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Abstract

We study a random walk that prefers to use unvisited edges in the context of random
cubic graphs. We establish asymptotically correct estimates for the vertex and edge
cover times, these being ≈ n log n and ≈ 3

2n log n respectively.

1 Introduction

Our aim in this paper is to analyse a variation on a simple random walk that may tend to
speed up the cover time of a connected graph. This variation is just one of several possible
approaches which include (i) non-bactracking walks, see Alon, Benjamini, Lubetzky and
Sodin [3], (ii) walks that prefer unused edges, see Berenbrink, Cooper and Friedetzky [4]
or (iii) walks that a biassed toward low degree vertices, see Cooper, Frieze and Petti [7] or
any number of other ideas. In this paper we study idea (ii) in the context of random cubic
graphs, partially solving a problem left from [4].

1.1 Unvisited Edge Process

The papers [4], [11] describe a modified random walk X = (X(t), t ≥ 0) on a graph G, which
uses unvisited edges when available at the currently occupied vertex. If there are unvisited
edges incident with the current vertex, the walk picks one u.a.r. and make a transition along
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this edge. If there are no unvisited edges incident with the current vertex, the walk moves
to a random neighbour.

In [4] this walk was called an unvisited edge process (or edge-process), and in [11], a greedy
random walk. For random d-regular graphs where d = 2k (d even), it was shown in [4] that
the edge-process has vertex cover time Θ(n), which is best possible up to a constant. The
paper also gives an upper bound of O(nω) for the edge cover time. The ω term comes from
the w.h.p. presence of small cycles (of length at most ω). In [6], the constant for the vertex
cover time was shown to be d/2.

Theorem 1. Let X be an unvisited edge-process on a random d-regular graph, d even. For
d ≥ 4, the following holds w.h.p. The vertex cover time of the edge-process is T Vcov(G) ∼
dn/2.

The paper [4] included the experimental data shown in Figure 1 for the performance of red-
blue walks on odd degree regular graphs. Namely, for d = 3 the cover time is Θ(n log n)
and decreases rapidly with increasing d. For d even, the experiments confirm the cover time
result of Theorem 1 that T Vcov(G) ∼ dn/2.
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Figure 1: Normalised cover time of the unvisited edge process on random d-regular graphs
as function of n = |V |. Figure from [4]

1.2 Our results

Let G = (V,E) be a connected 3-regular (multi)graph on an even number n of vertices.
Consider the following random walk process, called a biased random walk. It is an edge
colored version of the previously described unvisited edge process. Initially color all edges
red, and pick a starting vertex v0. At any time, if the walk occupies a vertex incident to
at least one red edge, then the walk traverses one of those red edges chosen uniformly at
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random, and re-colors it blue. If no such edge is available, the walk traverses a blue edge
chosen uniformly at random. For s ∈ {1, . . . , n} let CV (s) denote the number of steps taken
by the walk until it has visited s vertices, and similarly let CE(t) denote the number of steps
taken to visit t ∈ {1, . . . , 3n/2} edges.

We will let G be a random graph, and we use EG (X) to denote the expectation of X with
the underlying graph G fixed.

Theorem 2. Let s, t be fixed such that n−n log−1 n ≤ s ≤ n and (1− log−2 n)3n
2
≤ t ≤ 3n/2.

Let ε > 0 also be fixed. Suppose G is chosen uniformly at random from the set of 3-regular
graphs on n vertices. Then with high probability, G is connected and

EG (CV (s)) = (1± ε)n log

(
n

n− s+ 1

)
+ o(n log n), (1)

EG (CE(t)) =

(
3

2
± ε
)
n log

(
3n

3n− 2t+ 1

)
+ o(n log n). (2)

Here a = b ± c is taken to mean a ∈ [b − c, b + c]. Note in particular that this shows that
the expected vertex and edge cover times are asymptotically n log n and 3

2
n log n with high

probability, respectively. The same statement is true with the word “graphs” replaced by
“configuration multigraphs”. Thus we have the following corollary.

Corollary 1. W.h.p. the vertex cover time T Vcov(G) of G is asymptotically equal to n log n
and the edge cover time TEcov(G) is asymptotically equal to 3

2
n log n.

It is of interest to compare the result of Corollary 1 with other versions of random walk.
Cooper and Frieze [5] showed that w.h.p. the vertex cover time of a random d-regular
graph on n vertices is asymptotically equal to r−1

r−2
n log n. The argument there also shows

that the edge cover time of a random d-regular graph on n vertices is asymptotically equal
to r(r−1)

2(r−2)
n log n. For r = 3 these values are 2n log n and 3n log n respectively and are to

be compared with n log n and 3
2
n log n. For a non-bactracking random walk, Cooper and

Frieze [6] show that the vertex and edge cover times are asymptotically n log n and r
2
n log n

respectively. Interestingly, these values coincide with the results in Corollary 1.

2 Outline proof of Theorem 2

We will choose the multigraph G according to the configuration model. Each vertex v of G
is associated with a set P(v) of 3 configuration points. We set P = ∪vP(v) and generate G
by choosing a pairing µ of P uniformly at random. The pairing µ is exposed along with the
biased random walk.

Starting at a uniformly random configuration point x1 ∈ P , we define W0 = (x1). Given
a walk Wk = (x1, x2, . . . , x2k+1), the walk proceeds as follows. Set x2k+2 = µ(x2k+1), thus
exposing the value of x2k+1 if not previously exposed. If x2k+2 belongs to a vertex v which
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is incident to some red edge (other than (x2k+1, x2k+2) which is now recoloured blue), the
walk chooses one of the red edges uniformly at random, setting x2k+3 to be the corresponding
configuration point. Otherwise, x2k+3 is chosen uniformly at random from P(v). Set Wk+1 =
(x1, . . . , x2k+3). We will refer to x1 and x2k+1 (and the vertices to which they belong) as the
tail and head of Wk, respectively. We will also refer to {x1, x2, . . . , x2k+1} as the points of P
that have been visited.

Define partial edge and vertex cover times

CE(t) = min{k : Wk spans t edges}, (3)

CV (t) = min{k : Wk spans t vertices}. (4)

We will mainly be concerned with the partial edge cover time, and write C(t) = CE(t) from
this point on.

For t ∈ {1, 2, . . . , 3n
2
} we define a subsequence of walks by

W (t) = WC(t)−1 = (x1, x2, . . . , x2k+1) (5)

where k is the smallest integer such that |{x1, x2, . . . , x2k+1}| = 2t− 1. In other words, W (t)
denotes the walk up to the point when 2t− 1 of the members of P have been visited. Thus
throughout the paper:

• Time t is measured by the number of edges t that have been visited at least once.

• The parameter δ = δ(t) is given by the equation

t = (1− δ)3n

2
. (6)

δ(t) is important as a measure of how close we are to the edge cover time.

• the walk length k is measured by the number of steps taken so far. Equation (5) relates
t and k.

A 3-regular graph G chosen u.a.r. is connected w.h.p. and we will implicitly condition on
this in what follows. The bulk of the paper will be spent proving the following lemma.

Lemma 1. For any fixed ε > 0 and (1− log−2 n)3n
2
≤ t ≤ 3n

2
,

E (C(t)) =

(
3

2
± ε
)
n log

(
3n

3n− 2t+ 1

)
+ o(n log n) (7)

for n large enough. Furthermore, for n− n
logn
≤ s ≤ n,

(1− ε)n log

(
n

n− s+ 1

)
≤ E (CV (s)) ≤ (1 + ε)n log

(
n

n− s+ 1

)
. (8)
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Expectations in Lemma 1 are taken over the full probability space. In particular, if G denotes
the set of graphs,

3

2
n log

(
3n

3n− 2t+ 1

)
≈ E (C(t)) =

1

|G|
∑
G∈G

EG (C(t)) .

In Section 7.6 we strengthen Lemma 1 to stating that almost every G satisfies EG (C(t)) ≈
3
2
n log(3n/(3n− 2t+ 1)) (and similarly for CV (s)). Theorem 2 follows.

