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ABSTRACT

The innovation of parallel computers has
added a new dimension to the design of
algorithms. Parallel programming is not a
simple extension of serial programming.
We describe and implement parallel
algorithms for the wcll']l)cnown problem of
finding shortest paths in a network. We
present our computational experience

Bs;&)g the massively parallel processor

Keywords: Shortest paths problems,
network, grid graph, parallel algorithms,

distributed array of proceessors, SIMD
computer.

1. INTRODUCTION

One of the most fundamental problems in
network theory is to find tgc shortest
and/or longest path(s) in a network. These
problems are major components of
numerous quantitative transportation and
communication models which seek to
improve efficiency by reducing travel time,
mmm}xzm%l congestion, increasing capacity,
lowering the cost of transportation service,
or improving vehicle routing. Such models
usually use a network to represent the
transportation system where it is required
to find the minimum time, cost, distance, or
maximum capacity between several pairs of
points in the network. The former are
often called shortest path problems and the
latter are called longest path problems.
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The longest path problem is the central
component of critical path analysis which is
athed for the economical scheduling,
planning and controlling of large and
complex projects. It is often known b
acronyms such as CPS, CPM and PERT. It
is noteworthy-that the longest path problem
is mathematically identical to a shortest
path problem and thus, the algorithms
described in this paper apply to all such
problems.

There has, therefore, been a large number
of papers and reports published on this
subject. To mention but a few, the survey
by Dreyfus [ 10 ], the bibliographies by
Golden and Magnanti [ 19 ] and Pierce [ 27
], and the taxonomy and annotation by
Deo and Pang

[6]. Many glapcrs have also been written
to examine the relative merits of various
shortest path algorithms, such as Dial et al.
[ 8 ], Gilsinn and Witzgall [ 16 ], Glover
and Klingman

[ 17 ], Golden [ 18 ] and Hulme and
Wisniewski [ 20 ].

The innovation of parallel computers has
added a new dimension to the design of
algorithms. Parallel programming is not a

simple extension of serial programming.

Our motivation 1. :=:is research has been to
develop parallel algorithms for shortest
path problems; namely, the single-source
problem and all-pairs problem.

Althou%h most networks arising in
practical problems (e.g. road and project
networkss) have only non-negative arc
lengths, there are, however, networks
which have both negative and positive arc
lengths (e.g. a negative arc length may
represent cost and a positive arc length
may show income). Our algorithm deals
with such networks (the most general case),
and a specialized version of it is used for
grid networks, modeling "perfect” citics and
VLSI systems. We have also described a
parallel algorithm for the all-pairs problem.



This research differs from most other
works in this area - see, for example,
Chandy and Misra [ 5 ], Deo, Pang and
Lord [ 7 ], Frieze [ 15 ], Mateti and Deo [
23 ] and Resta [ 29 ] - in that all the
algorithms described in this paper have
been implemented and executed on a real
SIMD computer, called the Distributed
Array of Processors (DAP). With this in
mind, the emphasis of the paper is on
implementation rather than the well known
complexity results on the shortest path
problem - see, for example, Lawler [ 22 ].

The rest of the paper is organized as
follows. In Section 2, we outline very
briefly the DAP. Section 3 contains the
relevant definitions and notations. In
Section 4, we describe a parallel algorithm
for finding shortest paths for the
single-source problem and present our
computational results in Section 4.2. The
parallel algorithm to deal with the
rectangular %rid network is described in
Section 5, followed by some results in
Section 5.2. In Section 6, we present a
parallel algorithm for the all-pairs problem
and give computational results in Section
6:2. We conclude the paper in Section 7.

