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We consider the problem of finding the shortest distance between all pairs of vertices in a com- 

plete digraph on n vertices, whose arc-lengths are non-negative random variables. We describe 

an algorithm which solves this problem in O(n(m + n log n)) expected time, where m is the ex- 

pected number of arcs with finite length. If m is small enough, this represents a small improve- 

ment over the bound in Bloniarz [3]. We consider also the case when the arc-lengths are random 

variables which are independently distributed with distribution function F, where F(0) = 0 and F 

is differentiable at 0; for this case, we describe an algorithm which runs in O(n 2log n) expected 

time. 
In our treatment of  the shortest-path problem we consider the following problem in com- 

binatorial probability theory. A town contains n people, one of whom knows a rumour. At the 

first stage he tells someone chosen randomly from the town; at each stage, each person who 

knows the rumour tells someone else, chosen randomly from the town and independently of all 

other choices. Let Sn be the number of stages before the whole town knows the rumour. We 

show that Sn/log2n--" 1 + loge 2 in probability as n ~ 0% and estimate the probabilities of large 

deviations in Sn. 

1. Introduction 

We consider the problem of finding the shortest distances between each pair of 
vertices in a digraph in which all the arcs have non-negative lengths. An n-vertex 
problem can be solved in O(n3(log log n)l/3/(log n) 1/3) time using the algorithm of 
Fredman [8] (in this paper all logarithms are natural unless explicitly stated other- 
wise). Fredman's algorithm represents a small improvement in worst-case running 
time over the O(n 3) algorithms of Dijkstra [6] and Floyd [7]. 

Spira[10] examined the problem of finding an algorithm with a good expected 
running time, assuming the existence of a probability distribution on the set of non- 
negatively weighted digraphs. He proposed an algorithm which has an expected run- 
ning time of O((n log n) 2) for quite general distributions. Spira did not deal with the 
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case when arcs may have equal length, and this point was taken up in detail by 
Bloniarz, Meyer and Fischer [4]. More recently, Bloniarz [3] has improved Spira 's  
method and found an algorithm which runs in O(nElognlog*n) expected time, 
where log*n=min{i:login<_ 1} and log / denotes the ith iterate of  the logarithm 
function. 

The class of  probabil i ty distributions for which these results hold is quite general. 
Informally,  all that is required is that the joint distribution of  the lengths of  arcs 
in the digraph be independent of  the vertices to which they point; it may however 
depend on the vertices from which they point. Bloniarz [3] gives the following 
definition. Let V~ = { 1, 2 . . . . .  n } and let Sn be the set of  all digraphs on the vertex 
set V~ which have non-negatively weighted arcs. We may identify Sn with the set of  
n by n matrices with entries in [0,co]; that is, GeSn is identified with the n by n 
matrix (co(i,j):i, j e  Vn), where co(i,j) is the length of the arc (i,j). I f  P is a pro- 
bability measure on S,, let 

Fp(G) = P ( { G '  eS~:cc,(i,j)<cG(i,j) for  all i, j e  V,}). 

We say that P is endpoint-independent if, for all i,j, k ~ V~ and G ~ Sn, we have that 

Fp(G) = Fp(G'), 

where G' is obtained from G by interchanging the lengths of arcs (i,j) and (i, k). 
In this paper, we describe an algorithm which runs in O(n(m + n log n)) expected 

time whenever the joint distribution of  the arc-lengths is endpoint-independent; 
here, m is the expected number  of  edges of  finite length in G. I f  
m = o(n log n log* n), then this is a small improvement  over the expected running 

t ime of  Bloniarz's algorithm [3]. 
We consider another case in some detail. Suppose that the arc-lengths of  G are 

independent, identically distributed random variables whose common distribution 
function F is such that one or other of  the following conditions holds: 

(i) F(0) > 0, 
(ii) F ( 0 ) = 0  and F ' (0)  exists with F ' ( 0 ) > 0 .  

In this case our algorithm may be modified to run in O(n21og n) expected time. 
In our treatment of  the shortest-path problem we encounter a problem in com- 

binatorial probability theory which is closely related to the study of  the spreads of  
epidemics and rumours through finite populations. A town contains n people, exact- 
ly one of  whom has heard a rumour  f rom a neighbouring town, and this rumour  
spreads according to the following rules. At each epoch of  time, each person who 
currently knows the rumour  communicates it to somebody else in the town, chosen 
randomly f rom the entire population and independently of  all previous choices. It 
is clear that the number S~ of  stages before the whole town knows the rumour  is 
at least log2n; we show in Section 5 that, as n ~ co, 

& 
- -  -+ 1 + log 2 in probability, 
log2n 
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and we investigate the tail of  Sn for large n. This process differs f rom the processes 

of  Daley and Kendall [5] and Berg [2] in that individuals tire of  gossiping only when 
everyone knows the gossip. 

2. The algorithm SHORTPATH 

The algorithm S H O R T P A T H  described below is a modification of  Spira 's  
algorithm. 

