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Abstract

We consider the mixing properties of the widely used Swendsen-Wang process
for the Markov chain Monte Carlo estimation of the partition function of the
ferromagnetic ()-state Potts model, for certain classes of graphs.

In the paper The Swendsen-Wang process does not always miz rapidly, V.
Gore and M. Jerrum obtain results for the mixing properties of the Swendsen-
Wang process on the complete graph K,,. Our main results for graphs with n
vertices are:

e For graphs with small maximum degree, the mixing time is polynomial in n
for small enough values of the coupling constant .

e For trees the mixing time is O(n), for any 3.
e For cycles the mixing time is O(nlogn), for any 3.

e For random graphs G, ,, p = Q(n~'/3) there are values of the coupling
constant 3 for which whp the Swendsen-Wang process does not mix rapidly.

1 Introduction

We consider the mixing properties of the Swendsen-Wang process for the Markov chain
Monte Carlo estimation of the partition function of the ferromagnetic Q)-state Potts
model, for general classes of graphs.
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The motivation for this work is the paper The Swendsen-Wang process does not always
miz rapidly, by V. K. Gore and M. R. Jerrum [GJ]. These authors obtain negative results
for the mixing properties of the Swendsen-Wang process on the complete graph on n
vertices (the Curie-Weiss model) for certain values of the coupling constant § (defined
below). For values of § for which the model exhibits the properties of a phase transition
the mixing rate is not rapid, but rather requires exp{€(y/n)} steps to move between the
two most probable classes of states on the phase boundary.

Our interest here is to provide further analysis of the mixing properties of the Swendsen-
Wang process for arbitrary classes of graphs. We extend the negative results of [GJ] to
the random graph G, ,. More importantly, we prove rapid mixing of the Swendsen-
Wang process for trees, cycles and for graphs of low maximum degree when the coupling
constant is small.

Let us summarize what is known, or can be shown for graphs with n vertices:

(a) For graphs of small maximum degree, the mixing time is polynomial in n for small
enough values of the coupling constant (3.

(b) For trees the mixing time is O(n), for any 3.
(c) For cycles the mixing time is O(nlogn), for any (.

(d) For the complete graph K, with @ > 3, there are critical values of the coupling
constant 3 for which the Swendsen-Wang process does not mix rapidly.

(e) For random graphs G,,, p = Q(n~'/%) there are critical values of the coupling
constant 3 for which whp' the Swendsen-Wang process does not mix rapidly.

In the fourth and fifth cases above it has not been proven that the Swendsen-Wang
process is rapidly mixing for non-critical values of S.

For many applications in physics, the graphs of interest have low maximum degree. They
are often grid-like structures, intended to correspond to crystal lattices.

Huber [H] has results similar to (a) and (b) above. He is able to produce ezact samples
in polynomial time. Li and Sokal [LS] prove a lower bound on the mixing rate in terms
of specific heat. It yields a mixing time of order L¢ at criticality on a d-dimensional
lattice of side L. Ray, Tamayo and Klein [RTK] give a heuristic argument for rapid
mixing on the complete graph.

'With probability — 1 as n — oo.



2 Models

We introduce the @-State Potts Model (see [B],[P]) on an arbitrary graph G = (V, E),
|V| = n as follows. Let U = (V4, V4, ..., V) be an ordered partition of (possibly empty)
disjoint subsets of V', whose union is V. This defines a configuration o = (o4, ...,05)
where o0 = o(U). If v; € V}, the vertex v; is assigned colour o; = j. In the notation
of the )-state Potts model, a vertex is a site and a colour is a spin. The type of o
is t(o) = (|Vil,|Val, ---, [Vigl), the sizes of the colour classes. If an edge lies completely
within a colour class it is referred to as a bond. The components induced by the (bond)
edges within the colour classes are referred to as clusters.

Let D(o) denote the set of edges between colour classes and d(o) = |D(o)|. The
measure of configuration o is given by

wo) =e P19,

The constant 3 is called the coupling’® constant. We assume (3 is positive, which is
the ferromagnetic model. The bond edges make no contribution to the measure of the
configuration in the ferromagnetic model.

The set 2 of all configurations o is [Q]". However the measure assigned to configurations
is far from uniform. The total measure of 2 on G is denoted by Z(G) and is given by

Z(G) = Y e #4O),

gcQ

The quantity Z(G) is known as the partition function of the Q-state ferromagnetic Potts
model on the graph G. The probability that the system is in state o is given by

Z(G)

Pr(o) =

In order to assign the probabilities, in any specific instance, it is necessary to compute
the partition function Z(G). If the estimation of Z(G) is carried out using Markov chain
Monte Carlo methods (see [JS]), the simplest approach is to move between configurations
altering one spin at a time, using a Metropolis rule. This Metropolis process is not known
to converge rapidly in the ferromagnetic model and only known to converge rapidly in
the anti-ferromagnetic model for G if

Q>2A(1-e"),

where A is the maximum degree of G ([D]). An alternative method, the Swendsen-Wang
process [SW] is often applied in practical situations.

