Mathematical Programming 11 (1976) 150-157.
North-Holland Publishing Company

SHORTEST PATH ALGORITHMS FOR KNAPSACK
TYPE PROBLEMS

A.M. FRIEZE

University of London, London, England

Received 13 February 1975
Revised manuscript received 16 january 1976

The group knapsack and knapsack problems are generalised to shortest path problems in a
class of graphs called knapsack graphs. An efficient algorithm is described for finding shortest
paths provided that arc lengths are non-negative. A more efficient algorithm is described for the
acyclic case which includes the knapsack problem. In this latter case the algorithm reduces to a
known algorithm.

1. Introduction

The name group knapsack problem has been given to
minimise . ¢x;, (1.1)
i=1

n

SUbjCCt to 2 Xi8i = Lo, (1.2)

i=1

Xy, ..., X, non-negative integers.

The elements gy, ..., g, are a subset of the elements of a finite additive abelian
group H and c¢,,..., ¢, are non-negative reals.

This problem was first considered by Gomory [4] and arises in a pure-integer
programming problem when the non-negativity constraints are relaxed on an
optimal set of basic variables for the associated LP problem.

Algorithms for solving this problem have been described by Gomory [5],
Shapiro [8, 9], Hu [6] and others.

It can be formulated as a shortest path problem in the following way:

Let G, be the graph with nodes H and arcs of the form (h, h +g;) h an arbitrary
element of H and j=1,..., n. The length of such an arc is ¢;. Let P be a path
from 0 to g, in G, then if x; is the number of arcs of the form (k, h +g;) in P then
(x1,...,x,) is a solution to (1.2) and the length of P is (1.1). Conversely if
(x1,...,x,) satisfies (1.2), then one may construct a set of paths from 0 to g, of the
same length. Thus the problem becomes that of finding a shortest path from 0 to
go. In this paper we give a new algorithm for solving this problem.

The name knapsack problem applies to

maximise), ¢x;, (1.3)

=0

150

A.M. Frieze | Shortest path algorithms 151

n
subjectto Y, wx; = W, (1.4)
=0
Xo, Xi, . . . » X, NON-NEgative integers,
where ¢, =0, ¢\,..., C. are positive reals, wo=1and w,, ..., w, W are positive

integers.

One can formulate a knapsack problem as a longest path problem defining the
graph G, with nodes 0, 1, ..., W and arcs of the form (w, w + w;) of length ¢;. The
knapsack problem is then equivalent to that of finding a longest path from 0 to W.

Gilmore and Gomory [2] describe an algorithm for solving trim loss problems
which solve a sequence of knapsack problems. A more efficient algorithm for
solving the knapsack sub-problems is given in Gilmore and Gomory [3].

2. An algorithm

The graphs G, and G, of the previous section are examples of a class of graphs
which for the purposes of this paper we call knapsack graphs.

Definition. A graph G with nodes N and arcs A is a knapsack graph if:

(2.1) The arcs A can be partitioned into n disjoint sets A,,..., An;

(2.2) the length of each arc belonging to A; is [;;

(2.3) let P =(io, i1, ...,I,) be a path between an arbitrary pair of nodes io, i,.
Suppose that (i1, i;) € A, for t =1,...,p. Then for any re-ordering
n.,...,n, of the indices m,, ..., m, there exists a path Q = (jo, j1s - - - » o)
where jo = io, j, =i, and (ji-1, i) E A, for t=1,...,p.

For shortest path problems with non-negative arc lengths an efficient algorithm
is that described by Dijkstra [1]. We describe a modification of this algorithm
applicable to a group knapsack problem which takes advantage of property (2.3)
of knapsack graphs. The algorithm finds a shortest path from an origin node s to
all other nodes.

