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Abstract

We consider the rank of a class of sparse Boolean matrices of size nxn. In particular,
we show that the probability that such a matrix has full rank, and is thus invertible,
is a positive constant with value about 0.2574 for large n.

The matrices arise as the vertex-edge incidence matrix of 1-out 3-uniform hyper-
graphs. The result that the null space is bounded in expectation, can be contrasted
with results for the usual models of sparse Boolean matrices, based on the vertex-edge
incidence matrix of random k-uniform hypergraphs. For this latter model, the expected
co-rank is linear in the number of vertices n, [5], [8].

For fields of higher order, the co-rank is typically Poisson distributed.

1 Introduction

For positive integers r > 1, s > 2, let M (s, r,n) be the space of n X rn matrices with entries
generated in the following manner. For each i = 1, ..., n there are r columns C; ;, j =1,...,7.
Each column C;; has a unit entry in row ¢, and s—1 other unit entries, in rows chosen
randomly with replacement from [n], or without replacement from [n] — {i}, all other entries
in the column being zero. In general we consider the arithmetic on entries in the matrix,
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(and thus the evaluation of linear dependencies), to be over GF(2). If so, in the “with
replacement case”, if two unit entries coincide the entry is set to zero. When r = 1, the
matrix consists of an identity matrix plus s—1 random units in each column.

If s = 2, and entries are chosen without replacement, M is the vertex-edge incidence matrix
of the random graph G, _ou(n). This model of random graphs has been extensively studied,
and is known to be r-connected for r > 2, Fenner and Frieze [10], to have a perfect matching
for r > 2, Frieze [11], and to be Hamiltonian for » > 3, Bohman and Frieze [4]. If s > 3
we are considering r-out, s-uniform hypergraphs. Random Boolean matrices based on the
vertex-edge incidence matrix of s-uniform hypergraphs where the columns (edges) are chosen
i.i.d. from all columns with s ones were studied by Cooper, Frieze and Pegden, [8]. A very
general paper by Coja-Oghlan, Ergiir, Gao, Hetterich and Rolvien, [5], gives the limiting rank
in this latter model for a wide range of assumptions on the distribution of non-zero entries
in the rows and columns. The fundamental difference between the r-out model of random
matrices, and those of [5], [8] is the presence of an n x n identity matrix as a sub-matrix (in
the without replacement case).

We will use p to denote the (row) rank of our matrices and then the co-rank is n — p. If the
field is GF(2), ¢ € {0,1}" is a linear dependency (dependency for short) if @ M = 0. Let
|| = |{j : z; = 1}|. We say that a set of rows D C [n] is a dependency if D = {j : z; = 1}
for some dependency x. An ¢-dependency is one where |x| = ¢ or |D| = (.

Of particular interest is the case » = 1 which gives n X n Boolean matrices. We will show
that over GF'(2), for r = 1, s = 3, the linear dependencies among the rows of M are w.h.p.
either small bounded in expectation or large (of size about n/2), and the distributions of
these dependencies are somewhat entangled. Estimating the interaction between small and
large dependencies in matrices from M (3,1, n) is the main problem we solve.

For r = 1, s = 3, define a Poisson parameter ¢ for small dependencies. The value of ¢ differs
between the “with replacement” ¢r, and “without replacement” models ¢ as follows:

/-1 -2

1, _ 1 1, 0
¢R=Zz(2€ 2)627, ¢§:Zz(2€ 2)Z27- (1)
>1 j=0 J: >2 j=0 J:
The numeric values are ¢p ~ 0.5215, and ¢5 ~ 0.1151, where a ~ b means approximately
equal.
Let

ren-() ey I O

The quantity P(o, ) is the limiting value of P(\ | o) of the conditional probability of
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A = d — o given g, where ¢ is the dimension of the space induced by small dependencies and
d the dimension of the space induced by all dependencies.

Theorem 1. Let the matriz M be chosen u.a.r. from M(3,1,n). Let d > 0 be integer.
Over GF(2), the limiting probability M has co-rank d is given by

lim P(co-rank(M) = d) = e™* Z il P(o,d — o). (3)

n—oo

In particular,

P(rank(M) = n) ~ e ?P(0,0) = 6_¢H (1 - (%) ) .

Theorem 1 differs from many previous results on sparse random Boolean matrices. The
co-rank (dimension of the null space) is bounded in expectation, and the matrix is invertible
with probability e=?P(0,0) ~ 0.2574 in the without replacement model. The bounded co-
rank given by Theorem 1 can be contrasted with results for the edge-vertex incidence matrix
of random hypergraphs, ([5], [8]), where the expected co-rank is linear in the number of
vertices n, and the probability of a full rank matrix is exponentially small.

The matrices M (3, 1,n) exhibit a gap in the size of the dependencies (small or large), which
we next explain.

Theorem 2. Let M be chosen u.a.r. from M (3,1,n), then w.h.p. either (i) a dependency
x is small i.e. |x| < w where w — oo slowly or (i1) x is large i.e. |x| =n/2+ O(y/nlogn).

A gap property in solutions to random XOR-SAT systems over GF(2) was previously ob-
served by Achiloptas and Molloy [1], and by Ibrahimi, Kanoria, Kraning and Montanari [13].
They found that the Hamming distance between XOR-SAT solutions was either O(logn) or
at least an; where n is the number of variables. In our case, large dependencies have inter-
section about n/4 (see Section 4), giving a precise value of a.

