 7 Let p = d/N where 1 + ǫ = d = O(1) and |ǫ| log n → ∞.

With probability 1−O(N−1), the random graph GN, d
N

has the following component struc-

ture: For k0 = Aǫ−2 log N where A is a sufficiently large constant,

• If d < 1 then all components are of size at most k0.
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• If d > 1 then there is a unique large component GIANT of size in the range
[gN/2, N ].

• There are no components with sizes in the ranges [k0, gN/2],

Let p = d/N . Let Tk be the number of isolated k-vertex trees in Gn,p. Similarly, let
Uk be the number of k-vertex unicyclic components and Ck be the number of k-vertex
complex components of size at most k0.

Lemma 8 Let p = d/N where d = 1 + ǫ = O(1), |ǫ| log n → ∞. Then

(i) Pr
(

∑N
k=1 k2Tk ≥ 3N/ǫ2

)

= O(N−1).

(ii) Pr
(

∑

k k2(Uk + Ck) ≥
√

N
)

= O(N−1).

Proof (i)

E(Tk) =

(

N

k

)

kk−2pk−1(1 − p)k(N−k)+(k
2)−k+1

=
N

d

kk−2

k!
(de−d)k

(

1 + O

(

k2d

N

))

≤ N

k2d
(de1−d)k.

Consider the random variables

Z0 =
k0
∑

k=1

k2Tk and Z =
N
∑

k=1

k2Tk.

Then Lemma 7 implies
Pr(Z0 6= Z) = O(N−1). (13)

Then,

E(Z0) ≤ N

d

∞
∑

k=1

(de1−d)k

=
Ne1−d

1 − de1−d

≤ 2N

ǫ2
.

Now with probability 1 − O(N−1) GN, d
N

has m = 1
2
dN + o(N) edges. Condition on

this number m and consider the edge exposure martingale for GN,m. See e.g. Alon and
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Spencer [2] for an explanation of the following. Changing one edge of GN,m changes Z0

by at most 2k2
0. Thus, in GN,m,

Pr

(

Z0 ≥
2N

ǫ2
+ t

)

≤ exp

(

− t2

2Bmk4
0

)

for some constant B > 0. Putting t = N/ǫ2 and using (13) yields (a).

(ii) We calculate the expected number of such components and use the first moment
method. 2

4.3.2 The Giant Component

Our analysis requires an estimate of the probability that any large component deviates
from its mean size by ω

√
N . We have not found this estimate in the literature and so

we prove the necessary bounds in this section. Note that if ǫ → 0

1 ≤ d = 1 + ǫ implies ζ = 1 − ǫ + O(ǫ2). (14)

We note from (14) that if 1 < d = 1 + ǫ and ǫ → 0 then

g = 2ǫ + O(ǫ2). (15)

Lemma 9 Let p = d/N, 1 ≤ d = 1 + ǫ = O(1) and

f(t) = (N − 1)(1 − (1 − p)t) − (t − 1).

(i) Let t∗ be the maximum of f(t) on (0, N). Then t∗ = N log d/d + O(1).

(ii) Let t0 ∈ (0, N) satisfy f(t0) = 0. Then t0 is unique and given by t0 = gN + Θ
(

1
ǫ

)

.

(iii) If h = o(N) then
f(t0 + h)

h
= −1 + ζ + O

(

h

N

)

.

(iv) If h = o(N) then

f(h) = 1 + hǫ + O

(

h

N

)

.

Proof (i) The function f ′(t) given by

f ′(t) = −(N − 1)(1 − p)t log(1 − p) − 1, (16)
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is monotone decreasing for t ∈ (−∞,∞) and has a unique root at t∗ = log[(N −
1) log 1/(1 − p)]/ log 1/(1 − p) = N log d/d + O(1). By (20) f ′′(t) ≤ 0 always, so t∗

corresponds to a unique maximum of f(t).

As f(−∞) = −∞, f(0) = 1 and f(N) < 0, there is a unique root t0 of f(t) in (0, N).

(ii) Putting t̄ = ⌊gN⌋ = gN − ξ we obtain

f(t̄) = 1 − g +
ζgd

2
+ ξ(1 − ζ) + O(n−1) > 0. (17)

This implies that t̄ < t0. Using (16) we obtain

f ′(t̄) = ζ − 1 + O(N−1).

We note next that

f ′′(t) = −(N − 1)(1 − p)t(log(1 − p))2

{

= O(N−1)
≤ 0

(18)

Putting h = A/(1 − ζ) for an arbitrary constant A > 0 we see that

f(t̄ + h) = f(t̄) − A + O

(

h2

N
+

1

(1 − ζ)N

)

.

As Nǫ2 → ∞ we see from (17) that f(t̄ + A/(1 − ζ)) > 0 for A sufficiently small and
f(t̄ + A/(1 − ζ)) < 0 for A sufficiently large. (ii) now follows from (14).

(iii)

f(t0 + h) = hf ′(t0) +
h2

2
f ′′(t0 + θh) (19)

where θ ∈ [0, 1]. Now

f ′′(t) = −(N − 1)(1 − p)t(log(1 − p))2 ≤ 0. (20)

f(t0) = 0 implies that

(N − 1)(1 − p)t0 = (1 − g)N + O(1) (21)

Thus from (16) and (21) we get

f ′(t0) = −((1 − g)N + O(1)) log(1 − p) − 1

=

(

ζ

d
+ O

(

1

N

))(

d + O

(

1

N

))

− 1

= ζ − 1 + O

(

1

N

)

. (22)
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Now from (20) we obtain

f ′′(t) = O

(

d3

N

)

. (23)

Part (iii) follows from (19), (22) and (23).

(iv) If h = o(N) then

f(h) = (N − 1)(1 − (1 − hd/N + O(h/N2))) − (h − 1)

= hǫ + 1 + O

(

hd

N

)

.

2

Lemma 10 Let p = d/N where 1 ≤ d = 1 + ǫ = O(1) and ǫ = Ω ((log N)2/N)
1/3

. Let
h0 = ω

√
N where ω = o(log n). Let t1 = 3ǫ−1

√
gN log N .

Let X = X(t) ∼ B(N − 1, 1 − (1 − p)t). Let SL denote the natural numbers in the
interval (t1, t0 − h0) and let SU denote the natural numbers in the interval (t0 + h0, N ].

There exists a constant Ĉ > 0 such that for sufficiently large N ,
∑

t∈SL∪SU

Pr(X(t) = t − 1) ≤ exp(−Ĉω2/ǫ).

Proof Let µ(t) = E(X(t)). We first consider the case t ∈ SL. As f(t) = µ(t)− (t−
1),

Pr(X = t − 1) = Pr(X = µ(t) − f(t))

< Pr(X ≤ µ(t) − f(t))

≤ exp

(

− f(t)2

2µ(t)

)

, (24)

by the Chernoff bound for the tails of the Binomial.

For t ≥ 1, µ(t) is a monotone increasing function of t and µ(t0) = gN + O(1/ǫ). We
know from Lemma 9(ii) that f(t) increases from f(0) = 1 to a maximum at t∗. For
t > t∗ f(t) is monotone decreasing in t to f(t0) = 0.