Algorithm 1

The algorithm uses a set of labels (dj, p;) for each node j such that when a label is
made ‘permanent’ by the algorithm d; is the length of a shortest path TP; from s to
j and p; is the predecessor of j on TP;. Define a; by arc (p;, j) € A,, and note that
for a group knapsack problem one can dispose with p; and use labels (d,, a;).
Finally if a label is not currently permanent it is referred to as temporary.

Step 0. Put (d,, p,) =(0, s), a, =n and (d;, p;) = (», s) for j#s.

Step 1. If all labels are now permanent terminate, otherwise let d. = min(d; | j
has a temporary label) make the label (d., p.) permanent.

Step 2. For r < a, and (k, j) € A, calculate di + I, and if d, + I, < d, replace the
label of j by (d. + 1., k). Go to step 1.

The improvement of the above algorithm over the more general Dijkstra

152 A.M. Frieze | Shortest path algorithms

algorithm is that in the latter algorithm one would have replace r < a, by r <n in
step 2.

Before proving that this modification is valid we introduce some notation.

For an arbitrary path P we denote its length by I[(P). If P =(i,,...,i,) and
(ip—1, i) € A, we define 6(P)=m.

At any stage of the algorithm if a node k has label (d;, p.) with d, # =, then one
can construct a path Q=(jo, . . ., j;) from s to k of length d, by tracing back from
k with j, = p,,,. If k has a permanent label we refer to this path as the tree path
TP..

Given a path P = (io, iy, ..., i,) with (i, i) € A,, we say that P conforms if
mz=2m,=-- -Zm,,.

Theorem 2.1. Algorithm 1 finds a shortest path from s to all other nodes provided
that ;=0 forj=1,...,n.

Proof. We shall prove this inductively. We assume that when a label (d,, p.) is
about to be made permanent that we have found shortest paths for the set of
permanently labelled nodes L3 k. This is trivially true initially.

We note first that if i €L, j& L and (i,j) € A,, then t < §(TP,) implies that
1(Q)=d, where Q is TP; followed by the arc (i, j).

Now let P = (iy, iy, ..., i,) be a path from s to k, and let i, be the first node of P
not belonging to L. Define P, to be TP,_, followed by the arc (i,_,, i;). Clearly
[(P,) < [(P) and if P, conforms then I(P,) = d, by the note at the beginning of the
theorem. In this case /(P)=d, as is to be proved. Conversely suppose that
Pi= (o, J1s- .., Js) and that (u-1, ju) € Am, foru =1,...,q and m, > m,_,. Define
r=0 by m=---=2m=2m;>m,=---2m,,,. By (2.3) applied to
(s Jr+1s + - - » Jq) there exists a path (j,, jiui, . . . , j5) from j, to j, such that (j, ji.) €
A, and (ji, jis1) € A, for t > 7. Let Q =(oy. .« s Jp ji1, ..., j5) and let j, be the
first node of Q that does not belong to L where clearly p = r + 1. Define the path
P, to be TP;, , followed by (jj-i, j;). Clearly I(P,) < I(P,). If p = r + 1 then since
m, =m, we can deduce that /(P,)= d, and the proof is complete. If p > r +1,
then by the definition of r we have 6(P,) < §(P,). If P, conforms, then [(P) = d,,
otherwise we continue the above process to define paths P,, P,,.. ., P,, satisfying
I(P)=1(P)=1(P)=---=I(P,)=--- and 8(P)>86(P)>:-->8(P,)>"--.
No path can be repeated in this process and we must ultimately terminate with a
path Py that conforms and has [(Py) = di. Thus /(P) = d,. and so a shortest path
has been found.

We complete the proof by showing that any node reachable by a path from s
will get a permanent label. Assuming the contrary there exists a path P from s to a
node k that does not receive a finite permanent label. Using an almost identical
argument to that above we can prove the existence of an infinite sequence of
non-conforming paths P,, P,,. .., P,, such §(P,.,) < 8(P.) for all n. Each path P,
being a tree path followed by an arc to a node not receiving a finite permanent
label. This is clearly impossible.