A dependency « is fundamental if there is no other dependency y # « such that y <
x, componentwise. We will prove in Section 2 that the number Z of fundamental small
dependencies is asymptotically distributed as Po(¢) i.e. Poisson with mean ¢. The quantity
P(o, ) in (3) is the limiting probability that small dependencies span a space of dimension
o, and large dependencies increase the co-rank by A.

The value of P(0, k) given in (2), is the same as the value 7(k) given in (39). The probability
distribution defined by 7 was previously observed in a model of random matrices over GF'(2)
in which the entries m; ; are i.i.d Bernoulli random variables with P(m; ; = 1) = p. For a wide
range of p the distribution of dimension k of the null space is given by 7(k). The result was
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proved by Kovalenko et al., [14] for p = 1/2, and extended to the range min(p(n), 1 —p(n)) >
(logn + ¢(n))/n, (where ¢(n) — oo slowly) by Cooper [6]. A similar distributional result
holds for the model of random matrices over the finite field GF(q), see Cooper [7]. Here
the non-zero entries o € GF(q)\ {0} are independently and uniformly distributed with
P(m;; = o) = p/(qg — 1). The distribution of co-rank m,(k) equivalent to w(k) = ma(k) in
(39) is obtained by replacing the (1/2) terms in (39) by (1/q).

Finally we mention some related cases for r-out s-uniform hypergraphs. For r =1 and s = 2,
M has expected rank ~ n — (logn)/2. This is because the expected number of components
in a random mapping is ~ (1/2)logn, (see e.g., [12]). Note: For s even, the rows of M add
to zero modulo 2. The following theorem is immediate from the proof of Theorem 1.

Theorem 3. Ifr > 2 and s = 2, 3, then M has rank n* =n — Loy, w.h.p.

The proof of Theorem 3, and results for finite fields of character ¢ > 3 can be found in [9].

Notation: Apart from O(-), o(-), 2(+) as a function of n — oo, we use the notation A4,, ~ B,
if lim,, yoo A,/ B, = 1. The symbol a =~ b indicates approximate numerical equality due to
decimal truncation. The notation w(n) describes a function tending to infinity as n — co.
The expression with high probability (w.h.p.), means with probability 1 — o(1), where the
o(1) is a function of n, which tends to zero as n — occ.

Outline of the proof for GF(2) with r =1,5s =3

Because the proofs are rather technical, we give a detailed proof in the “with replacement”
model. For brevity, we omit the proof that the results are also valid in the “without replace-
ment” model in this paper; the proof can be found in [9].

We refer to the rows of M as M;,i € [n] and to the columns as Cj,j € [n]. By a set
of rows S, we mean the set of rows M;,i € S. A set of rows with indices L is linearly
dependent (zero-sum) if )., M; = O(mod 2). A linear dependence L is small if |L| < w,
where w = w(n) is a function tending slowly to infinity with n. A linear dependence L is
large if |L| = (n/2)(1 + O(y/logn/n)). As part of our proof, we show that w.h.p. there
are no other sizes of dependency. A set of zero-sum rows L is fundamental, if L contains no
smaller zero-sum set and L is disjoint from all other zero-sum sets. The zero-sum sets of size
about n/2 are not disjoint. We count k-sequences of large dependencies with a property we
call simple. Many of the problems with the proofs arise because large dependencies are not
disjoint, and are conditioned by the simultaneous presence of small dependencies in M.

We next outline the main steps in the proof of Theorem 1.

1. In Section 2 we prove that the number Z of small fundamental dependencies has
factorial moments E (Z), ~ ¢*, where ¢ is given by (1). Thus Z is asymptotically
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Poisson distributed and
P (M has ¢ small fundamental linear dependencies) ~ ,—'e_¢.
il

. For M € M(3,1,n) w.h.p. any fundamental sets of zero-sum rows of M are either

small (of size ¢ < w) or large (of size £ = (n/2)(1 + O(y/logn/n))). This is proved in
Section 3.

. In Section 5 we discuss simple sequences of large dependencies, and in Section 6 we

estimate the moments of these sequences and determine their interaction with small
dependencies.

. In Section 7 we estimate the number of simple sequences, conditional on the the num-

ber of small fundamental dependencies. This leads to an approximate set of linear
equations whose solution completes the proof of Theorem 1.

Small dependencies in GF'(2): with replacement

Notation For 1 < k < w, where w — oo arbitrarily slowly with n, let Xy (M) or Yy (M)
denote the number of index sets of k-dependencies in M. A k-dependency is small if k < w
and we use Y; when k < w and use X when k& ~ n/2. We will show that for other values of
k, Xy =0 w.h.p. We also use Z;,d < w to denote the number d of fundamental (minimal)
dependent sets among the rows of M.

We first consider dependencies with s = o(n'/?) rows. For S C [n], let F(S) denote the
event that the rows corresponding to S are dependent. Let Y denote the number of s-set
dependencies.

Lemma 4. If |S| = s = o(n'/?) then

Ifw— o0, w < s=o(n'?) then Y, =0 w.h.p.

