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Abstract

Let HPn,m,k be drawn uniformly from all m-edge, k-uniform, k-partite hypergraphs where

each part of the partition is a disjoint copy of [n]. We let HP
(κ)
n,m,k be an edge colored version,

where we color each edge randomly from one of κ colors. We show that if κ = n and m =

Kn log n where K is sufficiently large then w.h.p. there is a rainbow colored perfect matching.

I.e. a perfect matching in which every edge has a different color. We also show that if n is even

and m = Kn log n where K is sufficiently large then w.h.p. there is a rainbow colored Hamilton

cycle in G
(n)
n,m. Here G

(n)
n,m denotes a random edge coloring of Gn,m with n colors. When n is

odd, our proof requires m = ω(n log n) for there to be a rainbow Hamilton cycle.

1 Introduction

Given an edge-colored hypergraph, a set S of edges is said to be rainbow colored if every edge in

S has a different color. In this paper we consider the existence of rainbow perfect matchings in

k-uniform, k-partite hypergraphs and Hamilton cycles in randomly colored random graphs.

Let U1, U2, . . . , Uk denote k disjoint sets of size n. Let HP(κ)
n,m,k denote the set of k-partite,

k-uniform hypergraphs with vertex set V = U1 ∪ U2 ∪ · · · ∪ Uk and m edges, each of which has

been randomly colored with one of κ colors. The random edge colored graph HP
(κ)
n,m,k is sampled

uniformly from HP(κ)
n,m,k.

In this paper we prove the following result

Theorem 1.1. There exists a constant K = K(k) such that if m ≥ Kn log n then

lim
n→∞

P
[
HP

(n)
n,m,k contains a rainbow perfect matching

]
= 1.

This result is best possible in terms of the number of colors n and best possible up to a constant

factor in terms of the number of edges.

We get the corresponding result for k-uniform hypergraphs H
(n)
kn,m,k for free. Here the edge set

of H
(n)
kn,m,k is a random element of

(([kn]
k )
m

)
and each edge is randomly colored from [n].
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Corollary 1.2. If m = Ln log n and L is sufficiently large then w.h.p. H
(n)
kn,m,k contains a rainbow

perfect matching.

Proof. We simply partition [kn] randomly into k sets of size [n]. Then we apply Theorem 1.1 with

K = L/kk.

When k = 2 the result of Theorem 1.1 can be expressed as follows:

Corollary 1.3. Let A be an n×n matrix consructed as follows: Choose Knlogn entries at random

and give each a random integer from [n]. The remaining entries can be filled with zeroes. Then

w.h.p. A contains a latin transversal i.e. an n × n matrix B with a single non-zero in each row

and column, such that each x ∈ [n] appears as a non-zero of B.

We can use Theorem 1.1 and a result of Janson and Wormald [5] to prove the following theorem

on rainbow Hamilton cycles: Let G
(n)
n,m denote a copy of Gn,m in which each of the m edges has

been randomly colored with one of n colors.

Theorem 1.4. There exists a constant K such that if m ≥ Kn log n then with high probability,

lim
n→∞
neven

P
[
G(n)
n,m contains a rainbow Hamilton cycle

]
= 1.

When n is odd we replace m = Kn log n, by m = ωn log n, where ω →∞ arbitrarily slowly.

The result for n odd is surely an artifact of the proof and we conjecture the same result is true

for n odd or even.

Previous results in this area have concentrated on the existence of rainbow Hamilton cycles. For

example, Frieze and Loh [4] showed that G
(κ)
n,m contains a rainbow hamilton cycle w.h.p. whenever

m ∼ 1
2n log n1 and κ ∼ n. This result is asymptotically optimal in number of edges and colors.

Theorem 1.4 resolves a question posed at the end of this paper (up to a constant factor) about the

number of edges needed when we have a minimum number of colors available. Perarnau and Serra

[7] showed that a random coloring of the complete bipartite graph Kn,n with n colors contains

a rainbow perfect matching. Erdős and Spencer [2] proved the existence of a rainbow perfect

matching in the complete bipartite graph Kn,n when no color can be used more than (n − 1)/16

times.