2. THE DAP ARCHITECTURE

The general 7.Erir.lc:i le of the DAP - see
Parkinson [ 25, Zﬁlj)and Quinn [28 ] - is
that of a SIMD machine as defined by
Flynn [ 12 ]. OitapxpDAP, one can
perform up to p“ operations (of the same
type) simultaneously. This parallel
processing capability of the DAP is
achieved by a p x p matrix of processors,
called Processing Elements, each of which
may operate independently on its own local
store. Thus, it is convenient to think of the
DAP as a square array of processors placed
on a 2-dimensional gnc}) in which each
?rooessor can communicate directly with its
our nciglﬂ)ors. Specifically, we have an
array of p“ (p=32 or 64) processors Py:, 1
<1i, j < p, where P;; can communicate
directly with its foul ncigtti}t:ors Peg s
P:q: Pisq,and Pi;yq, with1-1 =7
and %J'J+ II'JEI 1. In aél'é'l}n%n, Processors are
connected via row and column highways to
a set of edge registers in such a way that in
unit time data can be selected from any set
of processors, one per row (or column),
into the corresponding register; or data can
be broadcast from a register to some or all
li_rl:)ccssors in the same row (or column).

e row and column highways coupled
with the bit serial nature of the processors,
allows the DAP to exhibit many properties
of associative or content addressable
processors [ 14 ]. For further details on the
DAP and its programming language,
Fortran-Plus, we refer the reader to [ 1,
2].

We measure the complexity of the
algorithms in terms of number of "DAP
operations”, each one is exccutable very
"efficiently” on the DAP. Some of these
are:

(1) Compute the resultant matrix
(aj; o b;i) where o=+, - ,*
or). Thé p x p matrices (a;;)
and (b;;) are stored orme

. element per processor.

(ii)y Overwrite a row or column
of a p x p matrix with a given
p-vector.

(iii)  Given a p-vector V, construct a p x
p matrix MATR (V), where each
row is identical to V. Similarly,
MATC (V) has each column

) identical to V.

(iv) Compute the position(s) of the
minimum value of a p x p matrix or
a p-vector.

On the DAP, one is able to execute these
operations in O(1) time. To get a feeling
of the actual computation times for these
operations on the existing DAPs with p=32
and p=64, Table 2-1 gives the ratio of the
time for an operation compared to that for
a 32 bit floating point matrix (ft_:lcmcnt b

element) multiplication as defined in (i{
above. The time for matrix (element by
element) multiplication is 155.7 micro
seconds, in which time 1024 multiplications
are performed when p=32 and 4096
multiplications are performed when p=64.

TABLE2.1: Ratio of the DAP
computation time for an operation
compared to that of a 32 bit floating point
matrix (element by element)
multiplication.

Function Operation Time
Multiply Time

. 1.0

+ 0.67

/ 136

A(L)=VorA(j)=V 0.13

MATR(V) or MATC(V) 0.11

MINP(A) 0.14

MINP(V) 0.14




[n Table 2.1, A is a p x p matrix and V x_s a
-vector. The assngnmc% A(n,)(_jt\{:

(AGH=V) overwrites the i'"' row

f A by V. Functions MATR and
g\?ik'tl‘n(r:l)h(;ve al¥eady been defined in (iii)
bove. Function MINP takes a matrix (or
3ector) argument and returns 2 logical
matrix (or vector) with TRUE. valuc(‘;s)
corresponding to the position(s) of the
minimum value of its argument. For ml(:re
detail on these functions and otder
Fortran-Plus functions we refer the readger

to[3]
3. DEFINITIONS AND NOTATIONS

ibi ithms, it is

fore describing our algori 2
gepropriate to summarize some of
conventions and terms we shallnse in this

aper. . R s or

e shall deal with a difected grapi

i = consisting of a finite set
s;gg% g, .(.Y,Iﬁ)of elements-catied nodes
or vertices and a finite set A VxV of
m(<n) ordered pairs of nodes ¢alled arcs or
edges. Anedge(u,v)ofAlsgaldtobc
directed from u to v, where v 1S called a
successor of u, and u is called a predecessor

of v.

directed path or path from node s to
‘:ode t (mlp{zeld an st path) is a finite
sequence of arcs (s, v1), (v ¥2)s (vk'ilﬁ
t), sometimes written as (5, V1r = t)
which all the vertices are distinct. ott;,
that such a path has no loops. Ans-t pa

isacycleif s=t.

function LA >R defined as follows:

t; = the(fnitc) leagth ot arc () T <A
- otherwise
g =0 fori ¢V

As mentioned earlier, in a (gene.ral)
network, G, the arc lengths may be either
positive or negative. However, we assume
that G contains no directed cycle with a

strictly negative length.