Proof. Suppose that s = o(n'/?) and S = [s]. Then,

o= (:(2) () (G« (7))

~ (_) e, using s = o(v/n). (5)



Explanation: The probability that exactly one of the two random choices in a column of
S lies in a row of S is 2 ( ) ("‘s). The probability that both or neither of the two random

s
n n

choices in a column of [n] \ S lies in a row of S is (%)2 + (u)Q

This verifies (4). It follows that

s - (3 () - 2

As EY,1/E (Y,) ~ 2/e we have that EY,, = ¢~**“) and so w.h.p. there are no dependencies
with w < s = o(n!/?). O

Define oy, ks by

sl (s —1)!
Oy = Z ﬁ, and Kg = it (6)

For S C [n], let F*(S) denote the event that the rows corresponding to S form a fundamental
dependency. The next three lemmas deal with small fundamental dependencies.

Lemma 5. P(F*(S) | F(S)) = ks.

Proof. The rows of the dependency S consist of an s x s sub-matrix Mg g and a zero (s xn—s)
sub-matrix. For ¢ € S, if M,; = 1, then w.h.p. there is a unique entry M,; = 1 which gives
rise to an edge (i,7). If M;; = 0 we regard this as a loop (i,7). Thus Mg is the incidence
matrix of a random functional digraph Dg, and S is fundamental iff the underlying graph
of Dg is connected. For s > 1, P(Dg is connected) = k4 (see e.g., [2] or [12]). O

Lemma 6. Small fundamental dependent sets of M are pairwise disjoint, w.h.p.

Proof. Let S, T be two small fundamental zero-sum row sets with a non-trivial intersection
C = SNT and differences A = S\T, B =T\S, where AU B # (). Suppose A # (). As the
functional digraphs Dg, Dy are connected, one of the following events must occur. Either
(i) some column of C' has two non-zero entries in the rows of S U T} or (ii) some column j
of A has a non-zero entry in the rows of C. The latter is not possible as then a column of S
has a non-zero entry in the rows of 7. Let k = |S UT|. The former has probability at most

L) () g
0

Given this lemma we can now prove a Poisson distribution.
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Lemma 7. The number Z of small fundamental dependent sets among the rows of M 1is
asymptotically Poisson distributed with parameter ¢r, and thus

S o
P(Z =d) ~ G B (8)
Proof. Fix S C [n] and let Sy,..., Sy be a partition of S with |S;| = s;,i = 1,2,...,d. Let
P(s1,...,84) be the probability that each S;,i =1,2,...,d is a fundamental set, given that
S is a dependency. Thus,

d
(31)51...(8d)3d 1

P(sq,... = P(Dg, ted) = — i — Do,
(S1y---,84) e lzll—I d (Dg, connected) = E(S )os,

Explanation: the factor w is the conditional probability that the random choices
for columns with index in S; are in rows with index in S;.

Thus, using (4), we see that

E(Z)drvz@%se?s > (Sh_iﬁd)P(sl,---?sd) 9)

s>1 ’ S1++s54=s

d
- X ey

s>1 s1+...+sq4=s5 i=1

- (Z 2(26_2)805>

s>1
=i (10)
Thus, by the method of moments, the number of small disjoint fundamental zero-sum sets
Z tends tend to a Poisson distribution with parameter ¢g. O]

3 Large zero-sum sets: First moment calculations

Define an index set J, as follows,

J. =1{n/2 — Vanlogn < <n/2+ +/anlogn} and J, = [n]\ J,, a > 0. (11)

Lemma 8. (Large linearly dependent sets.) Let X, denote the number of (-dependencies
among the rows of M.



(1) ey, EXe~ 1.
(ii) Let F' = [n]\([w]UJ1), where w — oo arbitrarily slowly withn. Then 'y, . E X, = o(1).

Proof. From (5), the expected number of dependencies of size £ is

()G N ()

We next approximate the expression for E X,. We note the following expansion.

L) log(1—22) (1) log(1+a2) = —2 [ 4%+ 5+ % 1 5™ 1 s o (14 22
(I+x)log(1—2*)4+(1—2z) log(1+z*) = — x+3+§+; {keven}7( +k+1) '
_ (12)
We write E X, = (7)®}, £ = (n/2)(1 +¢), where
(1-e)
o 1—52 (1J2rs) 14e 2+ l— e 9 S
= 5 5 5
1 2(1+5) 2@
1) ()
1 1
=5 exp {5 (1+¢)log(l—e*) + (1 —¢)log(1 + 52))}
1 , et € o [ 1 o
-5 - 5 o Lk even 7
2eXp{ <5+2+3+; treven}=™ {27

:%exp{— <63+%4+67)}, (13)

where |e7| < 2|e|”/3 for sufficiently small e.
Also for £ = (n/2)(1 +¢), |e| < 1,

()= (+00)) Tz oo (G fes)

where |eg] < |]%/10.

Case 1: (€ J; . From (14) with |¢| = 24/(logn)/n we have

53 (1) = oum

¢ Jq



so that

2% 3 (ZL) = 1-0(1/n*?).

LeJy
Using (13), for £ € Jy, ®," = €®<*) /27 Then, as ne® = O(log®*n//n),

ZE&=2%®%ﬂM=me

Ledy ledy

For future reference, we note that for || < ¢ < 1,

n\ 1 , &t
(2 )

:(1+—0<1)))exp{—n (5_2+€3+§+5_4+€6+57>}

2mn (1 — €2 2 2 12
_ (1+0(1)) ox _ne? )2 g A
QY= p{ 5 ((1+ )P+ 5+ O ))} (15)

Case 2: (€ F. Write F' = [n]\ ([w]U J;) as F = F} U Fy U Fy where F} = {w, ..., 3n/10},
Fy, = {7n/10,...,n} and F3 = F \ (Fy U Fy). Thus, for £ € F3, { = (n/2)(1 + ) where

—2/5 <e < —y/(2logn)/n or \/(2logn)/n <e < 2/5.