An essential part of the proof of Lemma 1 is a set of recurrences for the random variables
Xi(t), where Xi(t) is the number of vertices incident with i = 0, 1, 2, 3 untraversed edges at
time t, t = 1, 2, ..., 3n/2. We will argue that for most of the process, it takes approximately
3n/(3n− 2t) steps of the walk to increase time by one. As the process finishes at time 3n/2
we see that the edge cover time should be approximately

3n/2∑
t=1

3n

3n− 2t+ 1
≈ 3

2
n log n,

as claimed in Corollary 1.

Now the recurrence for X3(t) has a solution that implies that X3(t) ≈ nδ3/2, where δ is
as in (6). Given this, we would expect X3(t) to be zero when δ is smaller than n−2/3 or
equivalently, when 3n/2− t is less than n1/3. Thus we would expect that vertex cover time
to be

3n/2−n1/3∑
t=1

3n

3n− 2t+ 1
≈ n log n,

as claimed in Corollary 1.

We separate the proof of Lemma 1 into phases. Define

δ0 =
1

log log n
, δ1 = log−1/2 n, δ2 = log−2 n, δ3 = n−2/3 log4 n and δ4 = n−1 log11 n

and set

ti = (1− δi)
3n

2
for i = 0, 1, 2, 3, 4. (9)

We do not hesitate to remind the reader of the meaning of these quantities.

The first phase, in which the first t1 edges are discovered, will not contribute significantly to
the cover time.

Lemma 2. Let δ1 = log−1/2 n and t1 = (1− δ1)3n
2

. Then

E (C(t1)) = o(n log n).

Between times t1 and t4 we bound the time taken between discovering new edges. The proof,
in Section 7, will be split into the ranges t1 ≤ t ≤ t3 and t3 ≤ t ≤ t4.
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Lemma 3. Let ε > 0. For t1 ≤ t ≤ t4 and n large enough,

E (C(t+ 1)− C(t)) = (3± ε) n

3n− 2t
+O(log n).

Note that because 3n
2
−t1 = O(δ1n), theO(log n) term only contributes an amountO(nδ1 log n) =

o(n log n) to the the edge cover time.

Finally, the following lemma shows that the final log11 n edges can be found in time o(n log n).

Lemma 4. For t > t4 and n large enough,

E (C(t)− C(t4)) = o(n log n).

We note now that Lemma 1 follows from Lemmas 2, 3 and 4.

3 Structural properties of random cubic graphs

Here we collect some properties of random cubic graphs.

Lemma 5. Let G denote the random cubic graph on vertex set [n], chosen according to the
configuration model. Let ω tend to infinity arbitrarily slowly with n. Its value will always
be small enough so that where necessary, it is dominated by other quantities that also go to
infinity with n. Then with high probability,

(i) The second largest in absolute value of the eigenvalues of the transition matrix for a
simple random walk on G is at most 2

√
2/3 + ε ≤ .99 for some ε.

(ii) G contains at most ω3ω cycles of length at most ω,

(iii) The probability that G is simple is Ω(1).

For the proof of (i) see Friedman [8] and for the proof of (iii) see Frieze and Karoński [9],
Theorem 10.3. Property (ii) follows from the Markov inequality, given that the expected
number of cycles of length k ≤ ω can be bounded by O(3k).

Let G(t) denote the random graph formed by the edges visited by W (t). Let Xi(t) denote the
set of vertices incident to i red edges in G(t) for i = 0, 1, 2, 3. Let X(t) = X1(t)∪X2(t)∪X3(t).
Let G∗(t) denote the graph obtained from G(t) by contracting the set X(t) into a single
vertex, retaining all edges. Define λ∗(t) to be the second largest eigenvalue of the transition
matrix for a simple random walk on G∗(t).

We note that [2, Corollary 3.27], if Γ is a graph obtained from G by contracting a set of
vertices, retaining all edges, then λ(Γ) ≤ λ(G). This implies that λ∗(t) = λ(G∗(t)) ≤ λ(G) ≤
0.99 for all t. Initially, for small t, we find that w.h.p. G∗(t) consists of a single vertex. In
this case there is no second eigenvalue and we take λ∗(t) = 0. This is in line with the fact
that a random walk on a one vertex graph is always in the steady state.
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4 Random walks and hitting times

We are interested in calculating C(t + 1) − C(t), i.e. the time taken between discovering
the tth and the (t+ 1)th edge. Between the two discoveries, the biased random walk can be
coupled to a simple random walk on the graph induced by W (t) which ends as soon as it
hits a vertex of X. In this section we derive the hitting time of a certain type of expanding
vertex set.

Consider a simple random walk on a cubic graph G = (V,E) with eigenvalue gap 1− λ > 0.
For a set S of vertices and a probability measure ρ on V , let Eρ (H(S)) denote the expected
hitting time of the set S, when the initial vertex is chosen according to ρ. Let π denote
the stationary distribution of the random walk, uniform in the case of a regular graph and
proportional to degrees in general. Let P

(t)
u (v) denote the probability that a simple random

walk starting at u occupies vertex v at step t of the walk.

Lemma 6. Suppose v is a vertex of a graph. Then the hitting time of v, starting from the
stationary distribution π, is given by

Eπ (H(v)) =
Zvv
πv

where
Zvv =

∑
t≥0

(P (t)
v (v)− πv).

Lemma 6 can be found in [2] (Lemma 2.11), and can be applied to hitting times of sets by
contracting a set of vertices to a single vertex. The following bound will be frequently used.
Suppose G is a graph with eigenvalue gap 1− λ(G), and S is a set of vertices in G. Then if
GS is the graph obtained by contracting S into a single vertex, retaining all edges, we have
equal hitting times for S in G and GS and

Eπ (H(S)) =
n

|S|
∑
t≥0

(
P

(t)
S (S)− πS

)
≤ n

|S|
∑
t≥0

λ(GS)t =
1

1− λ(GS)

n

|S|
≤ 1

1− λ(G)

n

|S|
.

(10)

Indeed, |P (t)
v (v)− πv| ≤ λt for any v, t in a graph with eigenvalue gap 1− λ, see for example

Jerrum and Sinclair [10] and use j = k in the middle of the proof there of Proposition
3.1. Also, λ(Γ) ≤ λ(G) for any Γ obtained from G by contracting a set of vertices (see [2,
Corollary 3.27]).

In the following lemma we implicitly view G as a member of a sequence of graphs (Gn), and
G having positive eigenvalue gap means that the second largest eigenvalue λn of Gn satisfies
lim supλn < 1.

Define Nd(S) to be the set of vertices at distance exactly d from a vertex set S. The set S
we consider induces |S|/2 edges all of which are ’far apart’.

Lemma 7. Let G be a cubic graph on n vertices with positive eigenvalue gap. Suppose S is
a set of vertices with |S| ≥ 2 even such that |S| = o(n) and

|Nd(S)| = 2d|S|
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for all 1 ≤ d ≤ ω, where ω tend to infinity arbitrarily slowly with n. Then

Eπ (H(S)) ≈ 3n

|S|
.

Proof. We first note that the set S contains exactly |S|/2 edges. Indeed, as |N(S)| = 2|S|
and the total degree of S is 3|S|, S contains at most |S|/2 edges. As |N2(S)| = 4|S|, each
vertex of N(S) must have exactly one edge to S, implying that S contains at least |S|/2
edges.

Consider the graph GS obtained by contracting S into a single node s, retaining all edges.
In the graph GS, s has degree 3|S|. Then s is a node with exactly |S|/2 self-loops, and is
otherwise contained in no cycle of length at most ω, as |Nd(S)| = 2d|S| ensures that GS is
locally a tree up to distance ω from s. Since πs = |S|/n = o(1) we may choose ω tending to
infinity with ωπs = o(1). We have

Zss =
∑
t≥0

(P (t)
s (s)− πs) =

(
ω∑
t=0

P (t)
s (s)

)
− o(1) +

∑
t>ω

(P (t)
s (s)− πs).