Let h1 = 2
√

gN log N/(1 − ζ) and let t2 = t0 − h1. In order to replace f(t) by f(t2) in
(24) for all t ∈ (t1, t2) we require that f(t1) > f(t2). Now from Lemma 9(iii) we have

f(t2) = h1

(

−1 + ζ + O

(

h1

N

))

.

Let F (d) = (1 − ζ)2/g = O(1). If d = 1 + ǫ then from (15), F (d) = ǫ
2

+ O(ǫ2) as ǫ → 0.
Using the value of F (d) we see that h1 = o(gN) and so

h1

N
= o(ǫ) = o(| − 1 + ζ|).

14



Thus we have that f(t2) = 2
√

gN log N(1 + o(1)). Using Lemma 9(iv) we have

f(t1) = 3
√

gN log N(1 − o(1)) > f(t2)

as required. Thus provided t1 ≤ t ≤ t2 we have

Pr(X(t) = t − 1) ≤ exp

(

− h2
1(−1 + ζ)2

2Ng(1 + o(1))

)

≤ exp(−(log N)2).

For t2 < t < t0 − h0 we estimate Pr(X(t) = t − 1) directly using

Pr(X = t−1) =

(

N − 1

t − 1

)

θt−1(1−θ)N−t =

(

N(1 + o(1))

2πt(N − t)

)1/2

e−(t−Nθ)2/(2Nθ(1−θ)). (25)

Here θ = 1 − (1 − p)t ∼ 1 − e−dg = g and t − 1 = (N − 1)θ + h.

This follows from substituting Stirling’s inequality into the estimate for a near central
term of the binomial distribution, for example Feller [9] Chapter VII(2.5-2.7) gives this
provided ((t − 1 − (N − 1)θ)/(θ(1 − θ)(N − 1)) −→ 0, which is true since h = o(gN)
here.

Thus

∑

t∈SL

Pr(X(t) = t − 1) ≤ Ne−(log N)2 +
A

(gN)1/2

−h0
∑

h=−h1

exp

(

− h2

2Ng(1 − g)

)

(26)

which is less than 2
√

g/ω exp(−ω2/(2g(1 − g))), on summation, (see for example Feller
VII (1.8)).

The case t ∈ SU is similar. f(t) is monotone decreasing, and µ(t) ≤ N so we use Lemma
9(iii) to deal with t ≥ t0 + h1 and (25) to deal with t0 + h0 ≤ t ≤ t0 + h1. 2

Combining Lemma 10 with Lemma 7 we get

Lemma 11 Let 1 ≤ d = 1 + ǫ = O(1) and ǫ log n → ∞. Then if ω = o(log n),

Pr
(

∣

∣ |GIANT | − gN
∣

∣ ≥ ω
√

N
)

≤ exp(−Cω2/ǫ), (27)

for some constant C > 0.

Proof

In order to probabilistically bound the deviation of the size of any large components
of GN,d/N we use the approach given in [2]. Let X(t) ∼ B((N − 1), (1 − (1 − p)t)),
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Y (t) = X(t)− (t− 1) and T = min{t : Y (t) = 0}. The size of the component containing
a fixed vertex v of GN,d/N is distributed as T . Now,

Pr(T = t) ≤ Pr(Y (t) = 0) = Pr(X(t) = (t − 1)).

Let S ′ = (SL ∪ SU) ∩ [t0 − h1, t0 + h1] and let v be chosen at random. Then

Pr(T ∈ S ′) ≥
∑

γ∈S′

γc(γ)

N
Pr(GN, d

N
has c(γ) ≥ 1 components of size γ)

≥ t0 − h1

N
Pr(GN, d

N
has some component of size γ ∈ S ′)

Using (26) we get

Pr(GN, d
N

has a component of size in S ′) ≤ 2

g
Pr(T ∈ S ′) ≤ 2

g
exp(−Ĉω2/ǫ).

If S ′′ = (SL ∪ SU) \ S ′ then a similar argument gives

Pr(GN, d
N

has a component of size g ∈ S ′′) ≤ N exp
(

−(log N)2
)

.

2

4.4 One iteration

From now on the parameters ǫ, ω we use will satisfy

|ǫ|−1ω = o(
√

log n) as n → ∞.

Suppose at some stage we have a partition R,B where |R| = γn, |B| = (1 − γ)n and
γ ≤ 1/2. We need to compute the likely size of the parts of the new partition after one
iteration of the Swendsen-Wang process. Let

φ(γ) =
ζ((1 − γ)c)

c

where ζ is defined in (12). If p = d
N

> 1 then, by Lemma 7, the random graph GN,p will

most likely have a unique giant component of size ≈ N
(

1 − ζ
d

)

. Where appropriate we
assume this to be the case.

Lemma 12 Suppose c = O(1), |R| = γn, |B| = (1−γ)n and γ ≤ 1/2. Suppose that after
one iteration of the Swendsen-Wang process the new partition is R̂, B̂ where |R̂| = γ̂n
and γ̂ ≤ 1/2. Let P1 = 1 − O(exp(−Cω2) + n−1), then

16



Case 1: c ≥ 2 + ǫ, cγ ≤ 1 − ǫ
10

, c(1 − γ) ≥ 1 + ǫ
10

. With probability P1

γ̂ =
γ + φ(γ)

2
+ O

(

ω

ǫ
√

n

)

. (28)

Case 2: c ≤ 2 − ǫ, cγ, c(1 − γ) ≤ 1 − ǫ
10

. With probability P1

γ̂ =
1

2
+ O

(

ω

ǫ
√

n

)

. (29)

Case 3: c ≤ 2 − ǫ, cγ ≤ 1 − ǫ
10

, c(1 − γ) ≥ 1 + ǫ
10

. With probability P1

γ̂ =
γ + φ(γ)

2
+ O

(

ω

ǫ
√

n

)

.

Case 4: c ≤ 2 − ǫ, cγ ≤ 1 − 9ǫ
10

, 1 − ǫ
10

≤ c(1 − γ) ≤ 1 + ǫ
10

. With probability P1, γ̂ fits
Case 2.

Case 5: c ≥ 2 + ǫ, cγ ≥ 1 + ǫ
10

, c(1 − γ) ≥ 1 + ǫ
10

. With probability at least 1
2
− o(1), γ̂

fits Case 1.

Case 6: c ≥ 2 + ǫ, 1 − ǫ
10

≤ cγ ≤ 1 + ǫ
10

, c(1 − γ) ≥ 1 + 9ǫ
10

. With probability P1, γ̂ fits
Case 1.

Proof
Case 1 After Step SW1 we will have created 2 random graphs distributed as Gγn,p and
G(1−γ)n,p. With the required probability the second graph will have a giant component
of size ν = n(1 − γ − φ(γ)) + O(ω

√
n). Suppose this is coloured Blue in Step SW2. Let

a1, a2, . . . , ak be the component sizes in G(1−γ)n,p other than the giant and let b1, b2, . . . , bℓ

be the component sizes in Gγn,p. It follows from Lemma 8 that with the required
probability

∑

a2
i +

∑

b2
j ≤ 6n/ǫ2 and max{a1, . . . , bℓ} = O(Aǫ−2 log n). Now randomly

colour these components Red and Blue. The expected number of Red vertices is n−ν
2

.
Applying Hoeffding’s theorem on the sum of bounded random variables we see that for
any t > 0

Pr

(
∣

∣

∣

∣

|R̂| − n − ν

2

∣

∣

∣

∣

≥ t

)

≤ 2 exp

(

− 2t2

a2
1 + · · · + b2

ℓ

)

. (30)

Putting t = ωǫ−1
√

n yields Case 1.