By a network, we mean a digraph G=(V.A) together with a real valued
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It is noteworthy that an undirected shortest
path problem can be reduced to a directed
one, iIf all arc lengths are non-negative, by
replacing each undirected arc {i,j} by a
symmetric pair of directed arcs (i,j) and

(j.i) with ‘ij = lji- However, if the length of
arc {i,j}” is ‘negative, then such a
transformation would introduce a negative
directed cycle into the network, and this
approach is invalid. In such cases, the
problem can be reduced to that of a

weighted non-bipartite matching problem {
21].

3.1. Computer Representation of a
Network

A network may be represented in a
computer in several ways and the manner
in which it is represented directly affects

the performance of algorithms applied to
the network. There is no single overall
best data structure for networks. The
choice depends on the size of the network,
its density and on the computer as well as
the language being used.

The length-matrix in which the function 1 is
represented as an n x n matrix, and the
arc-lists in which for each node i, there is a
list of those arcs (i,j) which are incident to
node i, together with their lengths L;, are
perhaps the most used data structurds for
Exgg‘iorls - see Syslo, Deo and Kowalik

Below in Figure 3.1, we give an example of
a network with its length-matrix as well as
arc-lists representations.




Figure 3.1: A network with its

length-matrix and arc-lists representations.

Notes: 1) The diagonal entries in the
matrix representation are
usually set to 0, or to some
other value depending on the
application and algonthm.

2) In the arc-lists
representation, we have
listed arcs in ascending order
of their initial nodes (tails).
However, they could equally
have been listed in any other
order, say in ascending order
of their arc-lengths or simply
they may be listed randomly.

3) If the network is sparse, i.e.,
m< <n(n-1), then it would be
wasting memory space to
store the «’s in the matrix
representation. In such a
case, it is often more efficient
to use the arc-lists approach,
which requires 3m memory
space.

On a p x p DAP (p=32 or 64), the
length-matrix and the. arc-lists
representations are evidently suitable fai
dealing with problems with p nodes and p
arcs respectively. A number of applications
require to solve much larger problems. In
this case the data sets should be mapped
into the DAP store in such a way restricted

the number of processors of the DAP.

ere are many different ways for mapping
the data sets into the DAP store - see
Parkinson [ 24 ] - and the optimum
mapping strategy may depend on the
operations required to perform. This is
discussed fully in Section 4.1.

4, SINGLE-SOURCE SHORTEST PATH
PROBLEM

The most commonly encountered shortest
ath problem is to find the shortest paths
or Ll?e lengths of shortest paths) from a

specified node, called the source, to all

other nodes in a network. This problem is
usually known as the "single-source

problem”. In this section we describe a

parallel algorithm for %e most general

case) of this problem. at is, when the
arc lengths can be positive or negative.

4.1. Algorithm SP

This algorithm finds the length of shortest

aths from the source to every other node
m a directed network in which the arc
lengths can be positive or negative. Of
couse, as mentioned earlier, we do,
however, assume that there are no negative
cycles.