The efficiency of the algorithm will depend on the ordering implied by

A.M. Frieze | Shortest path algorithms 153

Ay, ..., A. A good ordering we feel is one satisfying
Lsh<---<l, 2.9

Ordering the arcs as in (2.3) does not minimise the total number of operations
required by the algorithm for all sets of data. However it is a reasonable
assumption that shortest paths will have short arcs and so such an order will tend
to reduce the values of a, in step 2.

The following theorem gives an upper bound to the number of operations
required if (2.4) is satisfied.

We make an assumption for this theorem that for ¢ = 1,..., n there exists a
node o, such that (s, 0:) € A,. This holds for example in the case of the group
knapsack problem. In view of (2.3) if o, does not exist for some k, then no arc
belonging to A, lies on any path from s and so such arcs can be deleted.

Theorem 2.2. Assume that (2.4) holds. For arbitrary k # s let a (k) denote the value
of ax in step 2 of the algorithm when the label of k is made permanent. Let
$, i1, ..., im be an ordering of the nodes of G such that a(i))<a(i)<---<a(in),
then a(i))<t fort=1,...,m.

Proof. Define the set of nodes S, ={k Ia(k)s t} then we shall prove
|ISc|=k fork=1,...,n 2.5)

It is clear that if we prove (2.5) we have proved the theorem. Let o4, ..., o, be
defined as above, then from (2.4) we deduce that a(o,)<t. Therefore S, D
(o1, ...,0%) and the theorem is proved.

Consider now the group knapsack problem. Suppose that the group under
consideration has D elements. Then the maximum number of group additions
needed to find shortest paths to all non-zero nodes is

"2:' r+(D—-n-1n. (2.6)

Note that to obtain (2.6) we use the fact that there is no need to carry out step 2
for the last node to be permanently labelled.

This is a pessimistic upper bound only being achieved if D = n + 1 and ¢, is the
shortest path from 0 to k for k =1,...,n. We note that (D — 1)(D —2)/2 is the
number required for the algorithm of Hu [6] and so our algorithm cannot be less
efficient than this.

At the other extreme, if the group is cyclic with a generator g, with ¢, = 0 and
¢; >0 for j# 1, then the algorithm requires exactly D-2 group additions.

We can say that two paths in a knapsack graph G are equivalent if one can be
obtained from the other by an application of (2.3). This divides the paths of G into
equivalence classes. The efficiency of algorithm 1 rests on the fact that only one
path from each equivalence class is considered throughout.

It is noted in Hu [6] that the Dijkstra algorithm can be readily adapted to solve
problems where the length of a path is a more general function ¢ (P) satisfying

154 A.M. Frieze | Shortest path algorithms

é(P)=¢(Q) if Q is a sub-path of P. Q2.7

We note that the proof of Theorem 2.1 only needs this property of paths in a
graph with non-negative arc-lengths. Thus algorithm 1 can be modified in an
obvious way to find minimum paths provided that (2.7) is satisfied.

(A further necessary condition is that if P =(s,i},...,i,) and if Q is a
minimum ¢ path from s to i, where g < p, then we must have ¢(Q, ize1,. ..,)<
¢ (P)).

We note that the Moore algorithm [7], where a node becomes a ‘candidate’
processing in step 2 each time its label changes can be modified in the same way
we have modified the Dijkstra algorithm. We simply replace step 1 by: “Let k be
any node which has not been chosen in step 2 since it last had its label altered. If
no such k exists terminate”. This algorithm terminates provided that the given
graph has no negative cycles.