Case 2 Here with the required probability, there is no giant component and so E(|R̂|) =
n
2
. A calculation similar to (30) finishes the proof.

Case 3 Same as Case 1.

Case 4 We have not discussed the structure of GN, d
N

with d very close to 1. We need to

make some approximations to handle these cases. Let a component of G(1−γ)n,p be small,
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otherwise large, if it is not part of the giant component of G′ = GN,(1+ǫ/10)N−1, N =
(1 − γ)n (if it exists). From equation (15) we see that the giant component of G′ has
size at most 2 ǫ

10
+ O(ǫ2), with the required probability. The sum of squares of the small

components is stochastically dominated by the corresponding sum in G′. Consequently,
by pessimistically treating the union of large components as we do a giant component
i.e. assigning them all the same colour, we can proceed as in Case 1 for the small
components. Thus with probability 1 − e−Cω2

+ O(n−1)

γ̂ ≥ 1

2
− ǫ

10
+ O(ǫ2).

So

c(1 − γ̂) ≤ (2 − ǫ)

(

1

2
+

ǫ

10
+ O(ǫ2)

)

= 1 − 3ǫ

10
+ O(ǫ2),

which completes this case. (The error term O(ω/ǫ
√

n) has been subsumed into the O(ǫ2)
term.)

Case 5 In this case both Gγn,p and G(1−γ)n,p will have giant components with the
required probability. If in Step SW2 both components received the same colour, (Blue
say), which they do with (conditional) probability 1/2, then the number of Red vertices
will be

ζ(cγ) + ζ(c(1 − γ))

2c
n + O(ωǫ−1

√
n).

Now ζ(c(1 − γ)) ≤ ζ(cγ) as c(1 − γ) ≥ cγ and ζ(cγ) ≤ 1. Thus

ζ(cγ) + ζ(c(1 − γ))

2c
≤ ζ(cγ)

c

≤ 1

c

(

1 − ǫ

10

)

from (14), so we are now in Case 1. This completes the proof of Case 5.

Case 6 Arguing as in Case 4 we see that with the required probability

γ̂ =
γ + φ(γ)

2
+

ǫ

5
+ O(ǫ2). (31)

The term ǫ
5

+ O(ǫ2) represents the possible contribution of a giant in Gγn,p. Now

cφ(γ) = ζ(c(1 − γ))

≤ ζ

(

1 +
9ǫ

10

)

≤ 1 − 9ǫ

10
+ O(ǫ2).
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This combined with (31) yields cγ̂ ≤ 1 − 3ǫ
5

+ O(ǫ2) and completes the proof of the
lemma. 2

We see immediately from the above lemma after O(log n) steps of the Swendsen-Wang
process we will whp be in one of Cases 1,2,3. The next lemma will give enough properties
of the function φ to show that γ → α.

Lemma 13 Let c(α) = 2 + 2
∑

j≥1
ξ2j

2j+1
where ξ > 0 is given by α = 1

2
(1 − ξ). Suppose

cγ < 1 < c(1 − γ) then

(i)
γ < α implies γ < φ(γ) < α
γ > α implies γ > φ(γ) > α

(ii) If Φ(γ) = γ+φ(γ)
2

then

(a) α is the unique fixed point of Φ in [0, 1
2
].

(b) Φ′(α) < 1/(1 + 2ξ/3).

(c) If γ0 ≤ 1
2

is arbitrary and γi = Φ(γi−1) then for any a > 0 there exists b = b(a)
such that if τ = b log n then |γτ − α| ≤ n−a.

Proof (i) The function

h(γ) = (1 − γ)c e−(1−γ)c − γc e−γc

has roots in [0, 1
2
] given by 1

2
and α of Lemma 5. As h(0) > 0, h(γ) is greater than

zero for γ ∈ [0, α) and h(γ) is less than zero for γ ∈ (α, 1
2
). Let x = cφ, x ∈ [0, 1] be

the solution of xe−x = (1 − γ)c e−(1−γ)c. The function ye−y is monotone increasing for
y ∈ [0, 1] so if γ ∈ [0, α) we must have x > γc and thus φ > γ. Similarly, if γ ∈ (α, 1

2
)

we must have x < γc and thus φ < γ.

Suppose α < γ. We prove that φ(γ) > α. As α < γ ≤ 1 − γ and cγ ≤ 1 we have
1 ≤ (1 − γ)c < (1 − α)c. As the function ye−y has a unique maximum at y = 1 this
inequality implies that αc < x = φc. A similar proof holds for the case γ < α.

(ii) Part (a) follows from Section 4.2.

For part (b) we see that φ, γ are implicitly related through the function f(φ, γ) = 0
where

f(φ, γ) = cφe−cφ − (1 − γ)ce−(1−γ)c,

so that we have that dφ/dγ = −fγ/fφ. Thus

Φ′(γ) =
1 − γ − φ

2(1 − γ)(1 − cφ)
.
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Putting φ = α and α = 1
2
(1 − ξ) and using Lemma 6 yields

Φ′(α) ≤ 1

1 + 2ξ/3
.

(c) Parts (i) and (iia) imply that γi → α. Using (iib) we see that there exists i0, δ such
that for i ≥ i0 we have γi ∈ [α−δ, α+δ] and Φ′(γ) < η = 1

1+ξ/3
< 1 for γ ∈ [α−δ, α+δ].

Consequently, |γi0+t − α| ≤ ηt|γi0 − α| and (c) follows. 2

Suppose first that we start in Case 3 and we go through τ steps and the values of γ are
denoted γ0, γ1, . . . , γτ . Then

γ̂ = Φτ (γ0)+O

(

τω

ǫ
√

n

)

Prob: 1−τe−Cǫω2

+O(τn−1). (32)

Now α = 1
2

here. So after τ = τ(ǫ) iterations we will whp have c(1 − γτ ) ≤ 1 + ǫ
10

. We
will be in Case 4 or Case 2 and in the former we will be in Case 2 at the next step whp.

If we are in Case 1 or Case 2 then after further O(log n) iterations we will find γ ∈ I
where

I =

[

α − Lω

ǫ
√

n
, α +

Lω

ǫ
√

n

]

.

From the above discussion we see

Lemma 14 Regardless of the initial partition,whp γ ∈ I after O(log n) iterations.

The next lemma shows that the chain tends to stay in I.