2 Outline of the paper

The proof of Theorem 1.1 is derived directly from the proof in the landmark paper of Johansson,

Kahn and Vu [6]. They prove something more general, but one of their main results concerns

the “Schmidt-Shamir” problem, viz. how many random (hyper-)edges are needed for a 3-uniform

hypergraph to contain a perfect matching. In this context, a perfect matching of a 3-uniform

hypergraph H on n vertices V is a set of n/3 edges that together partition V .

1We write An ∼ Bn if An = (1 + o(1))Bn as n→∞
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There is a fairly natural relationship between rainbow matchings of k-uniform hypergraphs and

perfect matchings of (k + 1)-uniform hypergraphs. This was already exploited in Frieze [3]. The

basic idea is to treat an edge {u1, u2, . . . , uk} of color c ∈ C as an edge {u1, u2, . . . , uk, c} in a

(k + 1)-uniform hypergraph H with vertices V ∪ C and edges in
(
V
k

)
× C. Then, assuming that

|V | = k|C| we ask for a perfect matching in H. Here we would take V = [kn] and |C| = n and

construct H randomly. The “fly in the ointment” so to speak, is that we cannot have two distinct

edges {u1, u2, . . . , uk, ci} , i = 1, 2. This seems like a minor technicality and in some sense it is.

We have not been able to find a simple way of completely resolving this technicality, other than

modifying the proof in [6].

Remark 2.1. This technicality does not cause a problem for k ≥ 3. Consider the corresponding

independent model in which each possible edge is included with probability p. If p = O
(

logn
nk−1

)
then the probability that there exists a pair of edges {u1, u2, . . . , uk, ci} , i = 1, 2 is bounded by

O(nk+2p2n−2) = O(n2−k log2 n) = o(1). Our choice of p here, is near the end of the process of the

edge removal process of [6] and we could start our proof there. So, the only difficulty is with k = 2

and this is where we started our research, with rainbow matchings of random graphs. Also, k = 2 is

the value of k that is needed for Corollary 1.3 and Theorem 1.4. Furthermore, the proof for k ≥ 3

is no harder than that for k = 2.

We slightly sharpen our focus and consider multi-partite hypergraphs. Let Kn,k be the complete

k-partite, k-uniform hypergraph where each part has n vertices. Its vertex set V is the union of k

disjoint sets U1∪U2∪· · ·∪Uk, each of size n. We let the edge set of Kn,k be V = Vk = U1×· · ·×Uk.
HPn,m,k is obtained by choosing m random edges from V.

Our approach, taken from [6], is to start with a random coloring of the complete k-partite

hypergraph Kn,k. Denote this edge colored graph by K
(n)
n,k . We show in Section 3 that w.h.p.

K
(n)
n,k has a large number of rainbow perfect matchings. We then randomly delete edges one by

one showing that w.h.p. the remaining graph Hi, after i steps, still contains many rainbow perfect

matchings. Here we need i ≤ N −Kn log n where N = nk and K is sufficiently large.

We let Φi denote the number of rainbow perfect matchings in Hi and consider ξi = 1 − Φi
Φi−1

.

If we can control the sequence (ξi) then we can control the number of rainbow perfect matchings

in Hi. It is enough to control Si =
∑

i ξi. We will let wi(e) denote the number of rainbow perfect

matchings that contain a particular edge e ∈ Ei, the edge-set of Hi. Si will be concentrated around

its mean if we show that w.h.p. the maximum value of wi(e) is only O(1) times the average value

of wi(e) over e ∈ Ei. This is the event Bi defined in (4.7). Proving that Bi occurs w.h.p. is the

heart of the proof.