Let F ÷ (o) (respectively F -  (o)) denote those vertices w for which the arc (o, w) 
(respectively (w, o)) has finite length. Before we do anything else, we construct for 
each v • V a list of  the set F + (o), ordered by increasing value of  arc-length c(o, w) 
(we drop the suffix G f rom arc-lengths f rom now on). The procedure RESETNEXT 
sets pointers to the beginning of each list, and a call to NEXT(o) returns the current 
vertex, CURR(o),  being pointed at, and moves the pointer to the next vertex in 
F + (o). NEXT returns 0 when the end of  the list in question has been passed. We 
shall assume that, in constructing these and later orderings, arcs of  equal length are 
ordered randomly. 

We solve a sequence of  shortest path problems, taking each vertex in turn as the 
source vertex s. 

For a fixed vertex s, at each stage X denotes a set of  vertices for which a shortest 
path length f rom s has been determined. Q is a heap (used as a priority queue [1]) 
o f  items of  the form (x: v: w) where o • X, w • V, and x = d(o) + c(o, w), where d(v) 
is the length of a shortest path f rom s to o. The heap Q is ordered by the value x 
and is such that if y=min{d(o)+c(o, w): v e X ,  wq.X}, then Q contains an item 
(y:o:w) with v e X ,  w ¢ X .  

The basic step is to execute MIN(Q),  which removes the minimal object 
(x:co:cw) f rom Q. I f  cw¢X,  then a shortest path f rom s to cw of length x has now 
been found; if this is so,  then using NEXT(co),  NEXT@w) we find the next nearest 
neighbours o, w to co, cw respectively and add the two corresponding items to Q. 

The proposed new feature of  this algorithm is that, at those points of  the 
algorithm at which [X[ reaches (approximately) n/2, 3n/4, 7n/8 . . . . .  all arcs of  the 
fo rm (o, w) where w • X are removed f rom further consideration, and we then 
reconstruct Q f rom the items (d(o) + c(o, w):u: w) where o e X  and w = CURR(o).  

In order to delete arcs efficiently, we store the sorted set F ÷(o) as a doubly- 
linked list. For each w • F ÷ (o), we store po(w) which is the position of  w in the list 
F+(o). Thus, if o e F - ( w ) ,  then w can be removed from F+(o) in O(1) time. 

Algorithm S H O R T P A T H  

begin 
SORTARCS; 
for  s: = 1 to n do {use each vertex as a source in turn} 
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begin 
d(s): = 0; X: =0;  Q: = (<0:s:s>); RESETNEXT;  k: =0;  r: = r½n7; 
while r<n  do 
begin 

while k < r do 
begin 

A: <x:cv:cw> : = MIN(Q);  
o: = NEXT(co); if o #: 0 then INSERT(Q, < d(co) + c(co, o): co: o >); 
if cw ~ X then 
begin 

k: = k +  1; X: = X U  {cw}; d(cw): = x ;  
w: = NEXT(cw); if w:#O then INSERT(Q, <d(cw) + c(cw, w):cw: w>); 

end 
end 
{remove some redundant arcs} 
for  w e X  do for  o e F - ( w )  do remove w from F+(o) ;  

C: ~{natura l ly  this need only be done once for each o • Vn} 
[_re-construct Q using only <d(u) + c(o, CURR(o)):  o:CURR(o)> for o • X;  

D: r: = r½(n + r ) l ,  

end 

end 
end 

Note that although the above algorithm computes shortest distances rather than 
shortest paths, it may easily be adapted to find the latter also, at the cost of  increas- 
ing the time complexity by a constant factor. The validity of  S H O R T P A T H  follows 
f rom the validity of  Spira 's  algorithm. 

3. Analysis of SHORTPATH 

In this section we prove the following theorem. 

Theorem 3.1. I f  the arc-length distribution is endpoint-independent, then SHORT-  
P A T H  runs in O(n(m + n log n)) expected time, where m is the expected number o f  
arcs o f  finite length in G. 

Proof .  First fix a source vertex s. L e t p =  LlogznJ + 1 and let X1,X2 . . . . .  Xp denote 
the sequence of  values of  X at successive executions of  statement D of  the algorithm. 
Let X 0 = 0  and ri=lXil, i=0 ,  1 . . . . .  p. 

Because of endpoint-independence and the 'clean up '  operation C, we have that 
at line A if Xic_XCXi+I ,  then 
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Prob(cw ~ X)  -> n - Ix____~l 
n - r  i 

Thus, the expected number ek of  calls to MIN needed to add the (k  + 1)th vertex to 
X satisfies 

n - r  i 
ek <<-n_ k , 

where i is such that r i < k < r i +  I. Thus the total expected number 

n - I  

e =  ~ ek 
k - O  

of  calls to MIN is bounded above by 

p - I  r~+L-- I 
e<-_ ~, ~, n - r i  

i-o k=r, n -  k 

p l ( n - r i _ l )  <_ ~ (n - ri) log . . . .  + O(log n). 
i = 0  \ n - r i +  

Now, ri+ 1 = F½(n + ri)7 implies 

n - ri <_2-~ 2 . 

n - r i +  1 n - r i - 1  ' 

hence 

e_< 2n log 2 + O(log n). 

For any given s we can divide the time spent finding shortest distances into 
(a) calling MIN and INSERT (by the above, this takes O(n log n) expected time), 
(b) deleting w from F + (o), for w e X and o e F -  (w) (this clearly takes O(m + n) 

expected time), 
(c) reconstructing the heap Q (this takes O(pn) time as a heap can be constructed 

in O(n) time [1]). 
Thus, for each s, the above routine requires O(m + n log n) expected time. The in- 

itial sorting requires O(nElogn) time, and the theorem is proved. [] 

We note that Bloniarz, Meyer and Fischer [4] dealt with certain ambiguities in 
Spira's algorithm by treating equal-length arcs in F + (o) in blocks, and processing 
each such block as soon as the first of its arcs is chosen in A. The effect of this 
operation is to speed up the runtime of  the algorithm, since fewer executions of  MIN 
are performed. 