2 An unfortunate ambiguity, with no relation to the coupling of Markov chains
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Swendsen-Wang process.

(i) Let B = E — D(o) be the set of bond edges induced within the colour classes
(Vi,...,Vg) of o. Delete each edge of B independently with probability 1 — p,
where p = 1 — e7?. This gives subset A of B.

(ii) The graph (V, A) consists of connected components. For each component a colour
(spin) is chosen uniformly at random from [@] and all vertices within the compo-
nent are assigned that colour (spin).

O

The applicability of the Swendsen-Wang process as an algorithm, depends on the equiv-
alence under certain conditions of the ()-state Potts model and the Random Cluster
model of Fortuin and Kasteleyn [FK]|, which we now describe.

Given a graph G = (V, E), let G(A) = (V, A) denote the subgraph of G induced by the
edge set A C E. In the Random Cluster model, the set A is regarded as the bond edges,
and G(A) is given measure

p(G(A)) = pHi(1 — p)lP= Q)
where ¢(A) is the number of components of G(A) and p is a probability.

The relationship between the two models is nicely brought out in a paper by Edwards
and Sokal [ES]. The Potts and Random Cluster models are defined on a joint probability
space [Q]" x 2Z. The joint probability 7(o, A) is defined by

1
(o, A) = 7 II (1 —p)dijga + P 0 jycads=s,)),
(3,9)EE

where Z is a normalizing constant. By summing over o or A we see that the marginal
distributions are correct and (remarkably) the normalising constants in both Potts and
Cluster models, are the value of Z given in the expression above.

The Swendsen-Wang process can be seen as given o, (i) choose a random A’ according
to (o, A’) and then (ii) choose a random o' according to w(o’, A").

3 Mixing Time

Let M be an ergodic Markov chain on a finite state space (2, with transition probabilities
P(z,y), z,y € Q. For w € Q, let m(w) denote the stationary probability of w under M.



The variation distance A(mq, ) between two distributions 71, 72 on 2 is defined by

A(m,mz) = max |m(S) = m(S)| =5 D Im(w) - ma(w)].

weN

Let z € Q be an arbitrary fixed state, and denote by P, ,(w) the probability that the
system is in state w at time ¢ given that x is the initial state. The variation distance at
time t with respect to the initial state z is then defined as

Ault) = APy, 7).
We define the function d(t) = max,cq A,(t) and the mizing time
7 =min{t: d(t) <e '}
A property of d(t) given in [AF] is that
d(s +t) < 2d(s)d(t).

For our purposes, the Swendsen-Wang process is rapidly mizing, if its mixing time 75y =
Tsw (G, B) is bounded by a polynomial in n, the number of vertices of G.

3.1 Coupling

We prove our positive results by coupling arguments. In a coupling we have two copies
(X3,Y:), t=1,2,..., of the chain M defined jointly but not necessarily independently
on 2 x ). The relationship between the chains ensures that if ever X; = Y; then X, =Y
for all s > t. Coupling is a method for proving convergence in distribution. This follows
because

A(Pt,zx’ Pt,zy) S Pr(Xt 7£ Y;) (1)

where zx, zy are the initial states of (X;), (Y;) respectively.

Thus it suffices to find a coupling where Pr(X; # Y;) < e~! in a polynomial number
of steps. Bubley and Dyer [BD| have recently introduced the notion of path coupling, a
simple yet powerful idea which greatly reduces the difficulty in the design and analysis
of good couplings. We use the basic version where (2 = S™ for some set S and positive
integer m. Specifically, in Section 5 we take S = @ and m = |V| so that Q is the set of
Potts configurations. We do not use path-coupling for the case of trees or cycles.

For z,y € Q we define their Hamming distance h(z,y) = |[{j : z; # y;}|, so that
Pr(X; #Y;) < E(h(X;,Y;)). Now suppose we define a coupling of the chains (X3, Y;)
only for the case where h(X,Y;) = 1. Suppose then that

E(h(Xi:1, Y1) < 1—a
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whenever h(X;,Y;) = 1. Then Theorem 1 of [BD] yields a coupling where
E(h(Xi11,Y141)) < (1 — a)h(X, YY), (2)

in all cases. If a is not too small, then this gives rapid mixing. Indeed the mixing time
is O(a'log N) where N = |Q].