In Section 4.4 there is a switch from bounding the ratio of max to average to bounding the

ratio of max to median. It is then shown that it is unlikely for the maximum to be more than twice

the median. Entropy and symmetry play a significant role here and it is perhaps best to leave the

reader to enjoy this clever set of ideas from [6] when he/she gets to them.

Once we have Theorem 1.1, it is fairly straightforward to use the result of [5] to obtain Theorem

1.4. This is done in Section 5.
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3 The number of rainbow perfect matchings in K
(n)
n,k

To begin, we will show that the number of rainbow perfect matchings in K
(n)
n,k , with its edges

randomly colored by n colors is concentrated around its expected value.

Lemma 3.1. Let Φ(K
(n)
n,k) represent the number of rainbow matchings of K

(n)
n,k . Then w.h.p.,

Φ(K
(n)
n,k) ∼ (n!)k

nn
.

Proof. Let X be a random variable representing the number of rainbow matchings in K
(n)
n,k . Then

there are (n!)k−1 distinct perfect matchings and each has probability n!
nn of being rainbow colored.

Hence,

E [X] = (n!)k−1 × n!

nn
=

(n!)k

nn
. (3.1)

We use Chebyshev’s Inequality to show that X is concentrated around this value. It is enough to

show that

E
[
X2
]
≤ (1 + o(1))E [X]2 .

Given a fixed matching M with ` edges, let N` represent the number of matchings covering the

same vertex set as M but are edge disjoint from M . Then inclusion-exclusion gives

N` =
∑̀
i=0

(−1)i
(
`

i

)
((`− i)!)k−1

= (`!)k−1
∑̀
i=0

(−1)i

i!

(
(`− i)!
`!

)k−2

.

Now, suppose we have an integer sequence λ = o(
√
`) and λ → ∞ with `. Then the Bonferroni

inequalities tell us that

(`!)k−1
2λ−1∑
i=0

(−1)i

i!`i(k−2)
(1 + o(1)) ≤ N` ≤ (`!)k−1

2λ∑
i=0

(−1)i

i!`i(k−2)
(1 + o(1)) . (3.2)

So as long as `→∞,

N` = (`!)k−1
(
e−1

1k=2 + 1k≥3 + o(1)
)
.

Then we have

E
[
X2
]

=
n∑
`=0

(n!)k−1

(
n

`

)
Nn−`

n!

nn
(n− `)!
nn−`

= E [X]

n∑
`=0

n!

`!nn−`
Nn−`

= E [X]

logn∑
`=0

n!

`!nn−`
((n− `)!)k−1

(
e−1

1k=2 + 1k≥3 + o(1)
)

(3.3)

+ E [X]
n∑

`=logn

n!

`!nn−`
Nn−` (3.4)
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We now bound (3.3) and (3.4) in turn. We have that (3.3) is equal to

E [X]2
(
e−1

1k=2 + 1k≥3 + o(1)
) logn∑
`=0

1 + o(1)

`!n`(k−2)

= E [X]2
(
e−1

1k=2 + 1k≥3 + o(1)
)

(e1k=2 + 1k≥3 + o(1)) = E [X]2 (1 + o(1))

It remains to show that (3.4) is o(E [X]2). We split this sum into 2 parts. First, using the trivial

bound on Nn−` ≤ ((n− `)!)k−1, we have(
1

E [X]2

)
E [X]

n−logn∑
`=logn

n!

`!nn−`
Nn−` =

n−logn∑
`=logn

n`

`!(n!)k−1
Nn−`

≤
n−logn∑
`=logn

n`

`!(n!)k−1
((n− `)!)k−1. (3.5)

Since in this range, both ` and n−` approach infinity with n, we may apply Stirling’s approximation

to all factorials to get that for some constant c, (3.5) is at most

c

n−logn∑
`=logn

n` · e`

``+1/2
· e(k−1)n

n(k−1)(n+1/2)
· (n− `)(k−1)(n−`+1/2)

e(k−1)(n−`)

≤ c ·
n−logn∑
`=logn

(
ek

`nk−2

)`

≤ cn
(

ek

log n

)logn

= o(1).