Case { € F. For sufficiently large n, Stirling’s approximation implies that

n < n"
0] - Ez(n — E)"“’

so for some constant C' (in both with and without replacement models)

< e () () () (7))

Continuing with this expression, using ¢ = An for A < 1/2,
2)\
M1 = )2

A2 1-2\ "
=C 221 =M [1-
c( (1= M) < /\+1_)\> )
(21— apera-n)

(2(1 = A)e )™

Bx, <0 ( PP (=2




The function g(\) is strictly concave and has a unique maximum at A = 1/2 with g(1/2) = 1.
For A\ < 3/10, g()\) < ¢(3/10) = (7/5)e™ %" < 1 so that

Y EX, <C) g(3/10)" = o(1).

Case ¢ € F,. Referring to (15), the function h(e) = (¢2/2)((1+¢)* +£2/6 + &6 + &7) satisfies
h(e) > 2/25 for e > 2/5, and so

Z EX, < Z e~ = o(1).

e, Lery

Casel € F3. For \/(2logn)/n < |e| < 4/(25logn)/n, the function h(e) > (1—o0(1))(logn)/n.

Let F3, be the values of ¢ in this range

Z E X, = O(y/nlogn)/n'=°W) = o(1/n'/?3).

LeF3,

Let Fy, = F3\ F3,. Then €%/2 > (25/2)(logn)/n, and (1 + €)? + 2/6 + €6 + 7 > 9/25.
Referring to (15),
> EX,=0(n)/n* = o(1/n%).

EEng

4 Higher moments of large zero-sum sets: Background

Let A® B denote the symmetric set difference of the sets A and B. Thus A®B = (AU B)\
(AN B) = (A\B)U (B\A). Suppose that, over GF'(2), the rows M][i],i € A indexed by A
are zero-sum, thus z4 = Y .., M[i] = 0. Let B be another set such that zp = 0. We can
write 24 = 24\ + 2anp and zp = zp\4 + 2anp. Adding these two sets of rows modulo 2
has the effect of canceling the intersection AN B. Thus (i) 24 + 2z = 0, whether zqp is
itself zero-sum or not; and (ii) z4 + 25 = ZAeB.

Recall that a set of zero-sum rows is fundamental if it contains no smaller zero-sum set of
rows. For small sets we were able to count fundamental dependencies directly. We have to
adopt an alternative strategy for large zero-sum sets. We use an approach similar to the one
given in [6]. We count simple sequences of large linearly dependent row sets B = (Bj, ..., B),
k > 1 constant, and where |B;| € J; so that |B;| ~ n/2. A k-tuple of large dependent sets
B = (B, ..., By) is simple, if for all sequences (j; < jo < ... < 7;) and (1 <[ < k) the set
differences satisfy

|Bj,®Bj,®---®B;| € Ji (17)
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For any given matrix M there is a largest k such that By, ..., By are simple. In which case,
we say k is mazimal and By, ..., By is a maximal simple sequence.

Let V(M) = {0} U{B : B is zero-sum in M}, then (V(M),®) is a vector space over GF

under the convention that 0- B =0, 1- B = B. In V(M) a simple sequence (B, ..., B) is
an ordered basis for a subspace S of dimension k.

Given k linearly dependent sets of rows with index sets By, - - - , By, there are 2* intersections
of these sets and their complements. For each ® = (1, -+ ,2), © € {0,1}F we let I, =
Ni=1,.., kBi(‘T") where Bi(o) = B; = [n]\ B; and BZ.(I) = B;. The index sets I, are disjoint by
definition and their union (including o = (0,---,0)) is [n].

Next for € {0,1}* let B(x) = @,, _,Bi- Let K = 2¥ —1. Let U be a K x K matrix
indexed by x,y € {0,1}*, x,y # 0; with entries U(zx,y) = 1 if I, C B(x), and U(z,y) =0
otherwise. In summary,

Row index & = (z1, X9, ..., x)) is the indicator vector for B(x) = @ __1Bi,
Column index y = (y1,¥2, - . ., yx) is the indicator vector for I, = ﬂ BZ»(yi).
i=1,...k

The row of U representing the set B(x) is formed by adding the rows of those sets B; such
that x; = 1 in «; the addition being over GF(2). Thus B(x) is the union of the sets I,
where y; = 1 for an odd number of those sets B; where x; = 1. This can be seen inductively
by generating By, By ® By, (B1® Bs)® Bj etc. in the given order. In summary U(x,y) = 1
iff both z; = 1 and y; = 1 for an odd number of indices i, and thus, over GF(2),

Ulz,y) = szyz (18)

Our aim is to use U, treated as a real matrix to show that w.h.p. |I,| ~ n/2F for every
x. We do this by observing that given the characterisation U(x,y) = 1;,cp(), the vector

(|Iz|, & € {0,1}", 2 # 0) is the solution z over the reals of an equation
Uz:bwherebwgl, (19)

assuming that B = (By, ..., By) is simple. To prove that |I,| ~ n/2%, we prove the properties
of U listed in Lemma 9 below.