Lemma 15 Assume Case 1 or Case 2 of Lemma 12. Then

Pr(γ̂ ∈ I | γ ∈ I) ≥ 1 − e−Cω2

. (33)

Proof Let K be the hidden constant for the O
(

ω
ǫ
√

n

)

terms of (28), (29). Let

L = (1 + 1/(1 + ζ/3))K. If Case 2 pertains, then (33) follows directly from (29). If Case
1 pertains then when γ = α + θ, (28) implies

|γ̂ − Φ(α + θ)| ≤ Kω

ǫ
√

n
Prob: 1 − e−Cω2

or

|γ̂ − (Φ(α) + θΦ′(α + λθ)))| ≤ Kω

ǫ
√

n

for some 0 ≤ λ ≤ 1. Now Φ(α) = α and so we have

|γ̂ − α| ≤ |θΦ′(α + λθ)| +
Kω

ǫ
√

n
. (34)

Now Φ′(γ) is a continuous function and so if |θ| ≤ Lω
ǫ
√

n
then |Φ′(α+λθ)| ≤ |Φ′(α)+o(1)| <

1/(1 + ξ/3), from Lemma 13(iib). Using this estimate in (34) yields the lemma. 2
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4.5 Coupling the process

We consider a pair of chains X,Y run independently in tandem. Let γX , γY etc. refer
to values in X,Y specifically.

Lemma 16 If γX , γY ∈ I then Pr(γ̂X = γ̂Y ) = Ω(n−1
2
+o(1)).

Proof

Let rX , rY be the number of Red vertices on components of size at least 2 in the process
X,Y respectively and let u, v be the number of isolated vertices in X,Y .

If γX , γY ∈ I then rY = rX + ∆ where whp |∆| = O(ωǫ−1
√

n), v = u + δ where
δ = O(ωǫ−1

√
n) and u = n(αe−αc + (1 − α)e−(1−α)c) + O(ωǫ−1

√
n) . If X receives i + ∆

red isolated vertices and Y receives i, then |R(Xt+1)| = |R(Yt+1)| as required. Thus

Pr(|R(Xt+1)| = |R(Yt+1)|) ≥
∑

i≥0

(

u

i + ∆

)(

v

i

)

1

2u+v

=

(

u + v

u − ∆

)

1

2u+v
.

Now
(

m
m
2

(1 − θ)

)

≥ 1

3
√

m
2m exp

(

−
(

θ2

2
+ O(θ3)

)

m

)

,

so that
(

u + v

u − ∆

)

1

2u+v
=

(

u + v
u+v

2

(

1 − 2∆+δ
u+v

)

)

1

2u+v

≥ 1

3
√

n
e−O(ǫ−2ω2)

= Ω(n−1
2
+o(1)).

2

Suppose now that we run both chains independently for n3/5 steps. It follows from
Lemmas 14 and 15 that both chains will whp spend (1− o(1))n3/5 time in I. Applying
Lemma 16 we see that by the end of these n3/5 steps the event that |k(Xt)| = |k(Yt)|
will have occurred whp at some step t. This completes the proof of Lemma 3. We now
prove Lemma 4 which we re-state as

Lemma 17 If |k(Xt)| = |k(Yt)| then part (b) of the coupling of X,Y is such that
R(Xs) = R(Ys) after at most 2e2c log n iterations whp.

Proof The probability of the event that a, b are both isolated in X is at least e−2c

independently at any iteration. The probability that the equalization phase requires
more than 2e2c log n iterations is O

(

1
n

)

. 2
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4.6 Path coupling for c ≥ c0

We can deal with large p quite easily. If np ≥ 3 log n then with probability 1−O(n−1/2)
the vertices of the larger colour class B will induce a connected graph after the execution
of step (SW1). Each vertex in the smaller class will then have a probability 1/2 of being
recoloured the same as B. Thus whp there will be one non-empty colour class for each
chain after O(log n) iterations and then coupling is trivial in one step. So assume from
now on that np ≤ 3 log n.

We assume the processes Z = X,Y are run independently until they have partition
sizes (aZn, (1 − aZ)n) where aZ ≤ α + θ ≤ .5 − θ for a sufficiently small constant θ.
This is justified by Lemma 14, but only for c = O(1). It is easy however, to adapt the
arguments of Lemma 12 to show that for c ≥ c1 = c1(θ), c1 large, the smaller colour
class will whp quickly have less than θn elements. With high probability the condition
aZ ≤ α + θ ≤ .5 − θ will persist long enough so that we can make the two processes
converge. We make the convention that |R(X)| ≥ |R(Y )|. It may be that R(Y ) = ∅ but
we assume R(X) 6= ∅. If R(X) = R(Y ) = ∅ then the processes converge in one iteration.

There is a sequence X = W0,W1, ...,Wl = Y of partitions such that Wt is obtained from
Wt−1 by moving a single vertex and such that |R(Wt)| ≤ max(aXn, aY n). Applying
the path-coupling paradigm we consider the case where the two processes differ in their
partitions at a single vertex v. Specifically we assume that X has partition (R∪{v}, B)
and Y has partition (R,B∪{v}), where |B| ≥ |R| = γn. We use the following coupling:

(SW1) If x, y ∈ R ∪ B then we make the same choices in X,Y to keep or delete the edge
(x, y).
Edges involving v occur in only one of X,Y and are not coupled.

Suppose that after (SW1) the components of the graphs induced by R,B are
R1, . . . , Ra, B1, . . . , Bb where

1. Bb is the giant component, if any, and thus |Bb| = Θ(n) whp.

2. R1, . . . , Rs are adjacent to v in X.

3. B1, . . . , Bt are adjacent to v in Y .

4. Bb may or may not be adjacent to v in Y .

(SW2) (a) Give Bb the same (random) colour in X,Y .

(b) Give Rs+1, . . . , Ra, Bt+1, . . . , Bb−1 the same (random) colour in X,Y .

(c) If v is adjacent to Bb in Y then in Y give it the colour determined in (a) and
in X give it a random colour. If v is not adjacent to Bb in Y then give it the
same (random) colour in X,Y .

(d) Give R1, ..., Rs (resp. B1, ..., Bt) a random colour in Y (resp. X).
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Let X ′, Y ′ denote the new states. Then

E(h(X ′, Y ′)) ≤ 1

2
E(1 + |R1| + · · · + |Rs| + |B1| + · · · + |Bt|) (35)

where the Hamming distance h is defined in Section 3.1.1.

Now, since R1, . . . , Bt are not giant components, Lemma 7 implies there exists A > 0
such that |R1|, . . . , |Bt| < A log n with probability 1 − O(n−2). Furthermore

E

(

s
∑

i=1

|Ri|
)

≤
A log n
∑

k=1

(

γn

k

)

kk−1pk−1(1 − p)k(n−k) · kp + o(1)

≤ (1 + o(1))
∞
∑

k=1

kk

k!
cke−ck

≤
∞
∑

k=1

(ce1−c)k

=
ce1−c

1 − ce1−c
.

Similarly

E

(

t
∑

i=1

|Bi|
)

≤ ce1−c

1 − ce1−c
.

Going back to (35) we see that

E(h(X,Y ) − h(X ′, Y ′)) ≥ 1

2
− ce1−c

1 − ce1−c
≥ 1

10

for c ≥ 4. Thus for c ≥ c0 = 4 we have proved that the mixing time is O(log n).

5 Narrow Grids

In this section we consider the 2 × n grid with 2 colours and p ≤ p0, where p0 is
any constant less than 1. We show that both the Swendsen-Wang process and a variant
proposed by Wolff [23] have mixing times polynomial in n. The proof for any a×· · ·×a×n
grid and any constant number of colours is essentially the same.