Repeating the argument following (10),∑
t>ω

|P (t)
s (s)− πs| ≤

∑
t>ω

λt = O(λω) = o(1).

We now argue that
ω∑
t=0

P (t)
s (s) = 3 + o(1).

It is argued in Cooper and Frieze [5], Lemma 7, that with no loops at vertex s, the expected
number of returns to s within ω steps is 2 + o(1). With the loops, when at s, there is a 1/3
chance of using a loop and so each visit to s yields 3/2 expected returns; i.e. the 2 of [5]
becomes 3 = 2× 3/2.

We now expand Lemma 7 to a larger class of sets.

Definition 1. Let G = (V,E) be a cubic graph. A set S ⊆ V is a root set of order ` if (i)
|S| ≥ `5, (ii) the number of edges with both endpoints in S is between |S|/2 and (1/2+`−3)|S|,
and (iii) there are at most |S|/`3 paths of length at most ` between vertices of S that contain
no edges between a pair of vertices in S.

Root sets of large order may be thought of as sets that “almost satisfy the hypothesis of
Lemma 7”. The following lemma shows this definition is suitable for our purposes.

Lemma 8. Let ω tend to infinity arbitrarily slowly with n. Suppose G is a cubic graph on
n vertices with positive eigenvalue gap, containing at most ω2 cycles of length at most ω. If
S is a root set of order ω, then

Eπ (H(S)) ≈ 3n

|S|
.
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Proof. Consider the contracted graph GS, and let s denote the contracted node. Then s has
degree 3|S|, and s has at most (1/2 + 2ω−3)|S| self-loops. Apart from the self-loops, s lies
on at most |S|/ω3 cycles of length at most ω, as any cycle of GS containing s corresponds
to a path between members of S in G.

Let R = N(S), and note that |R| = Ω(|S|). Consider the graph Γ, defined as GS induced
on the set of vertices at distance 1, 2, . . . , ω from s. Note that s is not included in Γ. The
graph Γ contains all of R, and as s lies on at most |S|/ω3 short cycles in GS, the number
of components in Γ containing more than one member of R is O(|S|/ω3) = O(|R|/ω3). As
G contains at most ω2 short cycles, the number of components of Γ containing a cycle is at
most ω2 = O(|R|/ω3). This leaves (1 − o(1))|R| connected components in Γ which are all
complete binary trees of height ω, each rooted at a member of R and containing no other
member of R. Let T denote the set of vertices on such components.

Arbitrarily choose |S|/2 of the self-loops of s in GS, and designate them as good. Also say
that an edge is good if it has both endpoints in T ∪ {s}. All other edges are bad.

Consider a simple random walk Z(τ) of length ω on GS, starting at s. Let Bτ denote the
event that Z(τ) traverses a bad edge to reach Z(τ + 1). Whenever the walk visits s, the
probability that it chooses a bad edge is O(ω−3). If the walk is inside T , there are no bad
edges to choose. So for any τ ≥ 0 we have

P (τ)
s (s) = Pr

{
Z(τ) = s ∩

τ−1⋂
r=0

Br

}
+Pr

{
Z(τ) = s ∩

τ−1⋃
r=0

Br

}
= Pr

{
Z(τ) = s ∩

τ−1⋂
r=0

Br

}
+O(ω−2).

If Br does not occur for any r ≤ τ − 1, then the walk (Z(0), . . . , Z(τ − 1)) can be viewed as
the same Markov chain as considered in Lemma 7. So,

ω∑
τ=0

P (τ)
s (s) = 3 +O(ω−1).

We will argue that X1 quickly makes up all but a o(1) fraction of the vertices of X. For the
purposes of discussion, we regard all edges of G(t) visited exactly once by the walk W (t) as
coloured green. In Section 5 we argue that the vertices of X1 are, in a sense that will be
made precise, uniformly distributed on those edges of G(t) which are visited exactly once by
W (t). In Section 8 we prove that toward the end of the walk, the number of green edges is
significantly larger than X1, which implies that most vertices of X1 will be separated by a
large distance. As G contains few short cycles and X1 makes up most of X, this will imply
that the number of vertices at distance k from X is about 2k|X|. In Section 4 we show how
this implies that the expected hitting time of X in the simple random walk is approximately
3n/|X|, which by concentration (Lemma 10) is about 3n/(3n − 2t). Thus the partial edge
cover time C(t), the time to visit t edges, will be given by

E (C(t)) =
t−1∑
r=0

E (C(r + 1)− C(r)) ≈
t−1∑
r=0

3n

3n− 2r
≈ 3

2
n log

(
3n

3n− 2t

)
.
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In Section 5 we show how the vertices of X1 are distributed within green edges. In Section 7
we use these results to calculate E (C(t+ 1)− C(t)) assuming certain concentration results,
which are then proved in Section 8.

5 Random distribution of once-visited vertices

Eventually the biased random walk will spend the majority of its time at vertices in X0, i.e.
vertices with no red incident edges. To bound the cover time, we will bound the time taken
to hit X1 ∪X2, which may be thought of as the boundary of X0.

Let Wk, k ≥ 0 denote the biased random walk after 2k + 1 walk steps have been taken. Say
that a fixed finite walk W is feasible if Pr {Wk = W} > 0 for some k ≥ 0, and fix a feasible
walk W . Let t be the time associated with W as indicated in (5). Let Y denote the subset
of vertices in X1(t) that were visited and left exactly once by W . Note that |Y4X1| ≤ 1,
as the tail v0 and head vk of the walk are the only vertices which may be in X1 after being
visited twice and then only when v0 = vk. Indeed, the first time a vertex v is visited, a
feasible walk must enter and exit v via distinct edges. Color all vertices of Y green. We can
write Y = X1(t) \ {v0}.

Given a feasible walk W , define a green bridge to be a part of the walk starting and ending
in V \Y , with any internal vertices being in Y . Note also that it is not necessary for a green
bridge to contain any vertices of Y . Form the contracted walk 〈W 〉 by replacing any green
bridge by a single green edge, with the walk orientation intact. Let [W ] denote the pair of
(contracted walk, set), [W ] = (〈W 〉, Y ), noting that 〈W 〉 contains no vertex of Y .

We define an equivalence relation on the set of feasible walks by saying that W ∼ W ′ if and
only if [W ] = [W ′]. See Figure 2. Thus the only way that W,W ′ differ is as to where the
vertices in Y are placed on the green bridges.
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Figure 2: Two equivalent walks. Unvisited edges and vertices are not displayed, and edges
visited exactly once are dashed. Lemma 9 shows that the walks are equiprobable.

Lemma 9. Let k > 0 and suppose W is such that Pr {Wk = W} > 0. If [W ] = (〈W 〉, Y )
and 〈W 〉 contains φ green edges, then

Pr {Wk = W | [Wk] = [W ]} =
1

|[W ]|
=

1

(φ+ |Y | − 1)|Y |
,

where (a)b = a(a− 1) · · · (a− b+ 1).

Proof. LetW = (x1, . . . , x2k+1) be a feasible walk on vertices (v1, . . . , vk+1). If |{x1, . . . , x2k+1}| =
2t+ 1 and |{v1, . . . , vk+1}| = r then for some s,

Pr {Wk = W} =
1

3n

1

2r−1

1

3s

t+1∏
j=1

1

3n− 2j + 1
.
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Explanation: Let Wk = (y1, . . . , y2k+1) be the random walk. Firstly, Pr {y1 = x1} = 1/3n.
We reveal the matching µ along with the walk. If i is odd and µ(yi) is not previously revealed,
then Pr {yi+1 = xi+1} = 1/(3n − 2j + 1) where |{x1, . . . , xi}| = 2j − 1. If xi+1 ∈ P(v) for
some v that has not been visited by Wk previously, then Pr {yi+2 = xi+2} = 1/2. All other
steps in the random walk either have probability 1 or 1/3. Here s is the number of times
the walk leaves a vertex that is in X0 at the time of leaving. The value of s is uniquely
determined by 〈W 〉.