Algorithm SP solves the problem by
successive approximations. at is, given
an approximation of a shortest path from
the source to node j, we try to improve this
approximation by considering paths via
predecessor nodes of j. Formally, let:

d() = thelength of a shortest path
from the source (say node 1) (4.1)
to node j, such that the path

contains no more than r arcs

‘There are two cases to be considered. One
for problems smaller than or equal DAP

size, and one for problems larger than
DAP size. e

%&1: n < number of Pprocessors
p

Each processing element, PEy., ke(ergs the

v?l e of I; and also the value of dj \"). lﬁ

d ‘Z)be th yector (l;?lding the values (d,; "
V.. d] « dy\7). Imtially, we let:

dW=0y3 1z by yg)

Then, we compute (r+1)5t order
apero;dmations from the r*" order for all j
€ V simultaneously as follows:

dr+) - gMoL

Where L = (L) is the arc length matrix,
and Ois deﬁn(tlg& by: g

d:(t+1) = Min {4, () + 1.
for!l all j{ k € k]\}l
(42) i

Here, we are assuming that 1::=0 for all j

eV. 1
Pictorially, we have:

(C)
4, "= lengrh of shortest pesh wich
l_- t »m&utmwn‘ct—{

+1)
i o= (re1)™ spprosimetion for shoresn
pnhfmm—.mb-ocej I




Now, the ability of DAP to broadcast using
the row and/or column high ways means
that in O(1) time operation, all the
processors PEy: will have siF)ﬂtaneously
the correspond‘ﬂ\g value of dy ")+ 1y;, for
all k, j. It only remains to ﬁnlg the
minimum across each column, and this can
be done on the DAP simultancously very

The DAP declaration for L is a real (or
integer) matrix array ARC-LENGTH ¢,
.NB, NB), wherc NB=[n/p]* (for our
assumption, NB=2). The first comma in
the declaration, defines a frame of the
DAP data holding p“ values which can be
processed simultaneously. ‘

iently. Note: The slicing mapping can be
efficienty considered similar to the fg ow%ng Fortran
It is perhapsi interesting to ?bsexve a declaration:
certain similarity between (4.2) and
atg braic multi lictzltltion ?lf( 2 v vector or REAL 1(64,64,2,2)
d\') by a matrix L; that is, d; = T,
a7 ;. for all f’ wheh replacing ‘hé REAL 1(64, 64,4)
summation and multiplication by taking when p=64 say.

minima and addition in (4.2) respectively. Let us now de fim‘hdl(r) and dT to be the

It is not difficult to see, given the definition corresponding r'" approximation of the

of d:\T) in (4.1), that equation (4.2) does lengths of shortest path_s from the source to
converge to the correct valu(e of the the set of nodes in V;={1, 2, ..,p} and V5
= {p+1, p+2, ..,2p} respectively. Then:
shortest path from the source t e j. Ly Ly
Indeed, wg: can be assured that d-&'llgd-—- d: @ Ve @ =
forallj e V, where d; is the tlaﬁth of zl Ly Ly
shortest path from the sdurce to node j

It is important to notice that the where Lyjis the frame of DAP dsta stoced in ARC-LENGTH (. & ), 204 @is defincd by:

mputation be terminated whenever
‘&‘(r.ﬂ‘fa = T?,' a test which can be
executed on the DAP extremely fast. This
stopping criterion is usually reached long “3)
bet%re r=n, and this is what makes the &) amin {4+ VoL D01y}
method so efficient on average.
“fx}is the cciling functions that i, fxl= x i€ x is fnteger

C?_S.E_z: n2 > number of pxooessors = int(x+1) otherwise
i nce we have
P Here, we &o"t}ff that once

In this case we need to find a way to fit the ted d th's{rvﬁ \ ?sndiz

i store. One of the used in calculating do%
gggegmﬁgnm;aggl (;S called slicing- because, to calculate gﬁ r+1) one needs

i consider, for only the blocks Ly; and which
I:ar?\;llg?ggatgktgg’ieﬁ%n;s with a network Tepresent the length 1,2 ansll%lvl b
having n=2p godes(and a maximum of 4p

here
iasmtslzé“;membgr of processors on the DAP.

is to simply cut the le

i+ D = cia (4001, 001z}

and V, x pectively. Similarly, to
com u%e dz\(‘l*'tﬁswe onlyyneed the data in
bloc ‘.22 and le.