4. Independent arc-lengths 

In this section we shall assume that the arc-lengths are independent non-negative 
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random variables with common distribution function F, and shall make use of  the 
following algorithm. 

Algorithm R A N D O M S H O R T P A T H  

begin 
p : = m i n { n -  1, 201ogn} 
for  o : =  1 to n do 
begin 

find the p shortest arcs leaving o and construct a doubly-linked list comprising 
the vertices to which these arcs point, together with, for each vertex in the list, 
a pointer to its position in the list 

end; 
for  v : =  1 to n do 

begin 

construct a list of  vertices w, whose list of  p nearest neighbours contains o 
end; 

apply S H O R T P A T H  to the digraph with vertices Vn and arcs joining each 
vertex to its p nearest neighbours as above; 
let d(o, w) denote the distance computed by S H O R T P A T H  from o to w for 
each pair (o, w)~An= V2-{(o, o) :oE Vn}; 
dmax:  = max{d@, w):(v, w) e A , } ;  
emin: =min{c(v,  w):w is the p th  vertex in o's list of  nearest neighbours}; 
if dmax_< emin then terminate 

else apply Floyd's  algorithm to the original weighted digraph. 
end 

We wonder whether, in line 2 of  R A N D O M S H O R T P A T H ,  20 may be replaced 
by 2 without affecting the consequences. The next theorem is our main result. 

T h e o r e m  4.1. Suppose that F(O)=0. I f  F is differentiable at 0 and F ' ( 0 ) > 0 ,  then 
algorithm R A N D O M S H O R T P A T H  runs in O(nElog n) expected time. 

P r o o f .  The initial sorting and list construction can be carried out in O(n 2) time, as 
n heaps are constructed and the p minimal elements are drawn f rom each. By the 
results of  Section 3, the application of  S H O R T P A T H  will run in 
O(n(np + n log n)) = O(n 2 log n) time. I f  dmax_< emin, then the path lengths com- 
puted by S H O R T P A T H  are minimal for the complete digraph G, since the arcs 
omitted are too long to be used in any shortest path. Later in this section, we shall 
see that 

Prob(dmax > emin) = O(n -  1), (4.1) 

and the result follows immediately, since Floyd's  algorithm runs in O(n 3) 
time. [] 
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Note that the conclusion of  Theorem 4.1 holds whenever the arc-length distribu- 
tion function F is such that F(0) > 0, without any further assumption on F. It is not 
difficult to see this, since it may be shown that, with probability 1 - O ( n - 2 ) ,  all the 
arcs used in R A N D O M S H O R T P A T H  have length 0 and these arcs form a strongly 
connected subgraph of  the complete digraph on Vn; thus all shortest paths have 
length 0 with probabili ty 1 -  O(n-2) .  

The rest of  the paper is devoted to the proof  of  equation (4.1). In the following 
analysis, we often use real quantities in positions where integers are required. It will 
be clear that trivial but cumbersome changes may be effected to correct such aberra- 
tions and their consequences. We shall prove equation (4.1) first for the case when 
F is the uniform distribution function on [0,1], and shall then relax this condition 
as indicated in the statement of  Theorem 4.1. Here are some preliminary lemmas. 

Lemma  4.2. Let X(k ) be a random variable distributed as the kth smallest o f  a sam- 
ple o f  n independent random variables which are uniformly distributed on [0,1]. 

(a) I f  a > O, 2 < 1 and n is large, then 

P r ° b (  X(a'°gn)< 2 a l ° g n )  < n a O + ' ° g a - ~ ) ' n  

(b) Suppose that kl + k2 +.. .  +km < a log n, and Y1, Y2 . . . . .  Ym are independent 
random variables with Yi distributed as X(ki) f o r  i = 1, 2 . . . . .  m. I f  p > 1, then 

Prob (YI  + Y2 +.. .  + Ym >- ualogn~n+ l / -  < na(l +logu-u). 

P roof .  (a) I f  0 < p  < 1, k is a positive integer, and B(n, p)  is a random variable which 
is binomially distributed with parameters n and p,  then 

Prob(X(k ) < p )  = Prob(B(n, p ) _  k) 

since X~k ) < p  if and only if at least k of  the uniform random variables defining X~k ) 
are smaller than p .  