Equation (2) is shown by choosing an arbitrary sequence X; = Zy, Z1,...,Zp =Y, h =
h(X:,Y:). Then Xy 1 = Z§, Z1, ..., Z;, = Y;41 can then be defined so that the transfor-
mation Z; — Z! has transition matrix P and E(h(Z!_;,Z!)) <1—a.

1—1r <4

4 Applying the Swendsen-Wang Algorithm to low
degree graphs

In this section we prove the following theorem:

Theorem 1 Let G be a graph with mazimum degree A = O(1). Then there exists

po = po(A) such that if p=1—e"?, and p < py then the Swendsen- Wang process mizes
rapidly for all Q.

The first few values of py are given in the table below:

Al 2 3 4 5 6 7
po | 0.416 0.209 0.136 0.100 0.079 0.065

We apply a coupling argument. Let X,Y denote the pair of chains on G that are to be
coupled, and X;(v), Y;(v) denote the colour of vertex v in the two chains. We let

Si={veV: Xi(v) =Y(v)}

and
Dt - V \ St.

Following the path coupling idea of [BD], we can assume that |D;| = 1 and D; = {v;}.
We define a coupling such that

E(|Di1]) <1 - €(p), (3)

for some €(p) which is positive for 0 < p < po. This implies Theorem 1.

An iteration of the Swendsen-Wang process has two separate stages; Bond Breaking and
Component Colouring. We couple X,Y using the algorithm given below.
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Algorithm Coupled Components
Bond Breaking.

Let G(X;) (resp. G(Y:)) denote the subgraph of G induced by the bond edges of the
colouring X; (resp. Yz).

(a) If an edge e C S; is a bond, then it occurs in both G(X;) and G(Y;). We keep e in
both graphs with probability p = 1 — e™® and delete it in both with probability 1 — p.

(b) Any edge e = (v, w) of G, is a bond in at most one of the graphs G(X;), G(Y;) . We
keep e with probability p in that graph.

Let X,, Y, denote the chains at the end of the Bond Breaking phase. Let G(X),G(Y)
be the subgraphs of G induced by the retained bonds.

Component Colouring.

Let H be the subgraph of G(X) (and G( y )) induced by S;. If C is a component of H
which is not adjacent to v; in G(X) or G(Y'), then give C the same random colour in
Xt+1 and Y't—}—l-

Suppose that v; is adjacent to components C1, Cy, ..., C, of H in G(X' ) and to compo-
nents Dy, D,,...,Ds in G(Y'). Note that UC; and U D; are disjoint, otherwise v; would
have the same colour in both X; and Y;.

Casel r=s=0.
Give v; the same random colour in X ,Y;,1.

Case 2

i)y r=1,5s=0.
Give C; the same random colour ¢ in X;,1,Y;+1. Give v; colour c in X;,; and
a random colour in Y;;4.

ii) r=0,s =1.
Give D; the same random colour ¢ in X, Y;1. Give v; colour cin Y;,; and
a random colour in X;,;.

Case 3 r=1,s=1.
Give (' random colour ¢, and D; random colour d in X;,; and Y;;;. The vertex
vy inherits its colour from C; in X;,; and from D; in Y;,;.

Case4 r>2o0r s> 2.
Let B be the largest component of Ci,...,C,, Dy,---, Ds. Give B the same ran-
dom colour ¢ in both X;,1,Y;.1. Any component of G(X) or G(Y) not inheriting
this colour c is coloured randomly.



O

Next let p; denote the probability of Case (i), (1 < ¢ < 4) and let §4 be the indicator
for Case 4. Given the Bond Breaking rules of the Algorithm, an edge e of G(X)UG(Y)
appears independently in T' = G(X) U G(Y) with probability p. Hence p; > (1 — p)~.

We note that in Cases 2,3,4, the vertex v; has the same colour in both X; ,Y;; with
probability 1/Q. In Case 4, vertices of ((C1U---UC,UD;U---U D,) — B) may have
different colours in X;;1,Y;+1. Thus

E(h(Xe11,Yi | X0, V1)) < (1 — Q1) (p2 + ps + pa) + E(1), (4)
where vy, < 04 (04 |G| + 25, | Di| — |B)).

We now consider E(v;). Indeed, if 6, = 1 let Z + 1 be the size of the largest tree that
contains v; in I, where v, + |B| = Z and |B| > Z/A. Let 6; be the indicator that I" has
a tree of size i in which v; has degree at least 2. So Z = (203) + 0, + -+ + 0 + - --. Let
aj, be the number of such k vertex trees in I" which contain v,.

In an ordered (rooted, plane-embedded) tree the (possibly empty) subtrees of a vertex
of out-degree (at most) d form a d-tuple (T, ...,Ty;). Because, in a labelled graph, the
neighbours of a vertex can be ordered by vertex label, every v;-rooted tree in I' can be
represented as an ordered tree.