The strate; . AP
matrix L=(l;;) into four _blocks of D. X .

o matrix arra Computationally, (4.3) was implemented
g‘sa{f,'uowga“ stcin'e them in & y more efficientfy in ‘the sense that the

minimum of the two operands, which are
DAP matrices, was carried out first (and
this is very efficient on the DAP{ and then
the minimum across each column was
oomputed. Also, there are two ways in
storing the length of the paths on the DAP.
One, as a vector array, say
PATH-LENGTH ?NBQ or as 3 matrix, say
PATH-LENGTH (,). Storing it as a matrix
means that we can treat all its components
simultaneously and this becomes more
cfficient when NB is large.

Block3

A Vectos with 4p2 Elements

A Matrix with 2px 2p Elements

”’ A DAP Matrix Ammay having 4 DAP frames
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The idea behind Algorithm SP is very close
to the dynamic programming type
algorithm attributed to Bellman and Ford {
4, 13 ], having complexity of O(n) gnannx
n DAP as compared to the O(n”) of the
serial algorithm.

We implemented Algorithm SP on the
DAP 610 with 4096 processors, using the
length-matrix _representation to store the
network. For dense and semi-dense
networks, the alﬁ)rithm is very efficient
(see Table 4.1). However, for very sparse

phs, the results are not as encourging as
or dense and semi-dense networks. I&ote
that the improvements sug%ested by Yen -
see [32] - are not applicable in a parailel
environment.

4.2. Computational Results

All of the test problems were generated in
a random fashion. A random (connected)
network with n nodes and m arcs were
generated as follows:

First, a spanning tree rooted at the source
node (node 1) is created by randomly
joining a node in the current
(non-spanning) tree to a node not’in the

tree yet. Then, the remaining arcs were
added by joining two distinct nodes énot yet
connected) chosen randomly from {1, 2 ..,
n}, until a total of m arcs have been
generated. We note that, the resulting
network has no multiple arcs and loops.

The above procedure was used to generate
random networks having from 20 to 640

nodes. with arc densities, defined as § = -
m, (?

- n), ranging from 1.0 to 0.0025. The
arc-lengths were randomly generated
values from a uniform distribution on the
interval [1,10000). Table 4.1 contains the

mputation times of Algorithm SP. These
timing become more attractive for more
dense networks, confirming that the run
time of Algorithm SP is proportional to the
maximum number of arcs in the shortest
paths in the network.

The results given in Table 4.1 compare very
favorably with those of serial algorithms as
reported in the literature (See for example,
Hulme and Wisniewski { 20 ] and Dial et

al.
£:3)3

It is worth mentioning that when we
implemented a parallel version of Dijkstra
algorithm .
[ 9 ), using both the length-matrix and
arc-lists representations, no substantial
speed up was obtained. This was due to
e fact that such an algorithm will process
every node sequentially and evaluate the
successor nodes in parallel.
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TABLE 4.1: Computation Times for Algocithm SP in Millisces on the AMT DAP 610,
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Upper srows are the times, under that arc aumber of 2crs in graph.

Upper rows are the times, under that are
number of aérs in h.
5. GRID NETWO

A grid network is one which can be
embedded in a rectangular plane grid.
Vertices are situated at lattice points and
cach vertex is directly connected to at most
four neighbors in the N, S, E, W direction.
Therefore, a pxq grid network has pq nodes
and 4pq - 2p -%q arcs. It is important to
note, however, that the arc lengths are
randomly generated. Thus, arc lengths are
not necessarily etric and the triangle
inequality may not hold. Interest in these
networks stems from models of “perfect”
cities and VLSL. Because the structure of

d networks closely resembles that of the

AP, by using the nearest neighbors
connections, we are able to process these
type of networks very rapidly.