Now suppose vi, 1 < i < k+ 1 is a vertex which is visited by W exactly once, so that vi ∈ Y
and x2i, x2i+1 are visited only once. Let vj be another vertex, not necessarily in Y , and let
(x2j−1, x2j) be edge visited only once by W . Form the walk

W ′ = (x1, x2, . . . , x2i−1, x2i+2, . . . , x2j−1, x2i, x2i+1, x2j, . . . , x2k−1).

Call this a transposition of W . Then, as the number of steps of the different types is
unchanged,

Pr {Wk = W ′} =
1

3n

1

2r−1

1

3s

t+1∏
j=1

1

3n− 2j + 1
= Pr {Wk = W}. (11)

Now, if W ∼ Ŵ for two feasible walks, then Ŵ can be obtained from W by a sequence of

transpositions, and Pr
{
Wk = Ŵ

}
= Pr {Wk = W}. It is important to observe here that

a transposition can move a vertex of Y onto a green bridge that was previously empty of
vertices in Y .

The walk 〈W 〉 contains φ green edges. We form any member of [W ] by distributing the
vertices in Y onto the green edges, assigning an internal order to each resulting green bridge.
Let Y = {y1, y2, . . . , ym}. We place y1 on one of φ green edges of 〈W 〉, breaking the edge
into two edges. There are then φ+ 1 choices for the placement of y2, and so on. This implies

|[W ]| = φ(φ+ 1)(φ+ 2) . . . (φ+ |Y | − 1).

If 〈W (t)〉 contains φ green edges (e1, e2, . . . , eφ), we let (K1, . . . , Kφ), Ki ≥ 1, denote the
lengths of the corresponding paths in W (t). We remark that we can sample the vector
(K1, . . . , Kφ) by a Pólya urn process. Initially placing φ balls of distinct colors in an urn,
we repeat the following |Y (t)| times: draw a ball uniformly at random, replace it in the urn
and add another ball of the same color. The sizes of the resulting color classes, including
the initial balls, are distributed as (K1, . . . , Kφ).

6 Recurrences for E (Xi(t))

We discuss the growth rate of |Xi(t)|, i ≥ 0. In an abuse of notation, we will use Xi(t), i ≥ 0
to denote both the set and its size. The context should dispel any possible ambiguity.

12



Let H(t) denote the history of the process up until time t. We have X3(0) = n,Xi(0) =
0, i = 0, 1, 2 and

E (X3(t+ 1) | H(t)) = X3(t)− 3X3(t)

3n− 2t+ 1
(12)

E (X2(t+ 1) | H(t)) = 1t=0 −
2X2(t)

3n− 2t+ 1
(13)

E (X1(t+ 1) | H(t)) = X1(t)− 2X1(t)

3n− 2t+ 1
+

3X3(t)

3n− 2t+ 1
+

2X2(t)

3n− 2t+ 1
(14)

E (X0(t+ 1) | H(t)) = n− (X1(t) +X2(t) +X3(t)). (15)

We remark that X2 ≤ 1 and is almost irrelevant to the ensuing analysis. As justification for
the above equations, consider X1. There is a probability 3X3(t)

3n−2t+1
that the newly paired point

is associated with a vertex in X3(t). In which case, X1 increases by one. Now a step involves
visiting two members of P and if the newly paired point is associated with a vertex v ∈ X1(t)
then except in one exceptional case, the walk will move along an already visited edge {v, w}
where w ∈ X1(t) and then the second visited point will be in P(w). The exceptional case
is when w ∈ X2(t), which explains the last term in (14). The other equations are explained
similarly.

Thus,

E (X3(t)) = n
t∏
i=1

(
1− 3

3n− 2i+ 1

)
= n exp

{
−
∞∑
l=1

3l

l2l

t∑
i=1

1(
3n
2
− i+ 1

2

)l
}

Now ∫ t−1

x=0

dx(
3n
2
− x+ 1

2

)l ≤ Sl =
t∑
i=1

1(
3n
2
− i+ 1

2

)l ≤ ∫ t

x=0

dx(
3n
2
− x− 1

2

)l
which implies that if ω1 = 3n− 2t→∞ then

S1 = log

(
3n

3n− 2t

)
+O

(
1

3n− 2t

)
and

∞∑
l=2

Sl = O(ω−1
1 ).

It follows that

E (X3(t)) = n

(
3n− 2t

3n

)3/2(
1 +O

(
1

3n− 2t

))
. (16)

E (X1(t)) = 3n− 2t− E (3X3(t) + 2X2(t)) (17)

= (3n− 2t)

(
1−

(
1− 2t

3n

)1/2
)

+O

(
3n− 2t

n

)1/2

. (18)

We also have some concentration around these values, as described in the following lemma
which is proved in Section 8.

Lemma 10. Let 0 < ε < 2/3 and let ω tend to infinity arbitrarily slowly. Let δ = δ(t) =
(3n− 2t)/3n.

13



(i) If ω−1 ≥ δ ≥ ωn−2/3 then

Pr

{
|X3(t)− nδ3/2| ≥ nδ3/2

ω1/2

}
= o(1),

and if δ ≤ ω−1n−2/3 then |X3(t)| = 0 with high probability.

(ii) Let δ1 = log−1/2 n and let t1 = (1− δ1)3n
2

.

Pr {∃ 3n/4 ≤ t ≤ t1 : X1(t) < δn} = o(1).

(iii) Let δ4 = n−1 log11 n.

Pr
{
∃t1 ≤ t ≤ t4 : |X1(t)− 3nδ| ≥ ω−1δn

}
= o(1).

(iv) Set δ3 = n−2/3 log4 n.

Pr
{
∃t1 ≤ t ≤ t3 : Φ(t) < (δ0δ)

1/2n
}

= o(1).

where Φ(t) the number of green edges in W (t).

7 Calculating the cover time

7.1 Early stages

With t1 as in Lemma 10, we show that E (C(t1)) = o(n log n). SupposeW (t) = (x1, x2, . . . , x2k−1)
for some t and k ≥ 1. If x2k−1 ∈ P(X(t)) then x2k = µ(x2k−1) is uniformly random inside
P(X(t)), and since C(t+ 1) = C(t) + 1 in the event of x2k ∈ P(X2 ∪X3), we have

E (C(t+ 1)− C(t)) ≤ 1 + E (C(t+ 1)− C(t) | x2k ∈ P(X1)) Pr {x2k ∈ P(X1)}, (19)

We use the following theorem of Ajtai, Komlós and Szemerédi [1] to bound the expected
change when x2k ∈ P(X1).

Theorem 3. Let G = (V,E) be an r-regular graph on n vertices, and suppose that each of
the eigenvalues of the adjacency matrix with the exception of the first eigenvalue are at most
λG (in absolute value). Let Z be a set of cn vertices of G. Then for every `, the number of
walks of length ` in G which avoid Z does not exceed (1− c)n((1− c)r + cλG)`.

The set Z of Theorem 3 is fixed. In our case the exit vertex u of the red walk is chosen
randomly from X1(t). This follows from the way the red walk constructs the graph in the
configuration model. The subsequent walk now begins at vertex u and continues until it
hits a vertex of Yu = X1(t) \ {u} (or more precisely Yu ∪X2(t)). Because the exit vertex u
is random, the set Bu = Yu ∪ X2(t) ∪ X3(t) differs for each possible exit vertex u ∈ X1(t).
To apply Theorem 3, we split X1(t) into two disjoint sets A,A′ of (almost) equal size. For

14



u ∈ A, instead of considering the number of steps needed to hit Bu, we can upper bound
this by the number of steps needed to hit B′ = A′ ∪X2 ∪X3.