The Wolff process for two colours defines a Markov chain MG for a graph G = (V,E),
with state space ΩG = 2V (the set of 2-colourings of V ), and transitions determined by
the following procedure: At each step,

1. Remove from G all edges joining vertices of different colours.
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2. Remove each of the remaining edges with probability 1 − p.

3. Pick a vertex v at random, pick a random colour c, and change the colour of the
component containing v to c.

For the purposes of our analysis we also define a modified version of the Swendsen-Wang
and Wolff processes for graphs with some subset of nodes given a fixed colouring. For
such graphs, we add to Step 3 in the Wolff process the condition that if any vertex in
a component containing a fixed vertex is chosen, the colour of the component remains
unchanged. Similarly we add to the Swendsen-Wang process the restriction that no
component containing a vertex with a fixed colour has its colour changed. We call these
restricted Wolff or Swendsen-Wang chains.

Let MS and MW be the Markov chains determined by running the Swendsen-Wang
and Wolff processes, respectively, on a 2 × n grid. Let ΦS be the conductance of MS,
and ΦW the conductance of MW . Theorem 2 follows from the discussion in Section 3.2
and the following two theorems: ΦH is defined later and shown to bounded below by a
constant.

Theorem 18 ΦS = Ω(n−19(ΦH)2 log n)

Theorem 19 ΦW = Ω(n−18(ΦH)2 log n)

We prove Theorems 18 and 19 using a theorem of Madras and Randall [17] that gives a
bound on the conductance of a Markov chain in terms of a set of overlapping subchains.

Let M be either a Swendsen-Wang or Wolff Markov chain on a 2× n grid G, with state
space Ω, transition probabilities P , and stationary distribution π. Equivalently, M is
a restricted Swendsen-Wang or Wolff chain, with the set of fixed vertices equal to the
empty set.

Let Ω1, . . . , Ωm be the subsets of Ω each of which restricts two of the three columns
n/4, n/2, 3n/4 to having a fixed 2-colouring. Thus m = 48, and

⋃m
i=1 Ωi = Ω. (Strictly

speaking, we should round n/4, n/2, and 3n/4 to integers; we ignore this for the sake of
simplicity.)

The restriction Mi of M to Ωi is a Markov chain defined on the state space Ωi.

Unfortunately, we need different definitions for the Swendsen-Wang and Wolff process:

Wolff Process
The transition matrix Pi is given by:

Pi(x, y) =

{

P (x, y) y 6= x ∈ Ωi

1 −∑z∈Ωi,z 6=x P (x, z) y = x ∈ Ωi
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This was the definition used in [17].

Swendsen-Wang Process
The transition matrix Pi is given by

Pi(x, y) = P (x, y)/P (x, Ωi), y ∈ Ωi.

The projection of M with respect to M1, . . . ,Mm is an m state Markov chain MH , with
state space {1, 2, . . . ,m} (state i is associated with chain Mi). The transition matrix
PH of MH is defined to be

PH(i, j) =











π(Ωi∩Ωj)

∆π(Ωi)
j 6= i ∈ [m],

1 −∑k∈[m],k 6=i PH(i, k) j = i ∈ [m]

where ∆ = maxx |{i : x ∈ Ωi}|.
The stationary distribution ρ of MH is given by

ρ(i) =
π(Ωi)

S
,

where S =
∑m

i=1 π(Ωi) is the normalizing constant.

Let Φi be the conductance of Mi. Let Φmin = mini Φi. Let ΦH be the conductance of
the projection chain MH . Then the conductance of the original chain satisfies

Lemma 20 (Madras-Randall[17])

Φ ≥ (ΦH)2ΦminS

6m3∆2

.

[Note: the original version of Lemma 20 has Φ ≥ (ΦHΦminS)/(3m2∆2), but we believe
there is a minor mistake in the proof. See also Lemma 23 below. Furthermore, Madras
and Randall [18] have now changed the focus of the result to obtain an estimate of the
spectral gap γM of M in terms of the spectral gap γH of MH and the spectral gaps
γ1, . . . , γm of M1,M2, . . . ,Mm. γ ≥ ∆−2γH min{γi : 1 ≤ i ≤ m}. Importantly, the
explicit dependence on m has been removed from the expression.] For our chains MS
and MW and restricted state spaces Ω1, . . . , Ωm, S = ∆ = 3 and m = 48. We will show
that for both chains ΦH is bounded below by a constant, and give a polynomial bound
on Φmin, proving Theorems 18 and 19.

Conductance of the Projection Chains. In both MSH and MWH , each state i
(corresponding to Mi) has 16 edges with nonzero transition probabilities, each to a state

25



fixing exactly one column the same way Mi fixes it. For each edge (i, j) with nonzero
probability, the transition probability is defined to be

P (i, j) =
π(Ωi ∩ Ωj)

∆π(Ωi)
=

π(Ωi ∩ Ωj)

3π(Ωi)
. (36)

Let (i, j) be an adjacent pair of states. Suppose x ∈ Ωi \ Ωj, and let c be the column
fixed by Mj but not by Mi. Let x′ ∈ Ωi ∩ Ωj be the state in Ωj obtained from x by
changing the colours of the vertices in column c appropriately. Now |d(x) − d(x′)| ≤ 5
and so from (1) we have

e−5β ≤ π(x)

π(x′)
≤ e5β

where we have β ≤ − log(1 − p0).

Further, |{x′ : x′ ∈ Ωi ∩ Ωj}| = |{x : x ∈ Ωi}|/4. Thus by (36), P (i, j) is bounded
below by a constant. Since the number of states in MH is m = 48, and every cut in ΩH

has at least one nonzero edge, it follows that ΦH is bounded below by a constant.

Conductance of the Restricted Chains. To give a bound on the conductance of
the restricted chains, we exploit the fact that each restricted chain divides M into three
independent subchains on smaller grids, each with one or both of its first and last
columns given a fixed colouring. Let G1,m be a 2×m grid with the first (or equivalently,
the last) column given a fixed colouring, let G2,m be a 2 × m grid with both first and
last columns fixed, and let Φi,m be the conductance of Gi,m. We define G0,m to be the
2 × m grid with no vertices having a fixed colouring; thus M ≡ G0,n.

Each of the restricted state spaces Ωi divides G into three grids of the form Gi,ν , i ∈
{1, 2}, ν ∈ {n/4, n/2}. The Wolff chain restricted to Ωi is the product of three chains
on those smaller grids: at each step, the Wolff process picks one of the grids, with
probability proportional to its length, and runs the Wolff process for one step on the
state space restricted to that grid. By Lemma 21, stated and proven below,

Φj,n ≥ min
i∈{1,2}

ν∈{n/4,n/2}

{ν

n
Φi,ν

}

j = 0, 1, 2.