5.1. Algorithm G

In this section we describe a parallel
algorithm for solving the single-source
roblem in rectangular grid networks.
ere is no restriction on the arc lengths,
they can be positive or negative. However,
there are no negative cycles.

——— ams .




The a!gorithm is based on successive
approximation, as described in Scction 4.1
for Algorithm SP.  The (r+1) order
approximation of shortest distance from
the source, say node (1,1), to an“lodc @)
is only affected by the r'" order
approximation of shortest distance to its
four neighbors, plus the arc lengths
directed from these neighbor (N, S, E, W)
§‘°1des into node (i,j), as shown in Figure

()
aijen)

Figure 5.1

To see how Algorithm G works more
clearly, let us, without loss of generality,
assume we have a pxq grid network and a
pxq pr clement DAP (e.g. in DAP
610, =3=64 . EBach processing element
PEij andles the following information:

(i) The current (rth order)
shortest' distance from node

(1,1) to node (i) — d"/(i).

(ii) '.I‘hc’length of the
incoming-arc from North to

node (i) ~ In(@id)-

(i) The length of the
mcoming-arc from West to

node (i) — Iw(i)

(ivy The length of the
incoming-arc from South to
node (i) ~ 1(iJ)-

(v The length of the
incoming-arc from East to

node (i) ~ I (i)
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Now, if we only consider arcs coming from,
say, north; that is, arcs of the form ((1-1&).
ij)) for all ij, then we can compute the
r+1)% order approximation of shortest
distances from node (1,1) to all nodes in

parallel as follows:

(c+1)¢i 1) = min{d (O,
‘érzgmﬁ + IN(i(,jl)']J) mintd (a‘n’{;

In a similar( fz)xshlion( w)e codnslidqr.)in %n
each of ly(id), ij) an ij)- e
advantage%f this salgorithm isE at at the
second, third and fourth turn of computing
(5.1) with the appropriate arc le we
are (always) usinf the improved 1. order
approximation of the shortest %ﬁ

e l%m'ithm terminates whenever 4V °.
= dg\f), a very fast check (one bit
operation) on the DAP.

We like to point out that to do (5.1) on the
DAP is extremely simple and fast, using the
built-in shift functions which employ the
nearest neighborhood connections. In fact,
the piece of the Fortran-Plus to compute
(5.1) is as below:

WM=SHSP%)) +IN
D(WM.LT.D) = WM

Where D and LN are DAP maﬂx abjects,
holding the pq values of d L (i,i)J and
!Ngx,)),res ectively, for- i=1,...,p and
j= L9 isat rary DAP matrix.
SHSP is one of the built-in shift functions,
which shifts every element in D south by
one place using Planar geometry. This
means values are dropped out from the
south edge and zeros are feed in from the
north edge. “The expression (WM. LT. D)
produces 2 logical mask, causing inhibit
write.

52. Computational Results

It is clear that in a pxq grid network, node
?),3 is reachable from the source m

node (1,1)) after Performing two shifts, say
in the direction of south and east, at least
(k-1) times, where k=max(p, ). So, it will
be a waste of time to check for termmatu{ﬁ
in Algorithm G prior to the k-1)
iteration. Also, some of the four shi tend
to have no effect in earlier iterations.

Our experiments show that, it is better first
to perform the two shifts for about 1/2¥
iterations (K = min(p, q)) and then do the
four shift for a further of (k - 1/2K)
iterations without any check for
termination. After that, at each iteration
the four shifts are performed with a check
for termination.




Table 5.1 describes some of the grid
network test problems with number of
nodes ranging from 1024 to 4096. These
problems are all randomly generated using
a uniform distribution with arc lengths
belonging to the interval [1,10000].

More formally, we need to compute the following:

dij(]) =1 forallij eV

D) =min (40,6, + 4} forallij <V andforr=12_a

The results show that the parallel
Algorithm G implemented on DAP 610 is
much superior to the best serial code - see
Dial et al. [ 8 ] - and on average is about 25
times faster than the best serial code ran
on CDC 6600 machines.