For ` ≥ n− log n we bound Nn−` ≤
(

n
logn

)
((log n)!)k−1 and then we have that for some constant c′,

(3.5) is at most

n∑
`=n−logn

n`

`!(n!)k−1

(
n

log n

)
((log n)!)k−1 ≤ c′ log n · e

n · 2n · (log n)k logn

(n− log n)!
= o(1).

This completes the proof of Lemma 3.1.

We will need the Chernoff bounds:

Fact 3.2. Let X be the sum of independent Bernoulli random variables and let E [X] = µ. Then

P [|X − µ| > εµ] ≤ 2e−ε
2µ/3 0 ≤ ε ≤ 1.

P [X ≥ αµ] ≤
( e
α

)αµ
α > e.

4 Proof of Theorem 1.1

Let the color set be C (so |C| = n) and let ι : E(Kn,k) → C be the random coloring of the edges.

Let

e1, . . . , eN , N = nk
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be a random ordering of the edges of K
(n)
n,k , where we have used ι to color the edges of Kn,k. Let

Hi = K
(n)
n,k − {e1, . . . , ei} = (V,Ei). Here if H = (V,E) is a hypergraph and A ⊆ E,S ⊆ V,D ⊆ C

then H − A − S − D is the hypergraph on vertex set V \ S with those edges in E \ A that are

disjoint from S and do not use a color from D.

For a color c ∈ C, let cdHi(c) = |{e ∈ Ei : ι(e) = c}| be the number of edges of Hi that have

color c.

4.1 Tracking the number of rainbow matchings

For an edge-colored hypergraph H, we let F(H) denote the set of rainbow perfect matchings of H

and we let

Φ(H) = |F(H)|.

Let Ft = F(Ht) and Φt = |Ft| and then if ξi = 1− Φi
Φi−1

then

Φt = Φ0
Φ1

Φ0
· · · Φt

Φt−1
= Φ0(1− ξ1) · · · (1− ξt)

or

log Φt = log Φ0 +
t∑
i=1

log(1− ξi).

where, by Lemma 3.1, we have that w.h.p.

log Φ0 = log
(n!)k

nn
(1 + o(1)) = (k − 1)n log n− c1n, (4.1)

where

0 < c1 < k + 1. (4.2)

Note that for a fixed perfect matching F ∈ Fi−1, we have P [ei ∈ F ] = n
N−(i−1) . Since a perfect

matching is in Fi−1 \ Fi if and only if it contains the selected edge ei, we have

E [ξi] = γi =
n

N − i+ 1
≤ 1

K log n
. (4.3)

for i ≤ T = N −Kn log n.

Equation (4.3) becomes, with

pt =
N − t
N

,

t∑
i=1

E [ξi] =
t∑
i=1

γi = n

(
log

N

N − t
+O

(
1

N − t

))
= n

(
log

1

pt
+O

(
1

N − t

))
(4.4)

using the fact that
∑N

i=1
1
i = logN + (Euler′s constant) +O(1/N).

For t = T this will give

pT =
Kn log n

N
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and so for t ≤ T we have

t∑
i=1

γi = −n log pt + o(n) = (k − 1)n log n− n log logn+ o(n). (4.5)

Our basic goal is to prove that if we define

At =

{
log Φt > log Φ0 −

t∑
i=1

γi − (c1 + 1)n

}
,

then

P
[
Āt
]
≤ n−K1/3/5 for t ≤ T. (4.6)

Using (4.1) and (4.5), we see that At implies that

Φt = |Ft| > en log logn+O(n).

Thus taking a union bound over all t ≤ T , we see that (4.6) implies Theorem 1.1 since we may take

K as large as we like.

4.2 Important properties

We now define some properties that will be used in the proof.