Let Z(`) be a simple random walk of length ` starting from a uniformly chosen vertex of
A. Thus Z(`) could be any of |A|3` uniformly chosen random walks. Let c = |B′|/n. The
probability p` that a randomly chosen walk of length ` starting from A has avoided B′ is at
most

p` ≤
1

(|X1(t)|/2)3`
(1− c)n(3(1− c) + cλG)` ≤ 2(1− c)n

|X1(t)|
((1− c) + cλ)`,

where λ ≤ .99 (see Lemma 5) is the absolute value of the second largest eigenvalue of the
transition matrix of Z. Thus

EA (H(B′)) ≤
∑
`≥1

p` ≤
2(1− c)n
|X1(t)|

1

c(1− λ)
. (20)

As |B′| = |X1|/2 + |X3|, we have

E (C(t+ 1)− C(t) | x2k ∈ P(X1(t))) = O

(
(n− |X3|)n

|X1| (|X1|+ |X3|)

)
. (21)

Phase I: t ≤ 3n/4.

We use the bound |X3(t)| ≥ n− t ≥ n/4 and the fact that

Pr {x2k ∈ P(X1(t))} =
|X1(t)|

3n− 2t− 1
= O

(
|X1(t)|
n

)
.

Then (19) and (21) imply

E (C(t+ 1)− C(t)) ≤ 1 +O

(
tn

|X1(t)|n
· |X1(t)|

n

)
= 1 +O

(
t

n

)
. (22)

Summing over t ≤ 3n/4 gives E (C(3n/4)) = O(n).

Phase II: 3n/4 ≤ t ≤ (1− δ1)3n/2.

It follows from Lemma 10 (ii) that with high probability, for all 3n/4 ≤ t ≤ (1 − δ1)3n
2

, we
have |X1(t)| ≥ (3n− 2t)/3. In particular, |X1|(|X1|+ |X3|) = Ω((3n− 2t)2), and by (21),

E
(
C

(
(1− δ1)

3n

2

)
− C

(
3n

4

))
≤

(1−δ1) 3n
2∑

t= 3n
4

O

[
(n− |X3|)n

|X1| (|X1|+ |X3|)

]
(23)

= O

(1−δ1) 3n
2∑

t= 3n
4

n2

(3n− 2t)2

 (24)

= O

(
n

δ1

)
(25)

= o(n log n). (26)
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7.2 Later Stages

We will now use Lemmas 8 and 9, together with Definition 1 and Lemma 10.

For t with δ ≤ log−1/2 n we set ω = ω(t) = log(− log δ) and define the events (with X(t) =
X1(t) ∪X2(t) ∪X3(t))

A(t) = {|X1(t)− 3nδ| = O(ω−1δn)}, (27)

B(t) = {X(t) is a root set of order ω}. (28)

and set E(t) = A(t) ∩ B(t). As a consequence of Lemma 8, equation (20) and the fact that
E
(
X(t)

)
≈ 3n− 2t, we have

E (C(t+ 1)− C(t)) = (3± ε) n

3n− 2t
Pr {E(t)}+O

(
n

3n− 2t

)
Pr
{
E(t)

}
+O(log n). (29)

Here the O(log n) and ε terms account for the number of steps needed to take for the random
walk Markov chain to mix to within variation distance ε of the stationary distribution, at
which time we apply Lemma 8. Here we rely on λ∗(t) ≤ 0.99. In the event of E(t) we use the
fact that X(t) = Ω(3n − 2t), which follows from Lemma 10(ii) and the hitting time bound

1
1−λ

n
X(t)

(see (10)) to conclude that the hitting time is O(n/(3n− 2t)).

Lemma 10 implies that A(t) occurs with high probability for any fixed t ≥ 3n(1−log−1/2 n)/2
and we will argue in Sections 7.3 and 7.4 that B(t) also occurs with high probability. Lemma
3 will follow. Lemma 4 is proved in Section 7.5 and Lemma 1 follows.

7.3 Expansion via concentration

As discussed above, we are interested in showing that the event E(t) occurs with high prob-
ability.

Lemma 11. Fix t and let δ = (3n− 2t)/n. If δ1 = log−1/2 n ≥ δ ≥ δ3 = n−2/3 log4 n then,

Pr {E(t)} = 1− o(1).

Proof. Fix some t, δ in the given range. Expose [W (t)]. Lemma 10 shows that with high
probability, Φ(t), |X1(t)| satisfy

Φ(t) ≥ (δ0δ)
1/2n, (30)

|X1(t)| = 3δn+O(ω−1δn). (31)

As already remarked, this shows that Pr {A(t)} = 1 − o(1). We next bound |X3(t)|. To
do this, we will only use the fact that it is dominated by |X1(t)| throughout this phase: as
δ ≥ n−1/2 log4 n and |X1(t)| ≈ 3δn, by Lemma 10.

|X3(t)| = δ3/2n+O(ω−1δ3/2n) = o(δn) = o(|X1(t)|)
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with high probability. We can now show that X(t) = X1(t) ∪X2(t) ∪X3(t) is a root set of
order ω with high probability. Here ω is chosen to satisfy (34) below.

Let Et denote the set of t edges discovered by the walk, and Ec
t the set of (random) edges

yet to be discovered. The number of edges inside X(t) is given by

e(X(t)) = |Ec
t |+ |E(X1 ∪X2) ∩ Et| (32)

where |Ec
t | = (X1 + 2X2 + 3X3)/2, so

|Ec
t | =

|X1|
2

+O(δ
1/2
1 ) =

|X1|
2

+O(ω−3)

for ω3 � δ
−1/2
0 .

We bound the number of paths of length at most ω between vertices of X1 on edges of Et,
showing that the number is O(|X1|/ω3). Note that such paths include E(X1) ∩ Et, so that
the bound implies |E(X1) ∩ Et| = O(|X1|/ω3).

Let u, v ∈ X1. Suppose u is placed on some green edge f1. There are at most 3ω green edges
at distance at most ω from f1, so as v is placed in a random green edge,

Pr {d(u, v) ≤ ω} = O

(
3ω

Φ

)
= O

(
3ω

n(δ0δ)1/2

)
.

So the expected number of pairs u, v ∈ X1 at distance at most ω is bounded by∑
u,v∈X1

Pr {d(u, v) ≤ ω} = O

(
|X1|23ω

n(δ0δ)1/2

)
= O(nδ

−1/2
0 δ3/23ω) = o(|X1|/ω3), (33)

if we choose
ω33ω � (δ0/δ)

1/2. (34)

With high probability the number of paths is O(|X1|/ω3) by the Markov inequality. This
shows that X(t) is a root set of order ω with high probability.

7.4 Maintaining expansion without concentration

Lemma 12. For any fixed t such that δ = δ(t) satisfies δ4 = n−1 log11 n ≤ δ ≤ δ3 =
n−2/3 log4 n,

Pr {E(t)} = 1− o(1).

Proof. By Lemma 10, at time t3 = (1− δ3)3n
2

the sizes of X1, X3 and Φ satisfy the following
with high probabilty,

Φ(t3) ≥ n(δ0δ3)1/2, (35)

|X1(t3)| ≈ 3nδ3, (36)

|X3(t3)| ≈ nδ
3/2
3 = O(log6 n). (37)
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For v ∈ X1 let N0
` (v) denote the number of vertices of X0 at distance ` from v, using only

edges of Et. Let X ′1 ⊆ X1 denote the set of vertices v ∈ X1 with |N0
` (v)| = 2` for all ` ≤ ω,

and let X ′′1 = X1 \ X ′1. We have |X ′′1 (t3)| = O(nδ
3/2
3 3ω) = O(log7 n) with high probability

from (33). By Lemma 10 iii we have X1(t) ≥ (1− o(1)) log11 n for δ ≥ δ4. So for t3 ≤ t ≤ t4
we have |X ′′1 (t)| ≤ |X ′′1 (t3)| = O((log n)11/ω3) = O(|X1(t)|/ω3) w.h.p. This shows that X(t)
is a root set of order ω.

7.5 The final edges: Proof of Lemma 4

Recall that δ4 = n−1 log11 n and t4 = (1 − δ4)3n
2

. So far we have shown that the edge cover
time claimed by Lemma 1 holds for all t1 ≤ t ≤ t4. We now show that

E
(
C

(
3n

2

)
− C(t4)

)
= o(n log n).