We next use the standard inequality (see, for example, Grimmett  and Stirzaker 

[91) 

Prob(Z>_z)<e-tZExp(e tz) for t_>0, (4.2) 

for any random variable Z. Applying (4.2) to B(n, p) we find that, for k = a log n 
and p = 2an-  i log n, 

Prob(Xck)<p)<_e -atl°gn ( 1 - p + p e t )  n if t_>0. (4.3) 

We choose t to minimize the right-hand side of  (4.3), giving 

e t_  (1 - p ) a  log n 
(n - a log n)p"  
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Substitution into (4.3) leads eventually to 

Prob(X(e ) <p)  _< ().e I - ~t)alog n 

for all n, and (a) is proved. 
(b) The density function fk(x) of X(g) is 

f k (x )=(k)kXk- l (1 - -x )n-k  for 0_<X_<I, 

and hence the ith moment  of X(k ) is given by 

= { n ~ k ( i + k - 1 ) !  (n -k ) !  
\ k J  (n + i)t 

(4.4) 

< k(k+ 1)... (k+ i -  1) 
(n + 1) i 

Thus, if O _ < t < n + l ,  

- - t  i - k  - k  
Exp(etX~k') < i=0~ ( n - - ~ ) (  i ) = ( 1 -  n+t 1)  

If Z = Y1 + YE +. . .  + Ym, then 

Exp(e tz) = f i  Exp(e tr') 
i=1 

_< 1 -  if O _ < t < n + l .  
n + l /  

It follows from (4.2)that ,  for O_<t<n+ 1, 

Prob(Z>l~a logn~<( l_n_~) -a 'Ognexp(  tl2alogn~ 
- Ti / -  -g- i / 

We choose t = ( n + l ) ( 1 - / ~  -1) in order to minimize the right-hand side above, 
obtaining 

Prob(Z>_ 12alog_n~n+l J < (/2el-kt)al°gn" [ ]  

Lemma 4.3. Suppose that the arc-lengths c(o, w) of  G are independent random 
variables which are uniformly distributed on [0,1], and let a(o, k) be the length of  
the kth shortest arc leaving vertex o. Then 

Prob(/~/k_> 19.701ogn, o ~ V n, such 

that a(o, k) < 12.02 n - 1 log n) = O(n-  1). 
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Proof. The probabili ty in question does not exceed 

n Prob(a(o, 19.701og n ) _  12.02 n-1 log n), 

and the conclusion follows by an application of  Lemma 4.2(a). [] 

Lemma 4.4. Suppose that the arc-lengths o f  G are independent random variables 

which are uniformly distributed on [0,1], and, f o r  o=  1,2 . . . . .  n, let d(o) be the 

length o f  the shortest path f rom vertex 1 to vertex o in G. Then 

Prob(ffo ~ V n such that d(o )>  12n - l  logn)  =O(n-2 ) .  (4.5) 

It 

distribution) from Lemmas 4.3 and 4.4, since the latter implies that 

P r o b ( d m a x >  12n - l  l o g n ) = P ( J o ,  w with d(o, w)> 12n - l  logn)  

= O ( n  - 1), 

while the former implies 

Prob(emin < 12.02 n -  l log n) = O ( n -  l). 

is clear that equation (4.1) follows immediately (in the case of  the uniform 

(4.6) 

(4.7) 

Proof of Lemma 4.4. We describe an algorithm which, given such a digraph G, con- 
structs a spanning tree T of  G which is rooted at vertex 1 and has the property that 
the lengths of  the paths in T f rom vertex 1 to all other vertices are not greater than 
12.02 n - l l 0 g n ,  with the required probability. 

We build the tree T recursively. It begins as T 0, the tree containing the single 
vertex 1. I f  (1,o) is the shortest arc leaving vertex 1, then vertex v is added to T O 
together with the edge (1,v), and we call this tree T 1. At the next stage we add the 
shortest arc leaving v and the second shortest arc leaving 1, and so on; we never in- 
clude an edge which would complete a circuit in the ensuing graph. In the formal 
description below, NEXT(v)  acts as in the algorithm S H O R T P A T H  (except in that 
the underlying lists of  arcs contain all arcs, regardless of  whether their lengths are 
finite or infinite). The algorithm MAKETREE builds a sequence of  rooted trees 
T o, T l . . . .  where T k = (Xk, Ak) , until the whole of  V n is spanned. 

Algorithm MAKETREE 

begin 

k : = 0 ;  X o : = { 1 } , A o : = 0  
while X k =/= V n do 

begin 
Xk+l::Xk'~ Ak+l:  =Ak;  
for o e X k do 
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begin 
w: = NEXT(w); 
if w ~X~: then begin 

X k + l : = X k + l U { W } ;  
Ak+l:  =Ak+l  U {(0, W)} 

end 
end; 
k : = k + l  

end 
end 

Let K be the value of k when this algorithm terminates. For w e  V n, w~: 1, 
let (o, w) be the unique arc such that (o, w ) e A i ~ ,  and let r(w) be the position 
of  (o,w) in the ordering of the arcs leaving o. Define s ( 1 ) = 0  and s (o )=  

r(u 1 ) + r(u2) + . . .  + r(Um) where Po = (1, ul, u 2 . . . . .  u m = o) is the unique path f rom 1 
to o in T~. It is clear f rom the definition of  MAKETREE that 

for O<_k<_K, if v e X  k then s(o)<_k. (4.8) 

Furthermore,  it is a consequence of  Corollary 5.1, in the next section, that 

P r o b ( K >  4.45 log n) = O(n - 2). (4.9) 

The length of  the path Pv, above, is the sum of  independent random variables 
I"1, Y2 . . . . .  Ym where Y/is the r(ui)th smallest of  n -  1 independent random variables 
which are uniformly distributed on [0,1]. We use (4.8), (4.9) and apply Lemma 
4.2(b) to find that 

P rob (d (o )>  12n -1 logn)  =O(n  -3) for all o, (4.10) 

and (4.5) follows. 
We have used Corollary 5.1, f rom the next section, to prove equation (4.1) (and 

hence Theorem 4.1) for the case when F is the uniform distribution function. Next 
we show how to adapt  the proof  to deal with the more general case when 

F(O) = O, F'(O) = D > O. 