If e = (x1, . . . , xk) and c ∈ C then wi(e, c) is the number of rainbow matchings of Hi −
{x1, . . . , xk} that do not use an edge of color c. In particular if e is an edge, then wi(e, ι(e)) is the

number of rainbow matchings of Hi which use the edge e. We will usually shorten wi(e, ι(e)) to

wi(e) for e ∈ Ei.
In the following we define

wi(Ei) =
∑
e∈Ei

wi(e) and avge∈Ei
wi(e) =

wi(Ei)

|Ei|
.

Let

Bi =

{
maxe∈Ei wi(e)

avge∈Ei
wi(e)

≤ L = K1/2

}
(4.7)

Ri =


∀v ∈ V,

∣∣dHi(v)− nk−1pi
∣∣ ≤ ε1nk−1pi

and

∀c ∈ C,
∣∣cdHi(c)− nk−1pi

∣∣ ≤ ε1nk−1pi


where ε1 = 1

K1/3 .

We now consider the first time t ≤ T , if any, where At fails. Then,

Āt ∩
⋂
i<t

Ai ⊆

[⋃
i<t

R̄i

]
∪

[⋃
i<t

AiRiB̄i

]
∪

[
Āt ∩

⋂
i<t

(BiRi)

]
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We can therefore write

P

[
Āt ∩

⋂
i<t

Ai

]
<
∑
i<t

P
[
R̄i
]

+
∑
i<t

P
[
AiRiB̄i

]
+ P

[
Āt ∩

⋂
i<t

(BiRi)

]
. (4.8)

It will take most of the paper to show that Bi occurs w.h.p. for all i ≤ T thus dealing with the

second term of (4.8). However, Ri (the first term in (4.8)) is easily dealt with.

4.2.1 Dealing with Ri

First, we observe that Hi is distributed as HP
(n)
n,N−i,k and so for any hypergraph property P we can

write

P [Hi ∈ P] ≤b mP1

[
HP

(n)
n,pi,k

∈ P
]
, (4.9)

where HP
(n)
n,pi,k

is the corresponding independent model in which each possible edge is included

with probability pi and m = Np and P1 refers to probabilities computed with respect to HP
(n)
n,pi,k

.

This follows from P1

[
HP

(n)
n,p,k ∈ P

]
≥
(
N
m

)
pm(1− p)N−mP

[
HP

(n)
n,m,k ∈ P

]
. The notation A ≤b B is

a substitute for A = O(B).

Applying the Chernoff bound and (4.9) we see that for any v, i we have

P
[
|dHi(v)− nk−1pi| ≥ ε1nk−1pi

]
≤ 2ne−ε

2
1n

k−1pi/3 ≤ n−K1/3/4. (4.10)

For a fixed color c we see that cdHi(c) is distributed as the binomial Bin(N − i, 1/n) which has

expectation nk−1pi. Applying the Chernoff bound once more we see then that for a fixed color c

we have

P
[∣∣∣cdHi(c)− nk−1pi

∣∣∣ ≥ ε1nk−1pi

]
≤ 2e−ε

2
1n

k−1pi/3 ≤ n−K1/3/4. (4.11)

Taking the union bound over v ∈ [n], i ≤ T in (4.10) and over c ∈ C, i ≤ T in (4.11) deals with the

first term in (4.8).

4.3 Concentration of the number of rainbow matchings

We define

Ei = {Bj ,Rj , j < i} .

We will first show that

Ei =⇒ ξi ≤
1

K1/2 log n
. (4.12)

First we have

wi−1(Ei−1) =
∑

e∈Ei−1

∑
F∈Fi−1

1e∈F

=
∑

F∈Fi−1

∑
e∈Ei−1

1e∈F = nΦi−1. (4.13)
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So for any f ∈ Ei−1, recalling that L = K1/2 from (4.7),

Φi−1 =
1

n
wi−1(Ei−1)

≥ 1

Ln
|Ei−1| max

e∈Ei−1

wi−1(e)

≥ N

Ln
pi−1wi−1(f).