Fix t4 ≤ t < 3n
2

. We bound the hitting time of X(t) = X1(t) ∪X2(t) ∪X3(t), which has size

3n− 2t. We contract X(t) into a single node x and apply Lemma 6, using the bound

Zxx ≤
∑
t≥0

|P (t)
x (x)− πx| ≤

∑
t≥0

λt =
1

1− λ
= O(1).

As the random walk Markov chain mixes to within ε total variation distance of π in O(log n)
steps, it follows that

E (C(t+ 1)− C(t)) ≤ O(log n) +
1

1− λ
n

3n− 2t
.

So, as 3n/2− t4 = O(log11 n),

E
(
C

(
3n

2

)
− C(t4)

)
≤ O(log12 n) +

1

1− λ

3n
2
−1∑

t=t4

n

3n− 2t
= O

(
n log

(
log11 n

))
= o(n log n).

7.6 Strengthening to “with high probability”

So far, all expectations are taken over the full probability space of random graphs and random
walks, simultaneously generated. In particular, the expected cover time is the average cover
time of all cubic multigraphs. In this section we prove that almost all cubic multigraphs
have the same cover time.

Let G denote the set of 3-regular (multi)graphs. For G ∈ G and a random variable X, write

EG (X) = E (X | G) ,

so that, as G ∈ G is chosen uniformly at random,

E (X) =
1

|G|
∑
G∈G

EG (X) .

We prove the following lemma. Define δ2 = log−2 n and t2 = (1− δ2)3n
2

.
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Lemma 13. Let t > t2. If G ∈ G is chosen uniformly at random, then with high probability,

EG (C(t)) =

(
3

2
± ε
)
n log

(
3n

3n− 2t+ 1

)
+ o(n log n).

Proof of Lemma 13. Fix some t > t2. We define the following subsets of G, with ε > 0
arbitrary and ω to be defined shortly,

H =

{
G ∈ G :

∣∣∣∣∣EG (C(t)− C(t2))−
t−1∑
s=t2

3n

3n− 2s

∣∣∣∣∣ ≥ εn log

(
3n

3n− 2t+ 1

)}
, (38)

J =

{
G ∈ G : EG (C(t2)) ≥ n log n

ω

}
, (39)

K =

{
G ∈ G : max

t1≤t≤t4

|X1(t)− (3n− 2t)|
3n− 2t

≥ ε

}
, (40)

L = {G ∈ G : λ(G) > 0.99} . (41)

We will show that asymptotically, the union of these four sets has size o(|G|). In particular,
almost all G ∈ G are in H ∪ J ∪ L, which implies that w.h.p. EG (C(t)) has the desired
value.

It follows from Lemma 5 that |L|/|G| = o(1). Also, Lemma 15 proved below shows that
|K|/|G| = o(1).

In Section 7.1 (see (26)) we show that E (C(t1)) = o(n log n). From Lemma 11 and (29),

E (C(t2)) = E (C(t1)) +O

(
t2∑
t=t1

3n

3n− 2t

)
= o(n log n) +O

(
n log

(
δ1

δ2

))
= o(n log n).

So E (C(t2)) ≤ ω−2n log n for some ω tending to infinity. Then

n log n

ω2
≥ E (C(t2)) =

1

|G|
∑
G∈G

EG (C(t2)) ≥ |J |
|G|

n log n

ω
,

which implies that |J |/|G| ≤ ω−1 = o(1). Define G ′ = G \ (J ∪ K ∪ L), and H′ = H ∩ G ′.
We will show that |H′|/|G ′| = o(1), which will imply that |H|/|G| = o(1).

Write ∆(s) = C(s+ 1)− C(s). Define for G ∈ G ′,

TG =

{
t1 ≤ s < t :

∣∣∣∣EG (∆(s))− 3n

3n− 2s

∣∣∣∣ ≥ εn

3n− 2s

}
.

Define, for some ω tending to infinity with n,

F ′ =

{
G ∈ G ′ :

∑
s∈TG

n

3n− 2s
≥ 1

ω
n log

(
3n

3n− 2t+ 1

)}
.
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If G ∈ G ′ then EG (∆(s)) ≤ (1 − λ(G))−1n/|X1| ≤ 100n/(3n − 2s) for all s, and so if
G ∈ G ′ \ F ′,∣∣∣∣∣EG (C(t)− C(t1))−

t−1∑
s=t1

3n

3n− 2s

∣∣∣∣∣ ≤ ε
∑
s/∈TG

n

3n− 2s
+
∑
s∈TG

∣∣∣∣EG (∆(s))− 3n

3n− 2s

∣∣∣∣ (42)

≤ 1

2
εn log

(
n

3n− 2t+ 1

)
+ 103

∑
s∈TG

n

3n− 2s
(43)

≤ εn log

(
3n

3n− 2t+ 1

)
. (44)

In particular, H′ ⊆ F ′, and it remains to argue that |F ′|/|G ′| = o(1).

For t1 ≤ s < t let F ′s ⊆ G ′ denote the set of graphs G with s ∈ TG. Since Pr {E(s)} = 1−o(1)
(Lemmas 11 and 12), almost all G ∈ G ′ are such that Pr {E(s) | G} = 1 − o(1). For such a
G we have (as in (29) with ε replaced by ε/2)

EG (∆(s)) =
(

3± ε

2

) n

3n− 2s
Pr {E(s) | G}+O

(
1

1− λ
n

3n− 2s

)
Pr
{
E(s) | G

}
+O(log n)

(45)

= (3± ε) n

3n− 2s
, (46)

and so s /∈ TG. Note that we have used s ≥ t2 here, in order to eliminate the O(log n) term.
This shows that |F ′s|/|G ′| = o(1) for each t1 ≤ s < t. Let ω tending to infinity be such that
|F ′s|/|G ′| ≤ ω−2 for all s. So,

1

|G|
∑
G∈G

∑
s∈TG

n

3n− 2s
=
∑
s

|Fs|
|G|

n

3n− 2s
≤ 3

2ω2
n log

(
3n

3n− 2t+ 1

)
. (47)

But by definition of F ′,

1

|G|
∑
G∈G

∑
s∈TG

n

3n− 2s
≥ |F

′|
|G|

1

ω
n log

(
3n

3n− 2t+ 1

)
and we conclude that |F ′|/|G| ≤ 3

2
ω−1 = o(1). This finishes the proof.

7.7 The vertex cover time

Using Lemma 10 (i) we can express the partial vertex cover time in terms of the partial edge
cover time.

Lemma 14. Let n− n log−1 n ≤ s ≤ n be fixed. Then with high probability, G is such that

EG (CV (s)) = (1± ε)n log

(
n

n− s+ 1

)
. (48)
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Proof. As X3(t) is the set of undiscovered vertices at time C(t) − 1, we can write CV (s) =
C(τs), where

τs = min {t : |X3(t)| = n− s} .
Define δs = (1 − (s − 1)/n)2/3. Let τ−s = (1 − δsω)3n

2
for some ω = O(log log n) tending to

infinity with n. By Lemma 10, with high probability

|X3(τ−s )| ≈ n (δsω)3/2 = n

(
1− s− 1

n

)
ω3/2 ≈ (n− s)ω3/2 � n− s,

so τs > τ−s with high probability. By a similar calculation, if τ+
s = (1−δsω−1)3n

2
then τs < τ+

s

with high probability. Lemma 10 implies that t2 < τs ≤ 3n
2

w.h.p. and so Section 7.6 implies
that w.h.p., G is such that EG (C(τ±s )) ≈ 3

2
n log(3n/(3n− 2τ±s + 1)). So,

EG (CV (s)) = EG (EG (C(τs) | τs)) (49)

≤ EG
((

3

2
+ ε

)
n log

(
3n

3n− 2τs + 1

))
(50)

≤ Pr
{
t ≤ τ+

s

}(3

2
+ ε

)
n log

(
3n

3n− 2τ+
s + 1

)
+ Pr

{
t > τ+

s

}(3

2
+ ε

)
n log n

(51)

=

(
3

2
+ ε

)
n log

(
3n

3n− 2τ+
s + 1

)
+ o(n log n) (52)

Now, as 3n− 2τ+
s = 3nδsω,

log

(
3n

3n− 2τ+
s + 1

)
= (1 + o(1)) log

(
1

δsω

)
=

(
2

3
+ o(1)

)
log

(
n

n− s+ 1

)
. (53)

The lower bound for E (CV (s)) is found similarly.