Let a; be the number of rooted ordered k vertex trees of root degree at least 2 and
at most A, and offspring out-degree at most A — 1, then a}, < a;. Now E(Z) =

E(03) + Yx>3 E(0x), where E(0;) = ajp* ! < app® ! and E(6;) < (g)pz. Let W(p) =
> k>3 axp® . A crude upper bound for E(1;) is given by

B < 25 ()7 +we). ®)

Substituting (5) into (4) we obtain

B((Xior, Yoo | X Y0) < (1= @)1 - (1= 9 + 202 ()4 w0) . @

The symbolic recurrence to generate the required ordered trees is given by
R(z) = = ((T(2))* = (1 + A(T(z) - 1))

where
T(z) = 1+ 2(T(2))*

is the generating function for an ordered tree of out-degree at most A — 1, and W(z) =
R(z)/z. The equation for T'(z) says that an ordered tree is either empty (1) or has a root
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(z) and a (A — 1)-tuple of subtrees of the same type. The equation for R(z) requires a
root (z) and at least two non-empty trees of the type generated by T'(z) in the A-tuple
of subtrees.

The condition (3) means that provided the right hand side of (6) is less than 1, we can
couple XY in a polynomial number of steps. The values of py given in the table are

obtained by solving
A A
= (1= A> _ 2 _
(A—l( p) <2>p W(p)

numerically for 7'(p) and hence p. O

5 Applying the Swendsen-Wang Process to Trees

In this section we prove the following
Theorem 2 For an n-vertex tree T, the mizing time is O(n) for any § and Q.

The following algorithm implements a recursive version of the Swendsen-Wang process
on a tree 7T

Let T be a tree and x a vertex of degree one in T'. Let y be the neighbour of z in T
Let Ty =T — x. Let o be a colouring of 7', and let o7 denote the restriction of ¢ to 7;.

Algorithm Recursive
If |T| =1 then colour z randomly.

If |T| > 1 then

(i) Apply Algorithm Recursive to T} to replace o7 by of.

(ii) (a) If zy is not a bond in o, randomly colour z.

(b) If zy is a bond in ¢ then:
With probability p = 1 — e# give z the colour of y in o7.
With probability 1 — p give z a random colour.

Algorithm Recursive is equivalent to applying Swendsen-Wang process to o on 7.

We now describe a coupling argument which gives an expected collision time of at most
@n, where n is the number of vertices of T'.
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Let (X,Y’) denote the pair of chains to be coupled, where X = o(X), Y = o(Y) are
colourings of the vertices of 7.

If |T| = 1 give T the same random colour in both X and Y.

Inductively assume a coupling for trees with n — 1 vertices and apply it to (Xi,Y),
the restriction of (X,Y’) to T;. Assume that (X;,Y;) — (X1{,Y]) on an application of
Algorithm Recursive . We couple the colouring of z in (ii) above, as follows.

If zy is not a bond in both X and Y then give  the same random colour.

If xy is a bond in both X and Y then with probability 1 — p give x the same random
colour in both X', Y’. With probability p the colour of z is inherited from the respective
colours of y in X7,Y].

If zy is a bond in X but not in Y then with probability 1 — p give x the same random
colour in both X' Y’. With probability p let z inherit its colour from X] in X’ and be
random in Y’'. A similar argument applies if zy is a bond in Y but not in X.

Let Z,, be the time taken for the chains to converge.

Run them until X] = Y/. This time has distribution Z, ;. If we use Algorithm
Recursive, then X| and Y/ will stay together, and at each move of the above coupling
there is always probability at least 1/Q that x receives the same colour in both. Thus

E(Z,) <E(Z,1)+Q.
(From this we get

E(Z,)
Pr(X, #Y,)

Qn
o t/(eQn)

ININ

O

In actual fact there is no need to resort to Monte-Carlo methods to compute the partition
function in the case of trees, as it can be obtained directly by a simple recurrence.
Computing the partition function amounts to evaluating the Tutte polynomial at a point
dependent on § and @, see Welsh [W] for details. Although this is #P-hard in general,
it is polynomial time computable for series-parallel graphs (and hence trees), see Oxley
and Welsh [OW].

6 Swendsen-Wang process on cycles

In this section we prove the following theorem:
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Theorem 3 For an n-vertex cycle G, the mizing time is O(nlogn) for any B and Q.

We give a coupling argument with an expected coupling time of order n. Let (X,Y") be
the pair of chains to be coupled. We couple in the cluster model and so at the start of
each iteration we have uncoloured clusters.

We regard the cycle G as oriented clockwise, with edges ey, ea, ..., e, where e; = (4,i+1).
We first couple the chains so that they have the same number of clusters. Maintaining
this equality, we identically couple the structure induced by the vertices S = {1, 2, ..., s}
of the cycle. When S = [n] the chains X,Y have exactly the same cluster structure and
X=Y.