TABLE 5.1: Computation Times for Algorithm G in Millisees on the AMT DAP 610

Note that all the entries of D(7) are computed simultancously on the DAP.
Thus, at iteration (r+ 1), the algorithm trics to improve paths by first checking if dir(‘) +
d,i(f) < d(')ij, and if so then the known path from node i to node j is replaced by the

known path from node i to node r followed by the known path from node r 10 node j, sce
Figure 6.1

32x32 1024 3968 6502

- 2048 8000 11824

6Ax32 2048 2000 11905

40x 40 1600 6240 8496

40X 64 2560 10032 11879

64 x40 2560 10032 12013 Figure 6.1

5050 2500 9800 L

il 3200 1257 12343 Clearly, we must have d{3*1) as the leagth of the shortest path from node i to node j.

64x50 3200 12572 13203 These are the entries of D+1) yhich are computed simultancously.

64564 4096 16128 . 13.874
6. ALL-PAIRS SHORTEST PATH e R nes g et ubhenialalyecs st
PROBLEM Washall - see [ 11 ] and [ 31 ] - which is the basis of our algorithm.

It is worth giving the main piece of the

In this section we consider the problem of Fortran Plus code which will execute

finding the length of shortest path between Algorithm AP:

every pair of nodes in a directed network. D=L

This problem is often called "all- airs DO 10R=1N
roblem". Instead of solving thiquro lem WM = MATC (D(,R)) + MATR
y repeated application of, say, gorithm (D(R,)}) i

SP for solving single-source problem, .LT.D) = WM

choosing n separate origins, we will 10 CONTINUE

develop a single integrated parallel

For problems larger than DAP size, one

procedure. can use the sliced mapping and the

expansion is straightforward.
6.1, Algorithm AP
6.2. Computational Results
No restrictions are placed on the arc
lengths except that there are no negative
cycles. Let us suppose we have an n node
network, stored in an n x n matrix L using
the length-matrix representation, and an n
x n processor DAP.  Each grocessin
element PE;; keeps the va gclo L:; (for all

j) and also’the current T engtl‘h of the
(0)
i

The results of running our implementation
on DAP 610 for a number of tI::st problems
are summarized in Table 6.1. The test
problems are randomly generated using a
uniform distribution with arc lengths
belonging to the interval [1,10000]. Note
that the computation time is independent

i, .
shortest path from node i to node j, d; of sparsity of the network.

TABLE &.1: Computation Times for Algorithm AP in Millise
x % § s on the AMT DA 610
The algorithm works by inserting on¢ or =

more nodes into paths whenever it is

a vla)ntageous to do so. After initializifng Number of Nodes Rui Timg in Millisee
D = L, .we copstruct uence of n 20 ciads
mat{[_il es D(Z‘}: ng o D&licﬂ, where the 2 5
(i) entry of D(J gives the length of a 348
shortest path from node i to node J, subject 40 3897
to the condition that the intermediate 50 4571
nodes of the path are taken from the set of & sae
nodes {1,2,...,r-1}. o 6' 3

1233
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7. CONCLUSION

We have demonstrated that the DAP is a powerful machine for solving shortest path

s

probl The ¢ is at its peak for more dense nctwarks, as all the processors

are active. For extremely sparse networks, which usually have some type of structure, one

needs 1o use that structure in order to achicve worth while speed up.

Contrary to the serial case, the Bellman and Ford type parallcl algorcithm is faster by an

arder of magnitude than the Dijkstra’s algorithm; a phenomenon which usually is common
with other algonithms.

The current work and other similar works on the DAP indicate that the idea of applying

parallel programminig techniches to solve bi

ial optimization problems is
promising and descrves much morc attention, and will likely lead o significant
performance improvements.
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