Substituting s = n into (48) gives us (1).

8 Concentration: Proof of Lemma 10

In this section we prove bounds for X1(t), X3(t),Φ(t), collected in Lemma 10. The following
lemma contains a proof of part (i).

Lemma 15. Let δ3 = n−2/3 log4 n, setting t3 = (1− δ3)3n
2

. Then

Pr

{
∃1 ≤ t ≤ t3 : X3(t) >

5

4
nδ3/2

}
= o(1). (54)

Let ω tend to infinity with n. Then for any ω−1 ≥ δ ≥ ωn−2/3,

Pr

{
|X3(t)− nδ3/2| > nδ3/2

ω1/2

}
= o(1),

and for any δ ≤ ω−1n−2/3,
Pr {X3(t) > 0} = o(1).
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Proof. For any set U of vertices with |U | = k, using calculations similar to (16),

Pr {U ⊆ X3(t)} =

(
1− k

n

) t−1∏
j=0

(
1− 3k

3n− 2j − 1

)
(55)

≤
(

3n− 2t

3n

)3k/2

= δ3k/2. (56)

Here the 1− k/n factor accounts for the probability that the starting point of the walk is in
U . For any new edge (x, y) that is added, U can only be entered if the endpoint y which is
chosen uniformly at random from all 3n− 2j − 1 available configuration points is in U . We
have, using the notation (x)k = x(x− 1) . . . (x− k + 1),

E (X3(t)) = nδ3/2

(
1 +O

(
1

δn

))
, directly from (16). (57)

E ((X3(t))2) ≤ n(n− 1)δ3, from (56) with k = 2. (58)

E ((X3(t))k) ≤ (n)kδ
3k/2 ≤ nkδ3k/2 from (56) in general. (59)

Firstly, it follows from (57) and (58) that we have Var(X3(t)) = O(nδ3/2) = O(E (X3(t))),
and so Chebyshev’s inequality shows that for any δ ≥ ωn−2/3,

Pr

{
|X3(t)− nδ3/2| > nδ3/2

ω1/2

}
= O

(
E (X3(t))ω

n2δ3

)
=
( ω
ω2

)
= o(1).

Secondly, the Markov inequality and (57) shows that for δ ≤ ω−1n−2/3,

Pr {X3(t) ≥ 1} ≤ (1 + o(1))nδ3/2 = o(1).

As |X3(t)| takes nonnegative integer values we can for any real z > 1, express the binomial
theorem as

E
(
zX3(t)

)
=
∑
k≥0

E ((X3(t))k) (z − 1)k

k!
≤
∑
k≥0

nkδ3k/2(z − 1)k

k!
= exp

{
(z − 1)nδ3/2

}
,

So for any positive θ = o(1), the moment generating function of X3(t) satisfies

E
(
eθX3(t)

)
≤ exp

{
θnδ3/2(1 + o(1))

}
.

Let δ ≥ δ3 = n−2/3 log4 n. Then with θ = 2/ log n,

Pr

{
X3(t) >

5

4
nδ3/2

}
≤

E
(
eθX3(t)

)
exp

{
5
4
θnδ3/2

} ≤ exp

{
−1

4
θnδ3/2(1− o(1))

}
= o(n−1).

Summing over t = 1, 2, . . . , t3, it follows that X3(t) ≤ 5
4
nδ3/2 for all δ ≥ n−2/3 log4 n w.h.p.
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Lemma 15 implies bounds for X1(t) via X1(t) = 3n− 2t− 1− 2X2(t)− 3X3(t). Firstly, for
θ > 0 with θ = o(1), as X2(t) ≤ 1,

E
(
e−θX1(t)

)
≤ e−θ(3n−2t+2)E

(
e3θX3(t)

)
≤ exp

{
−3θnδ + 3θnδ3/2(1 + o(1))

}
. (60)

Secondly, X3(t) ≤ 5
4
nδ3/2 holding for all 3n/4 ≤ t ≤ t3 w.h.p. implies that w.h.p.,

X1(t) ≥ 3nδ

(
1− 5

4
δ1/2

)
− 3,

3n

4
≤ t ≤ t3. (61)

For n−1 log11 n = δ4 ≤ δ ≤ δ3 = n−2/3 log4 n we have X3(t) ≤ 5
4
nδ

3/2
3 = log6 n w.h.p., so

w.h.p.

X1(t) = 3n− 2t− 2X2(t)−X3(t) = 3nδ

(
1−O

(
log6 n

δn

))
= 3nδ(1− o(1)). (62)

Equations (61) and (62) together imply Lemma 10(ii) and (iii), assuming that ω = o(log n).

Finally, we prove a lower bound for the number of green edges Φ(t).

Lemma 16.
Pr
{
∃t1 ≤ t ≤ t3 : Φ(t) < (δδ0)1/2n

}
= o(1).

Note that as δ0 = 1/ log log n, this implies that Φ(t)� nδ whenever δ1 ≥ δ ≥ δ3.

Proof. Fix some t1 ≤ t ≤ t3, and define δ = δ(t) by t = (1 − δ)3n
2

as usual. Recall that
Y (t) = X1(t) \ {v0} where v0 is the tail of the walk W (t), as defined in Section 5. Define
events

E(t) =

{
Y (t) ≥ 3n− 2t

2

}
,

and let 1t denote the indicator variable for E(t). Note that by (60) with θ = 1/ log n,

Pr
{
E(t)

}
= Pr

{
e−θY (t) > e−θ

3n−2t
2

}
≤ exp

{
−3

2
θnδ(1 + o(1))

}
≤ η

for δ ≥ δ3, where we define η = exp
{
−n1/3 log3 n

}
.

Claim 1. If 0 < θ ≤ n−2/3 log2 n, then there exists an ε = o(log−1 n) such that for t0 ≤ t ≤ t3,

E
(
e−θ(Φ(t+1)−Φ(t))1t

∣∣ [W (t)]
)
≤ exp

{
θΦ(t)

3n− 2t
(1 + ε)

}
1t.

We now show how Claim 1 is used to provide a lower bound for Φ(t), before proving the claim.
Firstly, as each vertex of Y (t) is incident to exactly two green edges, we have Φ(t0) ≥ Y (t0).
So for θ > 0 with θ = o(1), we have by (60),

E
(
e−θΦ(t0)1t0

)
≤ E

(
e−θ(X1(t0)−1)

)
≤ exp {−3θnδ0(1− o(1))} . (63)
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Set
ft(θ) = E

(
e−θΦ(t)1t

)
.

As θ,Φ(t) > 0, we have e−θΦ(t) ≤ 1 and

ft(θ) = E
(
e−θΦ(t)1t−1

)
+ E

(
e−θΦ(t)(1t − 1t−1)

)
≤ E

(
e−θΦ(t)1t−1

)
+ Pr {E(t) \ E(t− 1)}.

Note that Pr {E(t) \ E(t− 1)} ≤ Pr
{
E(t− 1)

}
≤ η. Claim 1 implies that

ft+1(θ) = E
(
e−θΦ(t+1)1t

)
+ η (64)

= E
(
E
(
e−θΦ(t)e−θ(Φ(t+1)−Φ(t))1t

∣∣ [W (t)]
))

+ η (65)

≤ E
(
e−θΦ(t)E

(
e−θ(Φ(t+1)−Φ(t))1t

∣∣ [W (t)]
))

+ η (66)

≤ E
(

exp

{
−θΦ(t) +

θΦ(t)

3n− 2t
(1 + ε)

}
1t

)
+ η (67)

= ft

(
θ − θ(1 + ε)

3n− 2t

)
+ η. (68)

From the bound (63) it follows by induction that for t > t0,

ft(θ) ≤ exp

{
−3θnδ0(1− o(1))

t−1∏
s=t0

(
1− 1 + ε

3n− 2s

)}
+ (t− t0)η.