Let nx,ny be the number of non-bonds in X, Y respectively at the start of an iteration.
We assume nx > ny. We assume nyx > 1 else both chains are the cycle G. Let the
clusters in X be C} x,Csx...,Chy,x Where 1 € C} x and the clusters are in order
1,2,...,nx round the cycle. Let Ix = {i1,s,...,in,} be the indices of non-edges of
X. If nx > 2 then e;, lies between C; x and Cyyq1 x. Define Ciy,Coy ...,C,, vy and

Iy = {j1,J2,- -, Jny } similarly.

We will define our algorithm in terms of the following steps:

Step 1 In X give C; x the random colour ¢; for t =1,2,...,nx.
In Y give C;y the same colour ¢; for t =1,2,...,ny.

Let X , }A’Arefer to the chains after the colouring in Step 1. Then e;, became a new
bond in X iff e;, became a new bond in Y, for 1 < ¢ < ny — 1. Furthermore, this
true for ¢t = ny when nx = ny.

Let I be the indices of those e;,7? € Ix which remain non-bond edges in X. Let
I;|. Define Iy and ny similarly. Note that ng > ny.

an =

Let Jy ={i€Iz: e;isabondin Y} and J; = {i € I; : e; is a bond in X}.

Then J; N Jy = 0 and |J4| — |J3| = ng — ny. Let ¢ be a 1-1 map from Jy into

Jg.

Step 2 (a) For each edge e that is a bond in both X and Y, delete e in both chains

with probability 1 — p.

(b) For each edge e;, i € J;, delete e; from Y and eq(i) from X with probability
1—mp.

(c) For each edge e;, i € Jg \ ¢(Jy), € is a bond in ¥ and not a bond in X.
Delete e; from Y with probability 1 — p.

If S C [n] is a set of vertices of G, we denote the subgraph induced by S in the chain X
as Gx[S].
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Algorithm Cycle

C(i) If nx # ny then repeat Step 1, Step 2 until nx = ny;

C(ii) Let s = 1;
Repeat (Let s be the largest integer such that S = {1,...,s} satisfies Gx[S]| =
Gy|[S], Step 1, Step 2) until s = n;
Remark: At this point X =Y.

Proof of Theorem 3

Let X', Y’ denote the states after Step 2 and let nx:,ny: denote the numbers of non-
bond edges. We consider the performance of Algorithm Cycle. Let us index the chains as
Z;, t > 0, then assuming nx, > ny, it is a consequence of the algorithm that nx, > ny,
for all ¢ > 0.

Case C(i): nx > ny.

nx(1-—Q 1) nx>2

since each non-bond becomes a bond with probability 1 /@, and bonds are unaltered in
going from X to X. If nxy = 1 then both chains become the cycle G with the same
colour. Thus

0 nx = 1, Ny = 0
E(ng —ny | X,Y)=1{ nx(1-Q7") nx 22, ny <1
(nx—’ny)(l—Q_l) nx > ny > 2.

Finally
E(nx: —ny | X,Y) =pE(ng —ny | X,Y),

follows because (ng —ny) is the number of bond edges of ¥ indexed by i € Jg \ ¢(Jy).
Each such edge is retained at Step 2(c), with probability p. Let

Ay, = 6{nx, > 2, ny,=1|nx, ,, ny, .},
be the indicator variable for the described event. Let o = p(1 — Q~'), then
E(nx,, — v, | X, Yy) < al(nx, —ny,) + Ay). (7)
The relevant one step transition probability is

Pr(nYt+1 =1 | Ny, = V) - Qi(uié{VZI})npnil(l _p)'
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Setting p =1 —¢/n, (0 < c < n) we have
E(Ay, | Xi-1,Y1) S maxPr (ny, = 1| ny, , =v) <cp"".

Let m; = nx, — ny,. It follows from iterating (7) that

n—1
E(m;) < af(mo + Ay,) + alczi -
Let (1 Q‘l) .
_ - cp
M@ =1 30-0"

then \(Q,c) < e /9 for Q =2 and for c < 1/(Q — 1) or ¢ > Q — 1 when Q > 3.
Let 70 = min{t : m; = 0} and T' = [—2logn/log a|. We see that

2
Pr(mT Z 1 | mo,AYO) S E(mT) S E + )\,

irrespective of my, Ay, -

Let to = kT, where £ = logn. We may consider the coupling process for ¢ < ¢y as
a sequence of couplings Cy, CY,...,Ck_1, each of length 7". The initial state of C; is
(Xir, Yir) with initial values my = nx,, — ny,, and Ay = Ay,,.. Let mg, be the value of
mqg in C;, then