3. Acyclic knapsack graphs

A significant amount of time in algorithm 1 will be spent in finding the node k
chosen in step 1 to have its label made permanent. It is clearly an advantage if
there is a prior order in which the nodes can be chosen. For an acyclic graph one
can use the topological order. We therefore assume that the nodes of the graph G
have been numbered 0, 1, ..., m such that if (i, j) is an arc of G then i <j. The
graph G, for the knapsack problem is already topologically ordered 0,1,..., W.
In this case step 1 of algorithm 1 can be replaced by “choose the next node in the
order”. Alternatively we can use the recurrence relation

d; =min(d, + L |,) E A k<a), j=0,1,...,m @3.1)

where p; is the node i giving the minimum in (2.9) and (p;, j) € A,
Note that I, can be negative in this algorithm.

Theorem 3.1. The values d; defined by (3.1) are the lengths of shortest paths from 0
to j.

Proof (outline). We proceed inductively assuming the propositions validity for
j <k.Let P be a path from 0 to k. Let i <k be the penultimate node of this path.
Define P, to be TP, followed by (i, k). Then !(P,) < [(P) and if P, conforms, then
d. < I(P)). If P, does not confirm then we can ‘re-sort’ the arcs as in Theorem 2.1
to produce a path P). Let i’ be the penultimate node of P; and let P, be TP;
followed by (i', k). Then I(P,) < I(P,) and §(P,) < 8(P,) and either P, conforms or
we continue.

When applied to the knapsack problem by replacing min by max in (3.1), this is
the algorithm of Gilmore and Gomory [3].

A.M. Frieze [Shortest path algorithms 155
4. Non-linear knapsack problems

We consider next the problem

minimise fi(x)+ - - -+ fo(x.), 4.1
subjectto wx;+:- -+ wux, =W, “4.2)
where x,,...,X. are non-negative integers, w,,..., w,., W are assumed to be

positive integers and f;(0) =0 for all j.
We replace the above problem by a shortest path problem. Let G be the

directed graph with nodes (0, 1,..., W) and arcs of the form

(w,w+kw) forj=1,...,n and O0sk <s[(W—w)lw]. 4.3)
The length of each arc in (4.3) is fi(k) and the arcs of G are partitioned into
B,,..., B, where B, is the collection of arcs defined as in (4.3) with j=¢.

Problem 4.1 is then equivalent to finding a shortest path from 0 to W, which uses

at most one arc from each set B;. For general functions f,, ..., f, our formulation
offers no advantage over the normal dynamic programming recussion.

g (w) = min(f,(x,) + g-(w — wx,) [0< x, <[w/w,]), 4.4)

where g,.(w) is the optimum in 4.1 when n is replaced by r and W is replaced by

w. This is essentially because subpaths of shortest paths are not necessarily

shortest paths when the restriction of at most one arc from each B; is applied.
There is however a class of functions for which the above property is true.

Definition. A function f is super-additive if
fx)+f(y)=f(x+y) forallx,y=0. 4.5)

It can be shown for example that if f is concave and f(0) = 0 then f is super
additive over the positive reals.

Assuming 4.5 we can implicitly relax the restriction of at most one arc from
each B; and apply the normal acyclic shortest path algorithm with the refinements
available to knapsack graphs. In the algorithm of course the relaxation is not made
as by (4.5) there is in fact no need. We are thus led to the following algorithm for
solving (4.1) if all f; are superadditive.

We use a triple label scheme (d.,p.,q.) where at the termination of the
algorithm d,, is the minimum objective value if W is replaced by w, p., = ¢ where ¢
is the smallest index j such that the minimal path from 0 to w contains an arc of B;
and q. = k indicating that this arc is (w — kw,, w).

Step 0. d(0)=0 and d,, = for w=1,..., W, r=0and po=n+1.

Step 1. For t=1,...,p,—1and s =1,...,[(W—r)/W,] calculate d, + f.(s)
and if d, + f,(s) < d,.,., relabel r +s w, with (d, + fi(s), ¢, 5).

Step 2. r=r+1,if r <W go to step 1, otherwise terminate.

Theorem 4.1. The above algorithm finds a solution to (4.1) for all right -hand sides
w=0,1,..., Wof (4.2).