Let e > 0 be such that 

12 12.02 
- - < - - ,  (4.11) 
D - e  D + e  

and find J = J ( e ) > 0  such that 0 < J < ( 2 D )  -1 and 

( D - e ) x < _ F ( x ) < _ ( D + e ) x  for 0_<x_<J. 

Let F I and F 2 be the two distribution functions given by 

~(D+ e)x if 0_<x_< J, 
F1(x)= ( m a x { ( D + e ) J , F ( x ) }  if x > J ,  
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F2(x) = (F(x) 

and note that 
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Fz(X)<_F(x)<_FI(x) for all x_>0. (4.12) 

Let emin I (respectively dmaxz) be the value of emin (respectively dmax) in RAN- 
DOMSHORTPATH when the arc-lengths have distribution function F 1 (respec- 
tively F2). We shall show that 

12.02 log n'~ = O ( n _ l )  ' (4.13) 
Prob emin I <_ (D + a)n ,I 

Prob(dmax2 > 12 log n "~ = (D-a )nJ  O(n- 1)' (4.14) 

and equation (4.1) follows immediately by (4.11), since (4.12) implies that for all x, 

Prob(emin _<x) _ Prob(emin 1 _x ) ,  

Prob(dmax > x) < Prob(dmax 2 > x). 

First consider (4.13), and write 

eminl = min{ Yl, Y2 . . . . .  Yn} 

where the Y's are independent, identically distributed random variables, each 
distributed as the pth smallest of n - 1 independent variables with distribution func- 
tion F 1. Thus 

Prob(Y/_0 for some 1 <_i<_n)<nProb(Yl>_O) 

_< n Prob(B(n - 1, r/) _<p) 

where q=(D+a)Oe(O,1). By standard inequalities concerning the tail of the 
binomial distribution 

Prob(Y/>_O for some l<_i<_n)=o(n-1), 

and thus, except for an event with probability o(n-  1), we have that Y/< 0 for all i. 
The distribution of Y1, conditioned upon the event that YI < 0, is the same as the 
distribution of the pth  smallest, X~p), of n - 1 independent random variables which 
are uniformly distributed on [0,(D+e)-1] conditioned on the event that X(p)<0. 
Hence 

Prob{eminl _< 12.02 log n'~ 
k (D+e)n /t 

__<(1 + o(n-  1)) Prob(e_< 12"02 l°g n ) n  + o ( n - ' )  
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where e is the value of  emin in RANDOMS H O RTP A TH  when the arc-length 
distribution is uniform on [0,I]. Equation (4.7) yields (4.13). 

An exactly analogous argument holds for dmax 2, showing that 

Prob ( d m a x  a > 12 log n "~ 

_<(1 + o ( n - ' ) ) P r o b ( d >  12~gn)+ 0 ( / , / _ 1 )  ' 

where d is the value of  dmax in R A N D O M S H O R T P A T H  when the arc-length 
distribution is uniform on [0,1], and (4.6) implies (4.14). [] 

5. The telephone call problem 

Consider the following problem. A town contains exactly n people 1, 2 . . . . .  n, each 
of  whom possesses a private working telephone. One person hears a rumour from 
another town and spreads it in the following way. He chooses someone randomly 
from the n people in the town (including himself), calls that person and tells him 
the rumour. The process is said to be in state k if exactly k people know the rumour. 
At the stage when the process is in state k, each of  these k people who know the 
rumour selects someone else at random from the n people in the town, independent- 
ly of  all other choices, and calls that person to tell him the rumour. At the next stage 
the process is in state k + l  where 1 is the number of  'new' people called by the 
previous k. Thus the number of people who are 'in the know' grows stage by stage 
until, sooner or later, everyone knows the rumour.  Let Y/be the state of  the pro- 
cess after i stages, so that Y0--1, and define 

S~ =min{i:  Y/=n} 

to be the number of  stages until the whole town knows the rumour.  We have two 
results about S n, dealing with asymptotic behaviour and large deviation estimates 
for large n, respectively. As usual, all logarithms are natural unless otherwise stated. 
Also, non-integer-valued quantities are used in contexts where integers are called 
for; changes which are trivial in spirit but cumbersome in nature are necessary to 
correct the consequences of this aberration. 

Theorem 5.1. As  n --, oo 

Sn ~ log 2 
log2n 

in probabifity. 

Theorem 5.2. I f  7 > 0  then, fo r  all e > 0 ,  

Prob(Sn > (1 + e)a(y) log2n ) = o(n - Y) (5.1) 
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where a ( ? )  = 1 + (~ + 1) log 2. Furthermore, the constant a(y) in (5.1) is best possible 

in the sense that i f  0_<f l<a (? ) ,  then 

P r o b  (S n > fl log2 n) :~ o(n - y). (5.2) 

Before  we p rove  these theorems,  we note a corol lary  which was used in the p r o o f  
o f  T h e o r e m  4.1. 

Coro l la ry  5.3. In the notation o f  the p r o o f  o f  Lemma  4.4, 

P r o b ( K >  4.45 log n) = O(n-2) .  