Hence, if the event Ei holds then

ξi ≤ max
e∈Ei−1

wi−1(e)

Φi−1
≤ Ln

Npi−1
≤ L

K log n
=

1

K1/2 log n
,

confirming (4.12).

Now, recalling that γi = E [ξi] we define

Zi =

{
ξi − γi if Ei holds

0 otherwise

and let

Xt =
t∑
i=1

Zi.

We will show momentarily that

P [Xt ≥ n] ≤ e−Ω(n). (4.14)

So if we do have Et for t ≤ T (so that Xt =
∑t

i=1(ξi − γi)) and Xt ≤ n then

t∑
i=1

ξi <

t∑
i=1

γi + n ≤ (k − 1)n log n− n log logn+ o(n) ≤ (k − 1)n log n

and so
t∑
i=1

ξ2
i ≤

1

K1/2 log n
·

t∑
i=1

ξi ≤ kK−1/2n.

So, using (4.12) and log(1− x) > −x− x2 for x small, we have

log Φt > log Φ0 −
t∑
i=1

(ξi + ξ2
i ) > log Φ0 −

t∑
i=1

γi − 2n.

This deals with the third term in (4.8). (If Et holds then At holds with sufficient probability).

Let us now verify (4.14). Note that |Zi| ≤ 1
K1/2 logn

and that for any h > 0

P [Xt ≥ n] = P
[
eh(Z1+···+Zt) ≥ ehn

]
≤ E

[
eh(Z1+···+Zt)

]
e−hn (4.15)

Now Zi = ξi − γi (whenever Ei holds) and E [ξi | Ei] = γi. The conditioning does not affect the

expectation since we have the same expectation given any previous history. Also 0 ≤ ξi ≤ ε = 1
logn
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(whenever Ei holds). So, with h ≤ 1, by convexity we have ehξi ≤ 1− ξi
ε + ξi

ε e
hε for 0 ≤ ξi ≤ ε and

therefore

E
[
ehZi

]
= E

[
ehZi | Ei

]
P [Ei] + E

[
ehZi | ¬Ei

]
P [¬Ei] ≤

e−hγiE
[
1− ξi

ε
+
ξi
ε
ehε
∣∣∣∣Ei]P [Ei] + P [¬Ei] = e−hγi

(
1− γi

ε
+
γi
ε
ehε
)
P [Ei] + 1− P [Ei] ≤

e−hγi
(

1− γi
ε

+
γi
ε

(1 + hε+ h2ε2)
)

= e−hγi(1 + γih+ γih
2ε) ≤ eh2εγi .

So,

E
[
eh(Z1+···+Zt)

]
≤ eh2ε

∑t
i=1 γi

and going back to (4.15) we get

P [Xt ≥ n] ≤ eh2ε
∑t

i=1 γi−hn.

Now
∑t

i=1 γi = O(n log n) and so putting h equal to a small enough positive constant makes the

RHS of the above less than e−hn/2 and (4.14) follows.

4.4 From average to median

If I ⊂ [k], we write VI for the collection of |I|-sets of vertices using exactly one vertex from each

of Ui, i ∈ I. For r ≤ k, we let Vr =
⋃
|I|=r VI . Given v ∈ Vr, we define I(v) by v ∈ VI(v) and

Ic(v) = [k] \ I(v).

Now for a multi-set X ⊆ R we let medX, the median of X, be the largest value x ∈ X such

that there are at least |X|/2 elements of X that are at least x. Then define

Ci =


∀v ∈ Vk−1, c ∈ C,maxw∈VIc(v) wi((v, w) , c) ≤ max

{
Φi

2kN
, 2 medu∈VIc(v) wi((v, u) , c)

}
and

∀v ∈ Vk,maxc∈C wi(v, c) ≤ max
{

Φi

2kN
, 2 medc∈C wi(v, c)

}
.