Equation (18) implies that by arranging the rows and column indices of U in the same order,
U will be symmetric. We will choose an ordering such the first k rows correspond to B;,7 =
1,...k. Thus z; = e;,i =1,2,..., k where e; = (1,0,...,0) etc., and y; = e;,i = 1,2,... k.
After this we let () be the £ x K matrix with column indices  made up of the first k rows.
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Thus row ¢ represents B;,i = 1,...,k and U contains a k X k identity matrix in the first &
rows and columns.

The row indexed by & = (z1,...,x)) is the linear combination Zle x;1; of the rows of Q,
and corresponds to B(x) in the vector space V(M) given above.

Lemma 9. The K x K matrix U has the following properties:

(i) The matriz U symmetric.

(ii) Every row or column of U has 28~ non-zero entries.

2k—2

(111) Any two distinct rows of U have cOmMmMon non-zero entries.

(iv) The matriz U is non-singular when the entries are taken to be over the real numbers,
and the matriv S = UUT = U? = 2¥72(1 + J) is symmetric, with inverse S™! =
(1/28=2)(I — J/2%); where J is the all-ones matriz.

Proof. (i) This follows immediately from (18), and the above construction.

(i) Fix « and assume that z; = 1. There are 287! choices for the values of y;,i = 2,3,..., k.
Having made such a choice, there are two choices for y;, exactly one of which will give

Zf:l ziy; = 1.

(iii) Fix @, 2’ and think of rows x,2’,x + ' as non-empty subsets of [2¥]. Then we have
|| = |a'| = [z \&'|+ |2\ @] = 2°7", by (iii). Thus |z|+ || - (|lz\z|+ ]2\ z|) = 2lzna’| =
2k,

(iv) That the matrix U is non-singular over the real numbers, uses an argument given in
3] (pages 11-13). Let S = UU'. Let u,v be distinct rows of U, then w - u = 27! and
w-v =22 Thus S = 2¥72( + J), where J is the all-ones matrix. The reader can check

that 7! = 21}_2 (I — 2ikJ) 28=1 which implies that U is invertible too. ]

The definition of a simple k-tuple (By, ..., By) requires that all sets B; be large and their set
differences to be distinct and of size ~ n/2. Let (|Bi|,...,|Bk|) ~ (n/2)1 be the vector of
these set sizes. Over the reals, solving (19) gives the sizes of the subsets .

Lemma 10. Let (B, ..., By) be a simple sequence. Then for all = € {0,1}*,

n logn
L= — [ 1+£2F/—==1]. 20
| L | 2k( (Vi > (20)

Proof. Let i =1, ..., K index the rows of U and let B(x) be the set corresponding to the row
x of U. Let Uz = b where b, = 2|B(x)|/n = 1 + ¢;, where |g;| < 24/logn/n. The matrix
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S = U? so Sz = Ub = ¢ where ¢; = 2"71(1 4 §,) where §, = > ¢;/2¥7!, the summation
being over a 2F~!-subset of rows « of U. Thus, as J is K x K where K = 2F — 1,

1 1 1
xr = Silcz 2k—2 <I — ?J> 2k71(1 +6) = 2k—11 +n7

where |n| < 2%, /logn/n. It follows that w.h.p. the solution to (19) satisfies | I;| = (n/2%)(1+
ok /logn/n) for all & € {0,1}". O

Remark 11. The proofs above generalize to the case where b ~ ({n,&n, ... &n) for some
constant £ € (0,1/2] in equation (19). In which case (20) becomes

2én x [logn
Ij| = —— [ 1£2%/— .

5 Simple sequences of large zero-sum sets.

Let By, B, ..., By be a simple sequence. In row M; of the matrix M, there is a 1 in the
diagonal entry M;;. As s = 3 there need to be two (random) 1’s in column C; chosen in a
way to ensure the linear dependence of B, ..., By. The following lemma describes where
these non-zeros must be placed.

Lemma 12. By,---, By are dependencies if and only if the following holds for all i € [n].
Suppose that row i is in I, and that the two random non-zeros ey(i),es(i) in column i are
in I, I, respectively. Then we must have x = u + v(mod 2).

Proof. Let « = (1, ..., zx) and consider z,, for 1 <m < k. If z,,, = 0 then i ¢ B,,, so either
none or both of j, j’ are in B,,, and so zero or two unit entries in this column are in B,,,. We
must therefore have either u,, = v,, = 0 or u,,, = v,, = 1 and z,, = U, + V. If z,, = 1 then
i € B,, and so exactly one of e;(i), e5(7) must also be in B,,. Hence u,, = 1,v,, = 0, or vice
versa. Thus in all cases x,, = U, + Uny. O

The main result of this section is the following.

Lemma 13. Let kK > 1 be a positive integer, and let X, count the number of simple k-
sequences of large dependencies. Then E (Xj,) ~ 1.

Proof. We have to estimate the expected number of simple sequences (By, ..., By) of large de-
pendencies. By (20) of Lemma 10 the index sets I, have size |I;| = (n/2F)(1+O(y/logn/n)).
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Let K = 2F — 1 as above, and let

K
0= {h = (ho, b, ..., h) : iy satisfies (20),> " h; € Jl} .

=1

Then we define ®(h, k) by

hm
ho
n B o ha\

E(X.) = 2 _—— — 21
503 () I[2Z 2] (2(%)) @
utv=ax

n
_ ®(h, k). 22
heZQ<h07hl7"'7hK)< ) ( )

Explanation of (21). Let hy = |I,]. The multinomial coefficient (, ho hf,L...,hK) counts the
number of choices for the subsets I,. In the product, in order for By, ..., By to be zero-sum,
for © # 0 we need to cancel the diagonal entries M;; = 1 of j € I, Wlthln the columns
indexed by [,. This is achieved by putting one entry in rows [,, and one in rows [, where
u + v = x. The last factor counts the choices for the entries of columns indexed by I, over
the row index sets I, either zero or two in an index set, in order to preserve the zero-sum
property.