P r o o f .  In the above  process,  let Z k be the set o f  people  who know the r u m o u r  af ter  
k stages. The  evolut ions of  the sequences X0, X1 . . . .  and Z 0, Z1 . . . .  differ  in var ious  
small  respects,  but  it is clear that  the X ' s  grow at least as fast  as the Z ' s  in the sense 
that ,  for  all A c_ { 1, 2 . . . . .  n } and k_> 0, 

P r o b ( X  k -3 A) >_ P r o b ( Z  k -3 A).  

Wri t ing a = 4.45, it follows that  

P r o b ( K <  a log n) = Prob(Xalog n _3 { 1, 2 . . . . .  n }) 

_> Prob(Zalog n _3 {1, 2 . . . . .  n}) 

= Prob(Sn < a log n) = 1 - O ( n -  2) 

by  T h e o r e m  5.2. [] 

The  rest o f  this section is devoted  to the p roofs  o f  Theorems  5.1 and 5.2. We shall 
suppose  that  person  1 knows the rumour  initially, and it is convenient  to think o f  
h im as the person who  makes  all the te lephone calls in sequence; thus,  in state i, 
we allow 1 to m a k e  exactly i calls, sequentially,  to people  chosen independent ly  at 
r a n d o m .  The  fol lowing basic facts are useful.  Let  W/be  the total  n u m b e r  calls re- 
quired to move  f r o m  state i to state i +  1. Then  

P r o b ( W / = r ) = ( / ) r - '  (1 - / )  for  l < r < ~ ,  (5.3) 

n Exp(etW,)= n - i  if  e t<  - ,  (5.4) 
ne - t -  i ' t 

and it fol lows tha t  

P r o b ( W / < x ) > P r o b ( W j < x )  for  all x and i < j ,  (5.5) 

Exp(e tW,)<Exp(e t~)  for  all i < j  and t > 0 .  (5.6) 

The  idea of  the p r o o f  is as follows. We describe a policy which uses 
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(1 +e)(1 + ( y +  1) log 2) log2n stages 

and which informs the whole population with probabili ty 1 -  o (n- r ) .  This policy 
prescribes ' targets '  for each stage and stops when these targets are met; we shall 
show that the probabili ty that all the targets are met is 1 - o ( n - Y ) .  The actual pro- 
cess grows at least as fast as that controlled by the targets, and the upper bound 
for S n will follow; the lower bound is much easier. The policy may be divided 
broadly into five main steps, defined in terms of  target states to be attained by these 
steps. 

Step I. 
Step II.  
Step III .  
Step IV. 
Step V. 

From state 1 to state N, for some fixed large N. 
From state N to state ~n, where ~ is small and positive. 
From state ~n to state ( 1 -  r/)n, where r/ is  small and positive. 
From state ( 1 - r / ) n  to state n - R ,  for some fixed large R. 
From state n - R  to state n. 

We shall estimate the number of  stages required at each step. It turns out that 
these steps require the following numbers of  stages, with the following probabilities 
(the constants al,a2,a3 are small and positive): 

Step I. 
Step II. 
Step III .  
Step IV. 
Step V. 

O(1), with probabili ty 1 - o ( n - Y ) ,  
(1 + t~l)log2n, with probabili ty 1 - o(n-Y), 
O(1), with probability 1 -  o(n-~),  
(1 + a2) log n, with probabili ty 1 - o (n -  ~), 
o(logn),  with probabili ty 1 - o ( 1 ) ,  or 

(1 + a3)y log n, with probability 1 - o (n-  ~). 

Here  and later, o- and O- terms are non-random and refer to the limit as n --, oo. 
Note that state n - R  is attainable in little more than (1 +log2) log2n stages with 
probabili ty 1 -  o(n-Y); it is only the final step which introduces the complication 
necessary to obtain the required error probabili ty in Theorem 5.2. In the proofs,  we 
shall make considerable use of  (4.2). 

Fix y, e > 0  and let 0 < r / < ~ ;  later we shall take the limit as q~O. 

Step I. Let N be a positive integer such that 

N >  4y/~ (5.7) 

and let T be the number of  stages of  the process until state N is attained. Then, by 
(4.2), 

Prob(T_> 2N) _< P rob (W 1 +.. .  + WN>-- 2N) 

u n - i  t 11 
~ e - 2 N t  1-I for 1 --<e < - -  

i=l n e - t - - i  N 
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< e -  2Nt ( .  rl -- y _  .|U\ by (5.6) 
\ n e - t - N /  

< 

-- \ n - Net /  

=(2~Nn)N2N choosing et= n 
2N 

= o ( n -  Y) since N >  y. 

Thus, after 2N stages the process is in state N at least, with probability 1 - o ( n - r ) .  
Our policy requires that we stop making calls when state N has been attained, and 
move on to Step II. 