2 k
Pr(mTO > ].,’n’LT1 > 1,...,mTk > ]_) < (— —+ /\> ,
n
and

PI‘(TO > to) < 0(1)

What if 1/(Q — 1) < ¢ < @ — 17 We run the chains independently until nx = ny. For
the chain X,

_ _0-1
E(an|nX):{28_g+”XP(1 Q) Ziig,l

Thus after T'= [—2logn/log «] iterations,

E(’nx) S % + OltTLXO < CQ + 1.
-

The required one step transition probability is

Pr('n/Xt+1 =0 | nx, = I/) = Qf(uf‘s{yzl})pn’
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and thus

1
Pr(nXt+1 =0 | XO) =p" (Pr(nXt =0 | XO) +--- 4+ o1

PI'(’I’LXt :Z | X0)+) .
Let u = E(nx, | Xo) then provided ¢t > T,

Pr(nx,, =0|Xo) > p"Q MPr(ng, < u+1)

e—2c

(cQ +3)Q

= a

>

The second line above follows from the fact that if Z is a non-negative integer valued
random variable, and p = E(Z) then by the Markov inequality,

1
Pr(Z < +1)> ——.
@<l +12
As before, let tg = kT where k = logn. Let B; = (nx,,,, = 0| Xir)A(ny,,,, = 0| Yir)
then Pr(B; | Xir,Yir) > a? at the end of coupling C; of length T. Thus

Pr(ByABi A+ AByo) < (1—a?)f =o(1).

Case C(ii): nx = ny

If nxy = ny then ny = ny as the components get the same colours c;, ..., ¢, in both
X,Y. Moreover nx: = myr as Step 2 pairs up the edges e;, e4;) which are bonds in
exactly one of X, Y for breaking, so that both or neither are broken.

Let S ={1,...,s}. As Gx[S] = Gy|S] the chains have the same bond/non-bond struc-
ture on S. By the argument above, we have, that G;[S] = G;[S] and Gx[S] = Gy/[S].

As S is maximal with respect to Gx[S] = Gy[S] the edge e, = (s,s+ 1) differs in X, Y.
Let us assume e, is a bond in X and a non-bond in Y. The vertex s+ 1 will be added to
S at the next iteration if e, becomes a bond in Y at Step 1, or a non-bond in X at Step
2. The probability of this is § = 1 — p(1 — Q') at each iteration. As soon as this event
occurs, S increases up to S = {1,...,s,s+1,...,y}. Eithery =nore, = (y,y + 1) is
the next edge whose status in X and Y differs. If y = n, the edge (n,1) can only differ
if nx # ny, but this is impossible. Thus when S = [n] we have Gx[n] = Gy[n].

The waiting time for an enlargement of the set S is Geometric with expectation 1/4.
Let 71 = min{¢ : S = [n]}, then E(r1) < n/§. Let t; = nlogn/d, then

P >1;) < .
r(m 1) < logn
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Let t* = to + t1, then t* < 2nlogn/§ and

2
Pr( X, £Y) < .
r(Xe # t)_logn

The mixing time is bounded by t*. O

7 Swendsen-Wang process on the complete graph

Markov chain Monte Carlo simulations using the Swendsen-Wang process do not always
reach equilibrium rapidly. In the paper [GJ] Gore and Jerrum show that when @ > 3
there is a value of the constant 3, given by n8 = cg where

-1
o —5m@-1)

for which the Swendsen-Wang process does not mix rapidly on the complete graph K.

CQ:2

We next give a precise statement of the results of [GJ]. Let

R(Q) = {(n1,n2,-..,nQ) :n1 +na+--- +ng =n}
be the set of all ordered partitions of n. Thus |R| = ("5"3;1) = 0(n?1).
Let

ale) = {veR:d(v,s;) < ne}
ble) = {veR:d(v,m(s2)) < ne},

where d(z,y) is Euclidean distance in R. s; = n(Q !,...,Q ') and s, = n( (Q(Q —
1) 1., (QQ—-1)1(Q —1)/Q) and (s;) is any of the @ distinct vertices obtained
by permuting the entries of s;. Denote by Sz the set of configurations o € €2 which
arise from partition vectors in .

Theorem 4 (GJ) Let Q > 3. Consider a Q-state Potts system on the complete graph
K,.