Set hy = (n/2%)(1+ ) where |e;z| = O(y/logn/n). We note that > _e, = 0, implies that

log3/2n
Zh Em—2kZ€m—|—€ 2k25 and Zhe ka iz |

And then Stirling’s approximation implies that

2mn

(ho’hlﬁ' -’hK) - Hme{om((n/?’“)(l +eg))he (y/2mn /28)
— 2F" ex Z R ( 2) + O(logn)

xe{0,1}"

K
= 2" exp —% Z e2 + O(logn) p = 2Fmn°W).
ze{0,1}*

In addition, by considering random 2*-colorings of [n] we see from the Chernoff bounds that

5 (i)~ 206 2

heQ
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With respect to (21), using Zm ex = 0, we see that

Z ( 1+28u+€)>

ue{0,1}"
(ORCE
(%) exp{2k(1+€o)10g <1+Z 2k>}
_ (QL) p{2£2+o (15#)} (24)

If & # 0 then each index z occurs exactly once in Y (uw) (Eu+6p) and 80 D (uw) (Eu+Ey) =
ut+v=x utv=x
>, €z = 0. Therefore,

ha ha
Doy oy 1
2 g =12 Z 22k(1+5u+5v+5uev)
{u,v} {u,v}
utv=ax utv=ax
ha
1\"
= <§> 1 + - Z 2EuEw
{u,v}
utv=x

h
1\™ Eu€
_<?> exp 2k(1+€m)log 142 g bl
{u,v}

utv=x

1\ n 26 uEw log3/2n
“(3) ey 2 +o(—nm

Note that
A= Z Z 284uEp = ZsuZ%w Zeu25v,
x#0 Jr{;}w f;‘;g u v#EU
gives

A+;53: (;gu>2=o
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Thus using > _ he = n,

> owha 3/2
1 n 9 log”“n
(I)(h, k’) = <2_k) exp ﬁ E €u + E E 2511,511 + 0 (W)
u z#£0 {u,v}
utv=ax
1 3/2
:2%60(10@*’/ n/vn) (25)
It follows from (22), (23) and (25) above that
log*?n
E(X;) =1 =1 1). 2
(Xi) =140 ( S| = 1) (26)

6 Conditional expected number of small zero-sum sets

Let (By,..., By) be a fixed sequence of subsets of [n] with |B;| € J; fori=1,2,.... k < w.
Let B be the event

B = {(By,...By) is a simple sequence of large row dependencies} . (27)

We need to understand the conditioning imposed by this event B. Suppose that |I,| = hy ~
n/2% for x € {0,1}*.

Lemma 14. Given B and i € I, the distribution of the row indices k,{ of the other two
non-zeros in column i is as follows: if & # 0 then choose w,v such that * = u + v mod 2

with probability
2N Py

p(u,v) = 5 hohe
and then randomly choose k € I, ¢ € I,,. If € = 0 then choose w with probability

Yyt+tz=x

h2

u

p(u’ u) - —7
Zye{o,l}k h?l

and then randomly choose k,l € 1.

Proof. This follows from the fact that the non-zeros in each column are independently chosen
with replacement and from the condition given in Lemma 12. O
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Let (S5, s, =|5j] <w, j=1,2,...,¢ <w) be a sequence of pairwise disjoint small subsets
of [n] and S = U§:1 S; and s = |S|. We define the events

¢
S; = {9, is a small zero-sum row set} for j =1,2,...,fand S = ﬂ S;.
j=1

¢
S; = {S; is a small fundamental zero-sum row set} for j =1,2,... ¢ and §* = ﬂ S5
7=1

Lemma 15.

P(S* | B) ~ P(SY). (28)

Proof. Let I, ¢ € {0,1}", be as defined in Section 4. Let Sy = SN I, and J; 5 = S; N I,
and gj,a: = |Jj,m| for ¢ = 1,2,...,m and Jm = U;n:I Jj,:r and gm = |Jm| Let JO = I() \ S
and fo = |Sp|. We now consider the probability that column ¢ is consistent with S. We let

he = |I| and s, = | S| for x € {0, 1}k.

Case 1: i € Ip\ Jo. For each column i € I\ Jo, the task here is to estimate the probability
that the two non-zeros e (i), ea(i) are in rows consistent with the occurrence of S. Because
i € Ip and B occurs, we know from Lemma 12 that e;(i), ex(i) € I, for some u € {0, 1}*.
For S to occur, we require that zero or two of e;(i), ex(7) fall in J,,, an event of conditional
probability (1 — Sy/he)? + (Su/hu)?