Thus by Lemma 20,

Φ ≥ mini,j∈{1,2}{1
4
Φi,n/4,

1
2
Φj,n/2}(ΦH)2S

6m3∆2
. (37)

Applying Lemma 20 recursively to (37), we get

Φw ≥ (ΦH)2 log n · cw

n18
,

where cw is the conductance of a restricted Wolff chain on a constant sized (say, 2×100)
grid. This establishes Theorem 19.
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The Swendsen-Wang chain restricted to Ωi is also a product of three smaller chains, in
a different sense of product: Each step of the Swendsen-Wang chain on Ωi is equivalent
to running the Swendsen-Wang process for one step independently on all three smaller
grids. In this case we cannot prove a product theorem in terms of Φ. Instead we use a
quantity Φ̂ introduced by Mark Jerrum, and reprove the Madras-Randall theorem for Φ̂
(Lemma 23). Define

Φ̂ = min
∅6=A,B⊂Ω

Q(A,B) + Q(A,B)

π(A)π(A) + π(B)π(B)
.

By (twice applying) a theorem of Jerrum, also stated and proven below (Lemma 22),
we get (in an extension of previous notation),

Φ̂j,n ≥ 1

4
min

i∈{1,2}
ν∈{n/4,n/2}

{Φ̂i,ν} j = 0, 1, 2.

Then by Lemma 23 (below),

Φ̂ ≥
b
4

min i∈{1,2}
ℓ∈{n/4,n/2}

{Φ̂i,ℓ}(ΦH)2S

6m3∆2
,

where
b = min

i∈[m]
x∈Ωi

P (x, Ωi).

In our application we have b bounded below by an absolute constant, for example in the
2 × n case with Q colours we have b ≥ Q−4.

Applying Lemma 23 recursively, we get

Φ̂s ≥
(ΦH)2 log n · cs

n18
,

where cs is Φ̂ of a restricted Swendsen-Wang chain on a constant sized (say, 2×100) grid.
We can now bound Φs in terms of Φ̂. Let A ⊂ Ω be the set such that Φs = Q(A, Ā)/π(A).
Then

Φs =
Q(A, Ā)

π(A)
=

Q(A, Ā) + Q(Ā, A)

2π(A)π(Ā)
≥ Φ̂.

This establishes Theorem 18.

If we were working with an a × · · · × a × n grid and k colors we define our restricted
spaces by fixing the colourings for all vertices with last component in n/4, n/2, 3n/4.
The number of restricted state spaces, would increase to 3k2ad−1

, (d being the dimension
of the grid) with a corresponding increase of log(3k2ad−1

)− log(48) in the exponent of n
in Theorems 18 and 19. Everything else being essentially the same.
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5.1 Product Theorems.

The product theorem we use for the Wolff process is a minor modification of a theorem
of Houdré and Tetali [12]. Our proof is essentially the same as theirs, but we include it
for completeness. Let M1,M2, . . . ,Mn be reversible, ergodic Markov chains with state
spaces Ωi, transition probabilitities Pi, and stationary distributions πi. Let 0 < pi < 1,
and

∑

i pi = 1 We define the product chain M to be the chain with state space Ω =
Ω1×Ω2×· · ·×Ωn, and transition probabilities P given by the following procedure: at each
step, pick one of the chains M1,M2, . . . ,Mn at random, picking Mi with probability pi,
and run the chosen chain according to its own transition probabilities for one step. Then
π(x1, x2, . . . , xn) =

∏

i πi(xi). (In the original version of Houdré and Tetali, pi = 1/n for
all i. )

Lemma 21 (Houdré-Tetali)

ΦM ≥ min
i

piΦi.

Proof We prove the lemma for the case n = 2. A straightforward induction on n
proves the general case. Define

Φ̃ = min
∅6=A⊂

6=
Ω

∑

x∈A

∑

y/∈A Q(x, y)

2π(A)π(Ā)
.

Let C = min{p1Φ̃1, p2Φ̃2}. Let A ⊂ Ω. For all x1 ∈ Ω1, define A(x1) = {x2 ∈
Ω2|(x1, x2) ∈ A}, and for all x2 ∈ Ω2, define A(x2) = {x1 ∈ Ω1|(x1, x2) ∈ A}. Then we
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have
∑

x∈A
y∈Ā

Q(x, y) =
∑

(x1,x2)∈A,
(y1,y2)/∈A

P ((x1, x2), (y1, y2))π(x1, x2)

=
∑

x2∈Ω2

π2(x2)
∑

x1∈A(x2)
y1 /∈A(x2)

p1Q1(x1, y1) +
∑

x1∈Ω1

π1(x1)
∑

x2∈A(x1)
y2 /∈A(x1)

p2Q2(x2, y2)

≥
∑

x2∈Ω2

π2(x2)(p1Φ̃1) · 2π1(A(x2))π1(Ā(x2))

+
∑

x1∈Ω1

π1(x1)(p2Φ̃2) · 2π2(A(x1))π2(Ā(x1))

≥ 2C
[

∑

x2∈Ω2

π2(x2)
∑

x1∈A(x2)

π1(x1)
∑

y1 /∈A(x2)

π1(y1)

+
∑

x1∈Ω1

π1(x1)
∑

x2∈A(x1)

π2(x2)
∑

y2 /∈A(x1)

π2(y2)
]

= 2C
∑

x1,y1∈Ω1
x2,y2∈Ω2

π1(x1)π1(y1)π2(x2)π2(y2)[1 (x1,x2)∈A
(y1,x2)/∈A

+ 1 (x1,x2)∈A
(x1,y2)/∈A

]

=
C

2

∑

x1,y1∈Ω1
x2,y2∈Ω2

π1(x1)π1(y1)π2(x2)π2(y2)

[

1 (x1,x2)∈A
(y1,x2)/∈A

+ 1 (x1,x2)∈A
(x1,y2)/∈A

+ 1 (y1,x2)∈A
(x1,x2)/∈A

+ 1 (y1,x2)∈A
(y1,y2)/∈A

+ 1 (x1,y2)∈A
(y1,y2)/∈A

+ 1 (x1,y2)∈A
(x1,x2)/∈A

+ 1 (y1,y2)∈A
(x1,y2)/∈A

+ 1 (y1,y2)∈A
(y1,x2)/∈A

]

=
C

2

∑

x1,y1∈Ω1

x2, y2 ∈ Ω2π1(x1)π1(y1)π2(x2)π2(y2)

[(

1 (x1,x2)∈A
(x1,y2)/∈A

+ 1 (x1,y2)∈A
(y1,y2)/∈A

)

+

(

1 (x1,y2)∈A
(x1,x2)/∈A

+ 1 (x1,x2)∈A
(y1,x2)/∈A

)

+

(

1 (y1,x2)∈A
(y1,y2)/∈A

+ 1 (y1,y2)∈A
(x1,y2)/∈A

)

+

(

1(y1,y2)∈A(y1,x2)/∈A + 1 (y1,x2)∈A
(x1,x2)/∈A

)

]

≥ 2Cπ(A)π(Ā),

where 1X is the characteristic function for the set X. The last inequality follows from
the fact that since exactly one of (x1, y2) /∈ A, (x1, y2) ∈ A holds, we have

π(A)π(Ā) =
∑

x1,y1∈Ω1
x2,y2∈Ω2

π1(x1)π1(y1)π2(x2)π2(y2)

[

1 (x1,x2)∈A
(y1,y2)/∈A

]

≤
∑

x1,y1∈Ω1
x2,y2∈Ω2

π1(x1)π1(y1)π2(x2)π2(y2)

[

1 (x1,x2)∈A
(x1,y2)/∈A

+ 1 (x1,y2)∈A
(y1,y2)/∈A

]

,

and similarly for (x1, x2), (y1, y2), and (y1, x2).
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Thus we have ΦM ≥ Φ̃M ≥ min{p1Φ1, p2Φ2}. 2

For the Swendsen-Wang product chains, we use a theorem of Jerrum [14]. We state
and prove it for the product of two chains, but a generalization to n chains is again
straightforward by induction on n.