Step II. We set the target of  moving from state N t o  state (n by multiplying the cur- 
rent state by ( 2 - r / )  at each stage. This is possible, with large probability, so long 
as ~ = ~(t/) is sufficiently small. Suppose that ~ -- ((q)  > 0 is small enough to ensure 
that 

(2~(2 -- r/).), < ( 1 .  r / ) l - ,  (5.8) 

If  t_>O, then by (4.2), for e t<n/ ( i (2 -q ) ) ,  

Prob(W//+ W/+ 1 + ... + W~2_~)i_> i ) 

_i,(21-~)iet(l'l-j) rite ( n--(2--r / ) i  ~(l-r/)i 
<<_e ~_, n_je--- 7 <_e- \n-_~2-L-_-e~tj =(g(tff (5.9) 

where 

( _n_z ( 2 -  r/)i "~ '- ,  
g ( t ) = e - " t \ n _ ( 2 _ q ) i e , /  • 

Choose t = r where 

e~_ nr/ (5.10) 
i(2 - t / ) '  

noting that (5.8) implies that 

n 
1 < e r < - -  whenever N_< i_< ~n; 

i(2 - I/) 

we have chosen r so that g(r) is a minimum. From (5.9) and (5.10), if N<_i<_(n, 
then 

(5.11) 
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Suppose the process is in state i at some stage, and write E(i) for the event that at 
the next stage the process is in some state strictly less than (2 - r / ) i .  By (5.11) 

Prob(E(i))  < v where v = v ( r / ) -  vff(1 - v/) 1-~" 

Let K be the least integer such that N ( 2 -  v/)K___ ~n. Then 

Prob(~iE(N(2--vl)k))<k~L(V(N(2n~)k)n)N+k~L(v,n)N(2-n)k 

<--vNK(~) qN'4 l(V~rl)m-- V~ rl since v ( " < l  

by (5.8), where m=N(2-Vl) L and O<_L<K. Choose L such that m=]/n, note that 
K =  O(log n), and use (5.7) to find that 

P r o b ( ~ i E ( N ( 2 -  t / )k ) )=  o(n-Y). 

Thus we fail to attain the targets of  Step II with probability o(n-Y). I f  we meet 
these targets, then we attain state ~n at least, in no more than log2_~n stages. We 
assume that no more calls are made in this step once state ~n has been attained. 

Step III .  We set the target of  getting f rom ~n to ( 1 -  r/)n in O(1) stages. Choose 
0 < v < +r/ and define 

2x 
g(x) = (1 - v) 1 + ~ "  (5.12) 

Let a>O,  b=g(a), and note that 

g(x)>x whenever x <  1-¼r/.  

In the usual way, inequality (4.2) implies that 

Prob(Wan +... + Won >- an) <_ (h(t)) n 

where 

h ( t ) = e - ( 2 a - b ) t ( ~ )  b-a and l_.<et<b -1. 

It is easy to check that, if 0 < a < l - ¼ v / ,  then there exists r = r ( a )  such that 
1 ___e~<b -~ and h ( r ) <  1 (just check that h ' (0 )<0) .  Let K be the least positive in- 
teger such that gK(O>__ 1-v / ,  where gK denotes the Kth iterate of  g; note that 

gX(~) <_ g(1 -- V/) < (1 -- V)(1 -- ¼r/), 

and the fixed point x of  g, being the root of  the equation g(x)= x, is given by 

x = 1 - 2v > (1 - v)(1 - ¼v/). 
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F o r  each O<_i<K, there  exists ri such tha t  h ( r i ) <  1 and  

P r o b (  Wg~(~)n +.. .  + Wg~ + l(~)n ___ gi(~)n) <_ (h (ri)) n. 

Def ine  h = m a x { h ( r i ) : 0  < i <  K} ,  and  write E(k)  for  the event tha t ,  f rom state  k, we 

fai l  to  a t t a in  state ng(k/n)  by  the next stage.  Then  

P rob (E(~n )  U E(g(~)n) O.. .  U E(g K- l (~)n)) _< Kh n = o(n - r) 

as requi red .  Thus ,  a f te r  a fur ther  K stages we a t t a in  at  least  s ta te  (1 - #/)n, with p ro-  

bab i l i t y  1 - o ( n - Y ) ;  we assume tha t  we s top at  exac t ly  state ( 1 - r / ) n .  

Step IV. The  to ta l  n u m b e r  o f  calls requi red  to a t ta in  state n - R f rom state  (1 - r/)n 

is at  most  

S =  W~ +. . .  + Wn_R. 

C h o o s e  R = R(r/)  > 2 such tha t  

R >  2?/rl. (5.13) 

In  the usual  way,  

H =  P r o b ( W  1 + ... + W,_R>_(1 + r/)n log n) 

satisfies 

n-R n - i  17<~e-t( l+t l )nl°gn 1-I - - - - -  
i=l n e - t - i  

Set e -  t = 1 - R(2n) -  1 to ob t a in  

and  thus 

i f  l___et< ( l - R )  -1 

n-R i ="ivi 1 II "77 i 
~=~ ne-  - i  s : .  n - ½ R - ( n - J )  

= I I  1+ 
j =R  

< e x p  ~=R 2 j - R  

l d x  

"<[ ( '  '°'n 2nj 

=[(1 ,o,n 

_< exp( - ½Rr# log n) 

= o ( n  -y)  by  (5.13). 
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Thus, with probabili ty 1 -  o(n-~),  at most (1 + r/)nlog n calls are required at this 
step. But, at each stage, there are at least ( 1 -  r/)n callers, and so the number of  
stages is at most 

1 +r/logn 
l - r /  

with probabili ty 1 -  o(n-~).  Assume now that we are in state n - R  exactly. 