(i) For any e >0
PI'(O' S Sa,(e)) = Q(n_(Q_l)),
Pr(o € Sb(e)) = Q(n=(@-1),
PI‘(G’ =4 Sa,(e) U Sb(e)) = e O,

15



(it) Let the coupling constant 3 = cq/n where

-1

co = 28 — In(Q —1).
Let € > 0 be sufficiently small. Starting from any configuration oo € Sq(.) the
expected time T, for the Swendsen- Wang process to reach a configuration o € Sb(e)
is eV,

Let us explain in outline, the basis of the proof of Gore and Jerrum. After an application

of the first part of the Swendsen-Wang process the graph induced by the colour class V;

is a random graph of type G,, ,, where |V;| = v; and p; = ¢ = %:/")

Configurations o starting in Sq () return a random graph with p; < Vl As aresult all the
components are small and whp the resulting configuration o’ remains in Sqg (). However
the largest colour class, say V;» returned by configurations starting in Sb( ) contains a

random graph with p;« > -~ containing a giant component, and the unbalanced colour
class sizes perpetuates.

8 Swendsen-Wang process on random graphs G, ,

We prove the following

Theorem 5 Letp > yn /3, v a sufficiently large constant, Q > 3, and let the coupling
constant 8 = cg/(np), where

Q-1
Q—2

cg =2 In(@Q — 1) < 0.925Q.
Let G € Gy, p, then whp
Tsw(G, B) = exp{Q(v/n)}.

Let G € G, p, and consider a fixed partition vector n = (nq,ns,...,ng) which gives rise
to N(n) = ( . ) distinct spin configurations o, and let {25 be the set of these

M1,M25.1Q

configurations. The measure Sn (G, ) of the set 0y is given by

an,—SnGﬂ Ze‘ﬂd

O'EQn

Note that Sp is a random variable dependent on G € G,,,. Let B = Bn(0Op) be the
measure of {2y on the complete graph K, with coupling constant Gp.

16



Lemma 6 Let o be constant, and let C = 3Q/a. Let B = cq/(np). If G € G, then
there exist values yr, vy given by

1 ac2Q
7L = 2TLC €xp 2p
2
7w = nexp {—Q}
4p
such that whp

Y2 Bn(8p) < Sn(G,B) < vuBn(6p) (8)

uniformly for all partition vectors n € R.

Proof

Upper bound vy. For any o € {1y the number of edges between colour classes in the
complete graph is n = n(n) = X1<;cj<g NNy

Let Ap, be ESp (G, ) taken over G, .
The following inequalities hold for Azg.

An — E(Sp)
N Y (1) - e

N(n)(1 —p+ pe ?)"
N(n)exp {—77 (P - pe_ﬂ)}
= N(n)exp{-nBp+np(e?+8-1)}.

IN

Now,
Bp = N(n)exp{—npB}
so that
p#* (2, _
An < Bnpexp {777 (@(e F+B- 1))}
2
o)
4p

since n < n%?/2 and 2(e ® + 3 — 1)/4? < 1, the maximum being at 8 = 0. Finally, by
the Markov inequality

2

Pr (Eln : Sp > Aexp {Z—Z} Bn> < Pr(dn: Sp > AE(Sn))

17



<

provided @ > 3 and n > Q. This gives the required result for 7y on choosing A = n<.

Lower Bound 7y, The expected value of d(o) is np, so we can write

Bp = N(n)exp{—FEd(o)}

so that g )
n

— = — exp{—0(d(o) — Ed(o))}.

B~ () 2, {6 dl0) ~ Bd(o)
Let o1

BAD = BAD,¢ = {a’ : d(o) — Ed(o) > anfp + ;gn} .
Choose ol
e=af+ 08T
Bnp

Then

Pr(oc € BAD) = Pr(d(o) > (1+¢)Ed(o))

e—€np/3

oo {5 (o0 ) o+ 5}

exp{—(a®nB*p + 2aClogn)/3}

2, .2
a“ne

_ n—2aC/3 exp {_ n2 Q } )
3n*p

IN

IA

So putting aC' = 3Q we get
E(|BAD|) < n *®N(n)

uniformly over all partition vectors n, and

Pr(3n: |[BAD| > n " 9N(n)) < (n g?; 1>n—Q <n.

Thus whp for all n we have

—-c
Sn > n Z 6*0”7,321’
Bp — N(n) o¢BAD

> n_Ce_‘”’ﬂzp/Z

18



An immediate consequence of this lemma is the following:

Corollary 7 Let £ = CZTQ(2+01). Let Pqo(X; H) denote the probability of X in the Potts
model, conditional on a given graph H. Let G € G, satisfy Lemma 6.

(i) Let S = Sz, x = ale),b(e) then
Pa(S;G) > (%n_(Q“LC) exp {—%}) Pa(S; K,)
(ii) Let
S={0:0€Q,0¢ (Sa(e) U.Sb(e))}

then
Pa(S;G) < <2nQ+C exp {—%}) Pq(S; Ky,).

Proof Assume that (8) holds.