Let X and Y be two ergodic, reversible Markov chains with state spaces ΩX , ΩY ,
transition probabilities PX , PY , and stationary distributions πX , πY , respectively. Let
M = (X,Y ) be the product of X and Y , in the sense that at each step of M both X and Y
are run one step according to their own transition probabilities. Thus P ((x, y), (x′, y′)) =
PX(x, x′)PY (y, y′). Let Ω = ΩX ×ΩY be the state space of M . The stationary distribu-
tion of M is π = πX × πY . Define

Φ̂ = min
∅6=A,B⊂Ω

Q(A,B) + Q(A,B)

π(A)π(A) + π(B)π(B)
.

Lemma 22 (Jerrum)

Φ̂ ≥ 1

2
min{Φ̂X , Φ̂Y }.

Proof. For any set S ⊂ Ω let Sx = {y ∈ ΩY : (x, y) ∈ S}. Then

Q(A,B) + Q(A,B) =
∑

x,x′∈ΩX

QX(x, x′)
[

QY (Ax, Bx′) + QY (Ax, Bx′)
]

≥
∑

x,x′∈ΩX

QX(x, x′)Φ̂Y

[

πY (Ax)πY (Ax) + πY (Bx′)πY (Bx′)
]

= Φ̂Y

∑

x,x′∈ΩX

πX(x)PX(x, x′)
∑

y,y′∈Ω

πY (y)πY (y′)
(

1 (x,y)∈A

(x,y′)/∈A

+ 1 (x′,y)∈B

(x′,y′)/∈B

)

= Φ̂Y

∑

x∈ΩX

πX(x)
∑

y,y′∈Ω

πY (y)πY (y′)

(

1 (x,y)∈A

(x,y′)/∈A

+ 1 (x,y)∈B

(x,y′)/∈B

)

The last equation uses the reversibility of X. Similarly,

Q(A,B) + Q(A,B) ≥ Φ̂X

∑

y∈ΩY

πY (y)
∑

x,x′∈Ω

πX(x)πX(x′)

(

1 (x,y)∈A

(x′,y)/∈A

+ 1 (x,y)∈B

(x′,y)/∈B

)

.

Thus

Φ̂ ≥
1
2

min{Φ̂X , Φ̂Y }
π(A)π(A) + π(B)π(B)

(

∑

x∈ΩX

πX(x)
∑

y,y′∈ΩY

πY (y)πY (y′)
(

1 (x,y)∈A

(x,y′)/∈A

+ 1 (x,y)∈B

(x,y′)/∈B

)

+
∑

y∈ΩY

πY (y)
∑

x,x′∈ΩX

πX(x)πX(x′)
(

1 (x,y)∈A

(x′,y)/∈A

+ 1 (x,y)∈B

(x′,y)/∈B

)

)

.
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Thus Φ̂ ≥ 1
2

min{Φ̂X , Φ̂Y } if

π(A)π(A) ≤
∑

x∈ΩX

πX(x)
∑

y,y′∈ΩY

πY (y)πY (y′)1 (x,y)∈A

(x,y′)/∈A

+
∑

y∈ΩY

πY (y)
∑

x,x′∈ΩX

πX(x)πX(x′)1 (x,y)∈A

(x′,y)/∈A

(38)

and

π(B)π(B) ≤
∑

x∈ΩX

πX(x)
∑

y,y′∈ΩY

πY (y)πY (y′)1 (x,y)∈B

(x,y′)/∈B

+
∑

y∈ΩY

πY (y)
∑

x,x′∈ΩX

πX(x)πX(x′)1 (x,y)∈B

(x′,y)/∈B

(39)

We prove (38); the proof of (39) is identical.

For the left hand side,

π(A)π(A) =
∑

(x,y),(x′,y′)∈Ω

πX(x)πY (y)πX(x′)πY (y′) · 1 (x,y)∈A

(x′,y′)/∈A

=
1

4

∑

x,x′∈ΩXy,y′∈ΩY

πX(x)πX(x′)πY (y)πY (y′)
(

1 (x,y)∈A

(x′,y′)/∈A

+ 1 (x′,y)∈A

(x,y′)/∈A

+ 1 (x,y′)∈A

(x′,y)/∈A

+ 1 (x′,y′)∈A
(x,y)/∈A

)

For the right hand side,
∑

x∈ΩX

πX(x)
∑

y,y′∈ΩY

πY (y)πY (y′)1 (x,y)∈A

(x,y′)/∈A

+
∑

y∈ΩY

πY (y)
∑

x,x′∈ΩX

πX(x)πX(x′)1 (x,y)∈A

(x′,y)/∈A

=
∑

(x,y)∈Ω

(x′,y′)∈Ω

πX(x)πY (y)πX(x′)πY (y′) · 1(x,y)∈A

(

1(x,y′)/∈A + 1(x′,y)/∈A

)

=
1

4

∑

(x,y)∈Ω

(x′,y′)∈Ω

πX(x)πY (y)πX(x′)πY (y′) ·

(

1(x,y)∈A

(

1(x,y′)/∈A + 1(x′,y)/∈A

)

+ 1(x′,y)∈A

(

1(x′,y′)/∈A + 1(x,y)/∈A

)

+ 1(x,y′)∈A

(

1(x,y)/∈A + 1(x′,y′)/∈A

)

+ 1(x′,y′)∈A

(

1(x′,y)/∈A + 1(x,y′)/∈A

)

)

Setting α = 1(x,y)∈A, β = 1(x,y′)∈A, γ = 1(x′,y)∈A, and δ = 1(x′,y′)∈A, the right hand side
minus the left hand side is

1

4

∑

(x,y),(x′,y′)∈Ω

πX(x)πY (y)πX(x′)πY (y′)(α + δ − β − γ)2 ≥ 0.

2

31



5.2 The Madras-Randall Theorem for Φ̂.

Lemma 23

Φ̂ ≥ bΦ̂min(ΦH)2S

6m3∆2
.

Proof We follow the proof in [17] (correcting a small error). For any S ⊂ Ω,

define Si = S ∩ Ωi, S̄i = S̄ ∩ Ωi. Let πi(Si) = π(Si)
π(Ωi)

. Let A,B ⊂ Ω be sets such

that Φ̂ = Q(A,B̄)+Q(Ā,B)

π(A)π(Ā)+π(B)π(B̄)
. Assume without loss of generality that π(A) ≤ π(Ā) and

π(A)π(Ā) ≥ π(B)π(B̄), and let I be such that π(AI) = maxi π(Ai). For any i,

Q(A, B̄) + Q(Ā, B) ≥ b(Q(Ai, B̄i) + Q(Āi, Bi))

= bπ(Ωi)
(

Qi(Ai, B̄i) + Qi(Āi, Bi)
)

(40)

where for X,Y ⊆ Ωi, Qi(X,Y ) = πi(X)Pi(X,Y ).