Let E, denote the number of non-zero pairs from Iy \ Jp falling in .J,,. Then the conditional
probability that the non-zeros of Iy \ S are consistent with S is given by

2\ Fu
P(Io \ Sop is consistent S | B) = E H (1 - 22—“ +2 (Z—u) > (29)

u

Given B, we see that E,, is distributed as Bin(hg — So, p(u,u)), and has expectation

h? ho
E(E,) = (ho—s = ~ —.
The Chernoff bounds imply that E,, is concentrated around its mean (ho — so)p(u, w) ~ 2,
where N = n/2%. Thus,
ho 2/3 : 1 —Q(nl/3)
E, — o <n with probability at least 1 — e : (30)
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Going back to (29) and using (30) we have

P(Iy \ So is consistent with the occurrence of S | B) ~

28u N/Zk s'u, k—1
H <]_ — W) ~ exp —2 Z 2_k‘ = 6_8/2 . (31)

u

Case 2: i € I\ Jz, ® # 0. Given B, and i € I, suppose that the non-zeros e;(i), es(7)
of column i lie in I, I, respectively, w € {0,1}*. The probability of this is p(u,z + u).
The number E,(u,x + u) of such pairs of non-zeros in I, I, has distribution Bin((h, —
sz)p(w, T + u)), and expectation asymptotic to (hy — s5)/2F 71

The rows of Si,...,S; have to be zero-sum in this column, so either exactly one non-zero
falls in each of Sj4, 5 z4u for some 1 < j < £ or exactly one non-zero falls in each of
Iy \ Su, Iptw \ Sziw. The probability of this is

¢ Egz(u,x+u)
P('U;, T+ u) =E Sju Sjatu + hu — Su h:l:+u — Sz+tu
= hy Pzt R .

. (N—sq)/25
-~ Z SjuSjxtu + N — Su N — Sztu
N? N N

j=1

o o~ (sutsara)/2571

For a given x there are 2¥~! unordered pairs Sy, Sgiu, SO

1 _
ok—1 Z (Su + Sw+u) =2 (32)

{u,z+u}

P(I, \ Sy is consistent with S) ~ exp ¢ —

(In the sum in (32) Sy + Sgiw and Sgiq + S contribute as one term.) Thus

P(I, \ S is consistent with S,Va # 0) ~ e~ (2" =1)s/270 (33)

Case 3: i € Sj, C Iz, ¢ # 0. For ¢ € Sj,, one non-zero needs to be in S;, and the
other to avoid S;. Let v = o + uw. Suppose that the pair e; (i), ex(¢) fall in I,,, I, 1,. The
probability this happens is

1 (Sjuwhe —Sjp  Sjwhu—S5ju
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The events {u,x + u} are disjoint and exhaustive, so for a given i € S;, the probability
p(i,7) of success (i.e. the S;-indexed rows of column ¢ sum to zero) is

.. 1 SI,UN_S"’U SI,UN_S"U
ped) = D Bluuta)~os 3 (]W NN NJ)

{u,u+x} u,v=r+u
= (1+0(5))
~ 1 — .
Nkl +0 N (35)

Every column of ), has to succeed or S; is not a small zero-sum set. Thus

P(S, succeeds) ~ <8j(1 + O(S/N)))Sm

N2k—1

As > 50 =5,

P(S, succeeds V) ~ (Ngi_l)sj_sj’o . (36)

Case 4: 1 € Sj0 C I;o. In the case that & = 0, and S;o C I, the non-zeros in a column
of S; o must both fall in the same index set I,,; one in S;,, and one in I, \ Sj,. Thus P(u,u)
is now summed over all I,,, a total of 2F such sets. For i € S0, the probability p(i) of success

is
. 1 SjulN — Sju 55 w
p(@):{Z}P(’U,,U)Nﬁ;<2N N >NN2k—1 <1+O(ﬁ>)

The final term is the same as in (35), and we obtain

P(S; 0 succeeds) ~ (N;Ll)%o (37)

Using (31), (33), (36) and (37), we obtain

- sj - - T (25,\ %
818~ 1] (i) e e =T () e o

Jj=1 J=1

after using (5). This completes the proof of P(S | B) ~ P(S). To replace S by S* we just
need to let K;,j7 =1,2,...,m denote the set of i in Case 3 where i € S;,. We see from (34)
that the positions of the non-zeros in the columns K; are asymptotically uniform over Sj.

This is because each k € Jj,, is chosen with probablhty asymptotic to — - h “ and surmlarly
for k € Jj z4+v. In which case, the conditional probability that 5; is fundamental is obtained
by multiplying by x,,. This completes the proof of the lemma. O

We can now use inclusion-exclusion to prove
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Lemma 16. Let 3, be the event that there are exactly o disjoint small fundamental depen-
dencies. Then,

ol

P(Ea ’ B) ~

~P(Z,).

Proof. Let

,,,,,

1 2s; o —2s; 1 (2 i) 85
o Z <31,.T.l.,se> H <%> € 1] Z H 581 e

T 1<51,,80<w i=1

14
(e \ o
“al\ )

s=1

The first approximation follows from Lemma 15 and the second from (5), (6).

Using Inclusion-Exclusion, we have

(s 18) = Y0 ([ )7m -0 () O _ G

(>0 (>0

Lemma 8 gives us the unconditional probability. O

Let X} count the number of simple k-sequences as in Lemma 13.

Lemma 17. If o = O(1) then E (X}, | ¥,) ~ 1.
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Proof.