(i) We have,
Enes Sn
Pa(S;G) = =——=—
a(S;G) S
. 3 Xnesn Cexp {—%} Bn,
Y ne exp{ﬁ}Bn
1 _ 3
= " (@+0) exp{—]—)} Pa(S; K,).
(ii)
= Ynea bSn
Po(S;G) = =42 —
a(S;G) Sner Sn
Y neaub n® exp {Z} Bn
B % Y mnCexp {—a;f } Bn
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We can now complete the proof of Theorem 5. Let X(o) = (X1, X>,...,Xg) denote
the colour classes of o, and let U(e) = {o € Q: X(o) = (X1, X2, ..., Xg), |Xi| < (1+
en/Q,1<i<Q}and Ui(e) ={o € Ule) : Yo eV, dx,(v) < (1+2€)np/Q,: = 1...Q},
where dx(v) is the degree of vertex v in the set X. (Note that o € U;(¢€) implies a lower
bound of n/Q — en for the size of each X;.) We observe next that

U(G) - Sa,(e) - U(QG).

Moreover, since dx(v) is distributed as a binomial B(M,p), M = |X| or |X|— 1, whp
|Ui(e)| = (1 —o(1))|U(e€)| provided np > Dlogn for some large value of D = D(e, Q).

By restricting our attention to Uj(e), we establish an upper bound, m, on the size of
components remaining after the bond edge deletion step of the Swendsen-Wang process.
Suppose vertex v is in colour class X; at the start of an iteration. Let the bond edges
be retained with probability ¢ = c¢g/np. The size of the component M containing v is
stochastically dominated by the total size of an independent Binomial branching process,
in which Zy = 1, Z; counts the offspring of vertex j and Z; ~ B((1 + 2¢)np/Q, q). Thus

Pr(|M|>m)<Pr(Zy+---+ Z,, > m).

Let p = (14 2¢)cg/Q. As cg/Q < 0.925, we choose € so that p = 1 — 4. Let T =
Zy+ -+ Zp, then T ~ B(mp/q,q) and by the Chernoff Inequality

Pr(T>m) < (eu)me ™

= ((1 — 5)65)m

—am

= €

Here o = a(Q, €) is a positive constant, as (1 — z)e” is monotone decreasing from 1 for
z > 0.

Now consider how the neighbourhood of a vertex is re-coloured. Assume no component
is larger than m. Fix vertex v. It has degree d(v) < (1 + €)np, in G, whp. Let the
neighbours of v be partitioned according as to whether they lie in the same component
Ci, ..., Cx. Assume this partition of the neighbour vertices has sizes =1, zs, . .., zgx. Apply
the random colouring to the components. Let Y; = z; if component C} is coloured with
colour 1, and let ¥; = 0 otherwise. Let Z; = Y; + --- + Y}, denote the number of
neighbours which are given colour 1. Then

dlv)  (14+¢€np
Also, by Lemma 1 of Hoeffding [H],
Pr(Z: > E(Zi) +t) < exp {—22;22}
g+ -+l

< wl)
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Putting t = enp/Q we get
2e2np
Pr(Z; > (1+2 < —_ .
r(Z1 > (1+2€)np/Q) < eXp{ i+ G)sz}
Similarly, if |V1| denotes the new size of colour class 1,

€n

el > (1+n/Q) < e {~ 51 .

Thus for every o € U;(€) the probability that we leave the set U;(€) at the next iteration
of the Swendsen-Wang process is bounded above by

p=mne "™+ (n+ Q) exp{—2e’np/((1 + €)Q*m)}.
Thus from Corollary 7(i)

dsw(t) aae)(t)

min |7w(b(e)) — P;.(b(e))|

zc€Q(e)
n~°W exp{—¢/p} — (1 - (1 - p)")
n~W exp{—¢/p} - tp.

AVARLY,

AV,

For t = kTsw we get

ok _
p > n %W exp{—¢/p} — kpTsw
or 0O(1 k
o > n~OW exp{—£/p} — (2/e) .

kp

Now choose m = [e,/np]| and p = (n~'/3 so that p < e~ for some constant a > 0.
Now put k = [2£/p] giving

Tow > n %W exp { (a( - Zf) n1/3}

and choose ¢ > 2(a/a)Y/2. O

Remark: When p < 1/n we know that whp the components of G, are trees and
unicyclic components. Theorem 2 shows that the Swendsen-Wang process mixes rapidly
on the tree components and Theorem 3 shows that it also mixes rapidly on cycles.
We conclude that unicyclic components are also rapidly mixing, as we can first couple
the cycle and then spread out in a breadth first manner, coupling any pendant trees.
Therefore it is likely that there is some threshold probability below which the Swendsen-
Wang process mixes rapidly whp and above which it does not.

Acknowledgement We thank the referees for a careful reading of the paper and bring-
ing to light a problem in the original proof of Theorem 3.
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