Case 1. Assume that π(AI) ≤ 1
2
π(ΩI). Then

π(A)π(Ā) + π(B)π(B̄) ≤ 2π(A)π(Ā)

= 2π(A) · π(Ā)

π(ΩI)
· π(ΩI)

π(ĀI)
· π(ĀI)

≤ 4π(A)π(ĀI)

π(ΩI)

≤ 4m · π(AI)π(ĀI)

π(ΩI)

≤ 4m

π(ΩI)

(

π(AI)π(ĀI) + π(BI)π(B̄I)
)

= 4m · π(ΩI)
(

πI(AI)πI(ĀI) + πI(BI)πI(B̄I)
)

(41)

From (40) and (41), we get

Φ̂ ≥ Φ̂I

4m
≥ Φ̂min

4m
. (42)

Case 2. Assume that 1
2
≤ π(AI)

π(ΩI)
≤ 1 − ǫ, where

ǫ =
ΦHS

2m∆2
≤ ∆

4S

S

2m∆2
=

1

8m∆
≤ 1

3
. (43)

Then

π(A) ≤ mπ(AI) ≤ mπ(ΩI) ≤ mπ(ĀI)

ǫ
.

32



Thus

π(A)π(Ā) + π(B)π(B̄) ≤ 2π(A)π(Ā)

≤ 2mπ(ĀI)

ǫ

π(Ā)

π(ΩI)
π(ΩI)

≤ 2mπ(ĀI)

ǫ

1

π(ΩI)
2π(AI)

≤ 4m

ǫπ(ΩI)

(

π(AI)π(ĀI) + π(BI)π(B̄I)
)

=
4mπ(ΩI)

ǫ

(

πI(AI)πI(ĀI) + πI(BI)πI(B̄I)
)

(44)

From (40) and (44) we get

Φ̂ ≥ ǫΦ̂I

4m
≥ Φ̂minΦHS

8m∆2
(45)

Case 3. Assume that π(AI)
π(ΩI)

≥ 1 − ǫ. Let T ⊂ {1, . . . ,m} be such that i ∈ T iff

πi(Ai) ≥ 1 − ǫ.

(a): T 6= {1, 2, . . . ,m}.
Let J be such that J ∈ T̄ (i.e., πJ(ĀJ) > ǫ) and πJ(ĀJ) is maximal.

Our main task is to prove

π(A) ≤ 3m2∆π(AJ)

ΦHS
(46)

π(Ā) ≤ π(ĀJ)

ǫπ(ΩJ)
(47)

From which we get

π(A)π(Ā) + π(B)π(B̄)

≤ 2π(A)π(Ā)

≤ 6m2∆

ǫΦHS

1

π(ΩJ)
π(AJ)π(ĀJ)

≤ 6m2∆

ǫΦHS
π(ΩJ)πJ(AJ)πJ(ĀJ)

≤ 6m2∆

ǫΦHS
π(ΩJ)

(

πJ(AJ)πJ(ĀJ) + πJ(BJ)πJ(B̄J)
)

(48)

Thus by (48) and (40), we have

Φ̂ ≥ ǫΦ̂JΦHS

6m2∆

≥ Φ̂min(ΦH)2S2

6m3∆2
(49)
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It remains to deal with (46) and (47). Now (47) follows from πJ(ĀJ) ≥ ǫ i.e.

π(Ā) = π(ĀJ)
π(Ā)

π(ΩJ)

π(ΩJ)

π(ĀJ)
≤ π(ĀJ)

ǫπ(ΩJ)

Equation (46) requires more work. We bound Q(T, T̄ ), ρ(T ), ρ(T̄ ) to get an upper bound
on ΦH .

By definition, we have

Q(T, T̄ ) =
∑

i∈T
j /∈T

ρ(i)PH(i, j)

=
∑

i∈T
j∈T̄

π(Ωi)

S

π(Ωi ∩ Ωj)

∆π(Ωi)

=
∑

i∈T
j /∈T

π(Ωi ∩ Ωj)

∆S

=
∑

i∈T
j /∈T

π(Ωi ∩ Ωj ∩ Ā) + π(Ωi ∩ Ωj ∩ A)

∆S

≤
∆
∑

i∈T π(Āi) + ∆
∑

j∈T̄ π(Aj)

∆S

≤
ǫ
∑

i∈T π(Ωi) +
∑

j∈T̄ π(Aj)

S

≤
ǫ

1−ǫ
∆π(A) +

∑

j∈T̄ π(Aj)

S

≤
4
3
ǫ∆π(A) + mπ(AJ)

S
(50)

We next bound ρ(T ) and ρ(T̄ ) from below.

π(A) ≤ mπ(AI) ≤ m∆ρ(I) ≤ m∆ρ(T ), (51)

since I ∈ T .
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For ρ(T̄ ), we have

ρ(T̄ ) =
∑

j∈T̄

π(Ωj)

S

≥
∑

j∈T̄

π(Āi)

S

≥ π(Ā) −∑i∈T π(Āi)

S

≥
π(Ā) − ǫ

1−ǫ

∑

i∈T π(Ai)

S

≥
π(Ā) − ǫ

1−ǫ
∆π(A)

S

≥ π(Ā) − 4
3
ǫ∆π(A)

S

≥ π(A)(1 − 4
3
ǫ∆)

S

≥ π(A)

2S
(52)

Now by (43), (50),(51) and (52),

ΦH ≤ Q(T, T̄ )

min{ρ(T ), ρ(T̄ )}

≤
4
3
ǫ∆π(A) + mπ(AJ)

S

m∆

π(A)

=
4
3
ǫ∆2π(A)m

Sπ(A)
+

m2∆π(AJ)

Sπ(A)

≤ 2

3
ΦH +

m2∆π(AJ)

Sπ(A)
. (53)

Equation (46) follows immediately.

(b): T = {1, 2, . . . ,m}.
Let π(ĀK) = maxi π(Āi). Then we have

1

2
≥ π(Ai) ≥ (1 − ǫ)π(Ωi) i ∈ {1, 2, . . . ,m}

and so

π(Ai) ≤
1

2(1 − ǫ)
πi(Ai) i ∈ {1, 2, . . . ,m}.
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Therefore

π(A)π(Ā) + π(B)π(B̄)

≤ 2π(A)π(Ā)

≤ 2

(

m
∑

i=1

π(Ai)

)(

m
∑

i=1

π(Āi)

)

≤ 2

(

1

2(1 − ǫ)
(

m
∑

i=1

πi(Ai)

)

mπ(ĀK)

≤ m2

(1 − ǫ)2
πK(AK)π(ĀK)

≤ m2

(1 − ǫ)2
π(ΩK)(πK(AK)π(ĀK) + πK(BK)π(B̄K)).

So from (40)

Φ̂ ≥ bm2

(1 − ǫ)2
Φ̂min.

Putting together Cases 1-3, by (42), (45), and (49), we have

Φ̂ ≥ bΦ̂min(ΦH)2S

6m3∆2
.

2
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