With δ0 = 1/ log log n, δ ≤ δ1 = log−1/2 n and ε = o(log−1 n), we have by calculations similar
to those leading up to (16),

t−1∏
s=t0

(
1− 1 + ε

3n− 2s

)
≈ exp

{
−

t−1∑
s=t0

1

3n− 2s
− o

(
1

log n

t−1∑
s=t0

1

3n− 2s

)}
≈
(

3n− 2t

3n− 2t0

)1/2

,

as
∑t−1

s=t0
1/(3n− 2s) = O(log n). This implies that for δ3 ≤ δ ≤ δ1,

3nδ0(1− o(1))
t−1∏
s=t0

(
1− 1 + ε

3n− 2s

)
= 3nδ0

(
3n− 2t

3n− 2t0

)1/2

(1 + o(1)) (69)

≥ 2n(δδ0)1/2, (70)

so
ft(θ) ≤ exp

{
−2θn(δδ0)1/2

}
+ (t− t0)η (71)

Now, if
L(t) = n(δδ0)1/2

then

Pr {Φ(t) < L(t)} ≤ Pr {Φ(t) < L(t), E(t)}+ Pr
{
E(t)

}
(72)
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and for θ > 0, the bound 1{X>a} ≤ X/a for X, a > 0 implies

Pr {Φ(t) < L(t), E(t)} = E
(
1{e−θΦ(t)>e−θL(t)}1t

)
≤

E
(
e−θΦ(t)1t

)
e−θL(t)

. (73)

Then for δ ≤ δ1 = log−1/2 n and θ = n−2/3 log2 n,

eθL(t)η ≤ exp
{(
n−2/3 log2 n

) (
n(δ1δ0)1/2

)
− n1/3 log3 n

}
(74)

≤ exp

{
n1/3

(
log2−1/4 n√

log log n
− log3 n

)}
= o(n−2), (75)

and as ft(θ) ≤ e−2θL(t) + 3n
2
η by (71),

Pr {Φ(t) < L(t)} ≤ eθL(t)ft(θ) + η ≤ e−θn(δδ0)1/2

+ o(n−1).

We conclude that if θ = n−2/3 log2 n,

Pr {∃t1 ≤ t ≤ t3 : Φ(t) < L(t)} ≤ o(1) +

t3∑
t=t1

(
exp

{
−θn(δδ0)1/2

}
+ o(n−1)

)
(76)

≤ o(1) +O

(
n exp

{
− log2+4/2 n√

log log n

})
(77)

= o(1). (78)

It remains to prove Claim 1.

Proof of Claim 1. We are interested in the distribution of Φ(t + 1) − Φ(t), conditioning
on the contracted walk [W (t)]. Write [W (t)] = (〈W (t)〉, Y (t)), where Y (t) ⊆ X1(t) is
the set of vertices visited exactly once by W (t), as defined in Section 5. Write 〈W (t)〉 =
(x′1, x

′
2, . . . , x

′
2s−1).

Reveal x′2s = µ(x′2s−1). If x′2s ∈ P(X3(t)∪X2(t)) then one green edge is added, and no other
green edges are visited before the next edge is to be added, so Φ(t+ 1) = Φ(t) + 1.

On the other hand, if x′2s ∈ P(X1(t)), then the walk will proceed until it finds another
configuration point of P (t). We are considering a random walk on 〈W (t)〉 starting at x′2s.
Let v0 denote the tail vertex of the walk. Then 〈W (t)〉 induces a graph G(t) on X0∪{v0} with
blue and green edges, in which each vertex of X0 has degree 3 while v0 has degree 1, 2 or 3.
Each time the walk on G(t) traverses a green edge, we reveal the length of the corresponding
green bridge in W (t). The walk ends either when (i) a green edge is traversed and revealed
to contain a vertex of Y (t), or (ii) the vertex v0 is reached, assuming v0 ∈ X1 ∪X2.

Suppose there are Φ(t) green edges in W (t), and φ = Φ(t) − Y (t) green edges in [W (t)].
Let e1, . . . , eφ denote the green edges of [W (t)]. By Lemma 9, the number of edges in the
corresponding green bridges in W (t) is a vector (K1, . . . , Kφ), uniformly drawn from all
vectors with Ki ≥ 1 and

∑
Ki = Φ. For ` ∈ {1, . . . , φ} we have

Pr {Ki = 1 for i = 1, 2, . . . , `} =
∏̀
i=1

(
Φ−i−1
φ−i−1

)(
Φ−i
φ−i

) =
∏̀
i=1

φ− i
Φ− i

=
∏̀
i=1

(
1− Y (t)

Φ(t)− i

)
≤
(

1− Y (t)

Φ(t)

)`
.
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This shows that the number of green edges traversed before finding v0 or a vertex of Y (t) is
stochastically dominated by a geometric random variable with success probability Y (t)/Φ(t).

This shows that in distribution, conditioning on the walk [W (t)],

Φ(t+ 1)− Φ(t)
d
= 1−B

(
X1(t)

3n− 2t− 1

)
Rt

where B(p) denotes a Bernoulli random variable with success probability p, Rt is stochas-
tically dominated by a geometric random variable with success probability Y (t)/Φ(t), and
the two random variables in the right-hand side are independent. We have

E
(
e−θ(Φ(t+1)−Φ(t)) | [W (t)]

)
= e−θ

(
1− X1(t)

3n− 2t− 1
+

X1(t)

3n− 2t− 1
E
(
eθRt | [W (t)]

))
. (79)

As x 7→ eθx is increasing, we can couple Rt to a geometric random variable Zt with success
probability Y (t)/Φ(t) so that

E
(
eθRt | [W (t)]

)
≤ E

(
eθZt | [W (t)]

)
.

As [W (t)] is such that E(t) holds, i.e. Y (t) ≥ (3n− 2t)/2 = Ω(n1/3 log4 n),

|(1− e−θ)E (Zt) | ≤ (θ +O(θ2))
Φ(t)

Y (t)
≤ log2 n

n2/3

3n/2

Ω(n1/3 log4 n)
= o

(
1

log n

)
.

So, as Zt is geometrically distributed,

E
(
eθZt

)
=

Y (t)
Φ(t)

eθ

1−
(

1− Y (t)
Φ(t)

)
eθ

=
1

1− Φ(t)
Y (t)

(1− e−θ)
= 1− Φ(t)

Y (t)
(1− e−θ) +O

(
Φ(t)2

Y (t)2
(1− e−θ)2

)
(80)

= 1 +
θΦ(t)

Y (t)
+O

(
θ2Φ(t)2

Y (t)2

)
(81)

≤ 1 +
θΦ(t)

Y (t)
(1 + ε) (82)

for some ε = o(log−1 n). So if [W (t)] is a class of walks with Y (t) ≥ (3n− 2t)/2 then

E
(
e−θ(Φ(t+1)−Φ(t))1t | [W (t)]

)
≤ e−θ

(
1− X1(t)

3n− 2t− 1
+

X1(t)

3n− 2t− 1

(
1 +

θΦ(t)

Y (t)
+O

(
θ2Φ(t)2

Y (t)2

)))
(83)

≤ 1 +
θΦ(t)

3n− 2t
+O

(
θ2Φ(t)2

(3n− 2t)2

)
(84)

≤ exp

{
θΦ(t)

3n− 2t
(1 + ε)

}
(85)

where ε = o(log−1 n).

This finishes the proof of Lemma 16.
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[9] A.M. Frieze and M.Karoński, Introduction to Random Graphs, Cambridge University
Press, 2015.

[10] M.R. Jerrum and A. Sinclair, Approximate Counting, Uniform Generation and Rapidly
Mixing Markov Chains, Information & Computation 82 (1989) 93-133.

[11] T. Orenshtein and I. Shinkar. Greedy random walk. Combinatorics, Probability and
Computing, 23, (2014), 269-289.

27