Step V. The total number  of  calls required to complete the spread of  the rumour is 

T= W,_R+...  + Wn_I. 

I f  we require an error probability which is only o(1), then not many stages are 
necessary, since 

Prob(T_> x) _< Pro - i ~ 
. =  

-<R P r o b ( W n - l - >  R )  

=R=~x/ - _ 
i R ~ 

- R  1 - - -  ~ 0  i f x = n t ( n )  where t (n ) - - '~ ,  (5.14) 

giving that the required number  of  stages is at most 

nil(n) 
- -  - l ( n )  
n - R  

with probabili ty 1 - o(1); set i ( n )  = log log n, say. 
To obtain a smaller error probabili ty we require a more sophisticated argument 

than that of  (5.14). Set a = ~ , + r / > y .  Then, if l _ < e t < ( 1 - n - l )  -~, 

Prob(T>anlogn)<e -anti°g" f i  j-( 
j=l ne -t n - j ) "  

Set t = r where 

e - ~ = l  - f l  and O < i < l .  
n 

Then 

Prob(T>anlogn)<_(1-fl-)anl°gn f i  j 
n~ J=~ J - - t  

- A ( l ,  R)n -a~ 
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where A is a constant. Set 

f l_  2Y+q <1 
2(y + r/) 

to find that 

P rob (T>  an log n) = o(n-  Y). 

Hence, with probability 1 -o(n-Y) ,  the number of  stages required for this step is 
at most 

(y + r/)n log n 
= (1 + o(1))(y + r/) log n. 

n - R  

To see that this is the best possible order of magnitude subject to an error probabili- 
ty of  o(n-~), note that 

and thus, if n is large then with probability at least In -y , we have that 

W n_l>_ ynlog n, implying that at least y log n stages are needed to reach state n 
from state n - 1 .  

This final step requires loglogn stages with probability 1 -o (1 ) ,  or 
(1 + o(1))(y + r/) log n stages with probability 1 - o(n-  Y). 

We are now ready to finish the proofs of  Theorems 5.1 and 5.2. With probability 
1 -  o(n -y) all the above steps attain their targets and use in all at most 

2N+  log2_ ~n + O(1) + 1 + r/log n + (1 + o(1))(y + r/) log n 
l - r /  

stages, where the o- and O-terms depend on r/alone. Thus 

+ l+qX~ 2)  = l _ o ( n - y )  P r o b (  Sn < l o g 2 _ n 2 + ( y + r  / log 
\ log2n _ 1 - - i ' ~ /  

for all small, positive r/. Let r/~0 to obtain that, for all e >  0, 

P r o b (  Sn _ < ( l + e ) ( l + ( y + l ) l o g 2 ) ) = l - o ( n  -y) 
\ log2n 

which proves (5.1). 
From (5.1), for all e > 0 ,  

P r o b {  S, > ( l + e ) ( l + l o g 2 ) ' ] ~ 0  a s n ~ o o  (5.16) 
\ logzn 7 
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and Theorem 5.1 will follow as soon as we have shown that, for all e > 0 ,  

P r o b f  \ logzn Sn < ( 1 - c ) ( l + l o g 2 ) ) ~ 0  as n ~ o o ;  (5.17) 

this lower bound for S,  is easy to see. If 0 < 5 <  1, then we require at least loga(5n) 
stages to attain state On from state 1. Furthermore, the total number 

U = W o n +  .....-]- W n _  1 

of  remaining required calls is such that 

Var(U) 
Prob(U_< (1 - e)n log n) 

((1 - e)n log n - Exp(U)) 2 

by Chebyshev's inequality. But 

n - 1 (I  ~_~)n ],/ 

Exp(U)=  ~ Exp(W/)= ~ - - - n l o g n ,  
i=On i= 1 l 

, - I  ni ~ 1 
Var(U) = ~ n 2 i=a, (n - i)2 i=1 ~ =Bn2 '  

for some constant B, and hence 

Bn 2 
P r o b ( U < ( 1 - e ) n l o g n ) _ < ( e n l o g n )  2 ~0 a s n ~ o o .  

Therefore, with probability 1 - o(1), at least (1 - e)n log n calls are required to attain 
state n from state t~n, and this requires at least ( 1 - e ) l o g n  stages. Hence 

P r o b ( S n < l o g 2 ( ~ n ) + ( 1 - e ) l o g n ) - - + O  as n ~  oo 

which implies that (5.17) holds for all e > 0 ,  and Theorem 5.1 is proved. 
Finally we show that (5.2) holds for ~<t~0,).  Suppose 0</L< 1. To attain state 

(1- /~)n from state 1 requires at least log2((1-/~)n) stages. To attain state n - 1  
from state (1- /x)n  requires 

V= W(1- u ),, + ... + W,  _ 2 

calls, and a calculation similar to that of Step IV above shows that 

Prob(V_< (1 -/~)n log n) = o(n-  Y). 

By (5.15), if n is large then, with probability at least ½n-Y, at least y log n stages are 
required to attain state n from state n -  l; this implies that 

P rob (Sn-  log2((1 - /~)n) + (1 -/~) log n + y log n) _> ½n- Y(1 + o(1)). 

Choose ft such that 

8_< 1 + log2(1 -/~) + (y + 1 -/~) log 2 <  1 + (y+  1) log 2 

to deduce (5.2). [] 
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