EXe|S)= >, PBI|%)

B=(Bi,...,By)
_ oy R |BPRG)
B=(Bi,...,B) P(EJ)
_ P(B) l—o k
- X mm e
B=(Bi,...,By) >0
P(B) ! S o
LE (s 5 (A
B:(B1 ..... Bk) (>0 1<51,..0,8p<w ‘Silzsi,iZI ..... L i=1
P(B) (K 1 S e
- > ey X% r(0s
B=(Bi,...,By) >0 1<51,.0,80<w | S| =s,6=1,.,0  \i=1
P(B)
~ IP’(EU)P(EU)
B=(B1,...,By)
=E (X)) ~1
O
7 Joint distribution of small and large dependencies
We first state a preparatory lemma. Let m be the probability distribution given by
I (1-6)) k=0
W(k) = | (1_(l)j) N (39)
j=k+1 2j 1 k > 1
.?:1(1_(%)) (2)

A proof of the next result for ¢, = 1 can be found in [6], [7]. We give a full and different
proof for completeness.

Lemma 18. For A > 0, the solutions to

Ck_iQ)‘H —QZ kZZO (40)

A=k =0
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are given by

Q= Z(—l)k_AQ(k?) [ﬂ VrCr, (41)

k=X

where Y =1/ (2@) Hle(? - 1)) In particular, if ¢, =1, gy = w(A\) of (39).

Proof. Gaussian coefficients are defined as

) -

Using (42) with z = 2, equation (40) can be rewritten as

e, = 2(2) ﬁ@i —1) iqA m ; (43)

i=1 A=k

k
2

Put ¢, =1/ (2( ) [T, (2 — 1)), we see that ¢y is the solution to
— [A
Z |:]€:| a\ = @/}kck, k > 0. (44)
A=k 2

Fix § > 0, multiply equation k > ¢ in (44) by (—1)’“52(%6) [lg]Q, and sum these equations
over k > 0. This gives

o
g R T
“Elapor il w
D &

Explanation: (46) to (47): Gaussian coefficients satisfy the identity

(I+2)1+z2) L+ "0y = m 22) 2t (48)

=0
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To prove the last summation on the right hand side of (46) is zero for A > ¢, use (48) with
4

r=—-1,2=2¢=k—J§ and r = XA —§. This gives Zz\;g [,\25] 2(2)(_1)e =0 for A > 4.

For z < 1, taking the limit of (48) gives

2

0 00 Z(g).fﬁ
0N

Replacing ¢ by A, and putting ¢, = 1 in (41), we see that the solution ¢, to (40) is

& (—1)k22(72")- ()
q“kz_; AR CRS OB § (i

(50)

_ <1)A2 s (1 ) _ (), (51)

where w(\) is given in (39). To get from (50) to (51), use (49) with z = 1/2 and x =
(—1/271). O

Quotient space argument

Given M, let B = {B, : i € [N]} denote the set of large dependencies and S = {5, : j € [T]}
denote the set of small dependencies. The following observations complete the proof of
Theorem 1.

P1 Suppose that V, Vg are the vector spaces generated by all dependencies, and small de-
pendencies, respectively. Suppose that these spaces have dimensions d, o respectively.

Let W = V/Vs be the quotient space and fg be the canonical map fs: V — W. Thus
fs maps small dependencies to zero and W = {fs(B) : B € B} U{0}. Each vector in
W corresponds to an equivalence class of vectors in V. In terms of dependencies in B,
B~ B iff B®& B =S5 where S € §S. As the small dependencies are disjoint, the size of
the equivalence class of B is 2°.

P2 Note that dim(W) = dim(V) — dim(Vs) = d — 0. Let A denote the maximum number
of independent large dependencies. This will be the same as the maximum length of a
simple sequence. We next prove that A\ = dim(W).
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P3

P4

Let b;,i = 1,2,...,m be a basis of W then B; € fs'(b;),i =1,2,...,m form a simple
sequence. If not then for some A C [m] we have @;caB; € Vs which implies that
[s (DieaBi) = > ,cabi = 0. Conversely, if By, Bs, ..., By is a simple sequence then
b; = fs(B;),i =1,2,...,k are independent. If not then for some A C [k], >°..,b; =0
which implies that @;c4B; € Vs.

The first ¢« independent members of a simple sequence generate a vector space W; of size
2!, The next independent entry of the sequence is chosen from W\ W;, a space of size
22 — 27 Each entry is chosen from an equivalence class of size 2°. It follows that the
number X, of simple sequences of length £ is equal to

1:[((2* — 20 x 27) = 2k 1:[1(2A — 29,

Let by =P(A=t| o =s). By Lemma 17, E(X) | 0 = s) ~ 1, s0

I~E(Xy|o=s) = 2% i (28 — 2. (52)

t=k 1

I
—

Il
o

This can be re-written (with ~ replaced by =) as,

9=sk _ o(5) ﬁ@i -1 ibt mz

=1 —

By Lemma 18 we find that

T2t —1)---(2-1) = a .2 ) Hf;f(; — (1/2)1)
- G)() Hzlal— 2 2 () ’ (‘1 @) L i

B (1)t(t+5) 1 00 X <1>(8+t+1)+j
2 szl(l - 1/2]) =0 2

=P(s,t),

24



as given in (2), and where we used (49) with z = 1/2 and # = —(1/2)*™"! to replace
the alternating sum.

P5 The P(s,t) only asymptotically satisfy the solution bi(s) = P(A =t | o = s) in (52)
asymptotically. So to prove the lemma, we show that for large K,

D bi(s) <, (53)

where € > 0 is arbitrarily small. For t > k,

k—1 k—1 1 k—1 1
t 7 kt kt k—1)t
e -2 -2 T1 (1 5) 2 (1- D) 220

1=0 =0

It follows that

Thus (53) holds if K > /2log, 1/e.
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