156 A.M. Frieze [Shortest path algorithms

Proof (outline). We can clearly proceed inductively assuming the theorems truth
for w < k. For an arbitrary path P define ¢(P) by the last arc of P belongs to B.).
Now let P, be any path from 0 to k and let i, be the penultimate node of P,. If
e(P)<p(i) then clearly I(P,) = d (k). Using our given shortest path to i, and arc
of P from i, to k, resorting the arcs as in Section 2 and combining two arcs from
B.,p, if necessary and using 4.5 we obtain a path P, from 0 to k such that
I(Py)<I(P,) and e(P,) < €(P;). The proof continues as in Theorem 3.1.

We have carried out some limited experiments with this algorithm using
randomly generated problems where f; had the form

[(=0,
fix)=a;+bx ifx>0.

Prior to applying the algorithm we sorted the functions so that
a;|W + byfw; < aj,| W + bylw,

i.e. in order of increasing cost per unit length in the range [0, W]. We wished to
make a comparison with the dynamic programming algorithm of (4.4) and so we
compare the number of function evaluations used in our procedure with the
number that would have been needed in (4.4) (see Table 1).
The parameters in the table of results are as follows: (n, W: are as in 4.1 and
4.2).
wa the integers w; were uniformly randomly generated in the range (1, wa),
a the integers a; were uniformly randomly generated in the range (0, a),
b the integers b, were uniformly randomly generated in the range (1, b),
e, the number of function evaluations needed by the algorthm,
e, the number of function evaluation needed by (4.4).

Table 1.

n w wa a n e e,
25 250 8 5955 273438
25 250 8 6016 260764
25 250 8 7849 275276

7798 255851

6734 102071

4
4
4
25 250 8 4
25 250 20 4

4

4

i tth L b v

25 250 20 5979 171755
25 250 20 6595 135748
25 250 20 4 7364 155193

25 1000 25 10 10 30153 1470256
25 1000 25 10 10 23906 2307246
25 1000 25 10 10 28833 1965540
25 1000 25 10 10 29136 2058319

Table 1 demonstrates the clear superiority of our algorithm over (4.4) in terms -
of computation. Another point in the algorithm’s favour is that the amount of
storage needed is 3W whereas (4.4) requires a minimum (n +2)W.

A.M. Frieze | Shortest path algorithms 157

The ordering of the function f; is clearly important and failing any other
information we could order them after carrying out the first iteration of the
algorithm by sorting them in decreasing order of the number of p (w) with a given
value.

References

[1] E.W. Dijkstra, ‘A note on two problems m connection with graphs”, Numerische Mathematik 1
(1959) 269-271.

[2] P.C. Gilmore and R.E. Gomory, “Multistage cutting stock problems of two and more*dimensions”,
Operations Research 13 (1965) 94-120.

(3] P.C. Gilmore and R.E. Gomory, *‘The theory and computation of knapsack functions”, Operations
Research 14 (1966) 1045-1074.

[4] R.E. Gomory, “On the relation between integer and non-integer solutions to linear programs”,
Proceedings of the National Academy of Sciences 53 (1965) 250-265.

[5] R.E. Gomory, “Some polyhedra related to combinatorial problems™, Linear Algebra and its
Applications 2 (1969) 451-558.

[6] T.C. Hu, Integer programming and network flows (Addison-Wesley, Reading, Mass., 1969).

[7]1 E.P. Moore, “The shortest path through a maze”, in: Proceedings of an international symposium
on the theory of switching, Part II, Apr. 2-5, 1957 (Harvard University Press, Cambridge, Ma.,
1959).

[8] J.F. Shapiro, “Dynamic programming algorithms for the integer programming problem I: The
integer programming problem viewed as a knapsack problem™, Operations Research 16 (1968)
103-131.

[91 J.F. Shapiro, “‘Group theoretic algorithms for the integer programming problem II: Extension to a
general algorithm™, Operations Research 16 (1968) 928-947.