We will prove

P
[
RiCiB̄i

]
< n−K

1/3/4 (4.16)

P
[
AiRiC̄i

]
< n−K

1/3/4. (4.17)

Note that (4.16) and (4.17) imply that

P
[
AiRiB̄i

]
= P

[
AiRiB̄iCi

]
+ P

[
AiRiB̄iC̄i

]
≤ 2n−K

1/3/4.

This deals with the middle term in (4.8).

4.5 Proof of (4.16)

First, we suppose that

P [RiCi] ≥ n−K
1/3/4, (4.18)
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otherwise (4.16) holds trivially.

For v ∈ Vk−1 and c ∈ C, we let ψV (v, c) = maxw∈VIc(v) wi ((v, w) , c) and for v ∈ Vk, we let

ψC(v) = maxc∈C wi(v, c). Let

ψ0 = wi(v
′, c′) = max

v∈Vk
max
c∈C

wi(v, c). (4.19)

Lemma 4.1. Suppose that B is such that ψ0 ≥ 2kB and that for each v ∈ Vk−1, c ∈ C with

ψV (v, c) ≥ B, we have ∣∣∣∣{w ∈ VIc(v) : wi((v, w) , c) ≥ 1

2
ψV (v, c)

}∣∣∣∣ ≥ n

2
(4.20)

and for all v ∈ Vk with ψC(v) ≥ B, we have∣∣∣∣{c ∈ C : wi(v, c) ≥
1

2
ψC(v)

}∣∣∣∣ ≥ n

2
. (4.21)

Then we have ∣∣∣∣{(v, c) ∈ Vk × C : wi(v, c) ≥
ψ0

2k+1

}∣∣∣∣ ≥ nk+1

2k+1
(4.22)

Proof. Suppose v′ = (v′1, . . . , v
′
k), c

′ are as in (4.19). Then by (4.20), there there is a set W1 ⊂ U1

of size at least n/2 such that if w1 ∈ W1 then wi((w1, v
′
2, . . . , v

′
k), c

′) ≥ 1
2ψV ((v′2, . . . , v

′
k), c

′) =
1
2ψ0 ≥ 2k−1B. For each w1 ∈ W1, since we have ψV ((w1, v

′
3, . . . , v

′
k)), c

′) ≥ 1
2ψ0 ≥ 2k−1B, we may

apply (4.20) once more to find a set Ww1
2 ⊆ U2 of size at least n/2 such that if w2 ∈ Ww1

2 then

wi((w1, w2, v
′
3, . . . , v

′
k), c

′) ≥ 1
2ψV ((w1, v

′
3, . . . , v

′
k)), c

′) ≥ 1
4ψ0 ≥ 2k−2B.

Continuing in this way, for every choice of w1 ∈ W1, w2 ∈ Ww1
2 , w3 ∈ Ww1,w2

3 , . . . , wk ∈
W

w1,...wk−1

k ⊆ Uk, we have wi((w1, . . . , wk), c
′) ≥ 1

2k
ψ0 ≥ B. Thus every such choice of w1, . . . , wk,

we have ψC((w1, . . . , wk)) ≥ 1
2k
ψ0 ≥ B, so to finish, we apply (4.21) to find a set Dw1,...,wk ⊆ C

of size at least n/2 such that if d ∈ Dw1,...,wk then wi((w1, . . . , wk), d) ≥ ψ0

2k+1 . Since there are n/2

choices for vertices in each part and n/2 choices for colors, we have that the number of choices total

is at least nk+1

2k+1 as desired.

For v ∈ Vk, let Hvc
i be the hypergraph Hi with vertices in v removed as well as all edges with

color c. Now wi(v, c) equals the number of rainbow matchings in Hvc
i . Suppose that Ci holds and

let B = Φi

2kN
. Note that ψ0 ≥ 2kB else we would have ψ0 <

Φi
N < avge∈Ei

wi(e), contradiction.

So for all v ∈ Vk−1, c ∈ C with ψV (v, c) ≥ B, we have

max
w∈VIc(v)

wi ((v, w), c) ≤ 2 medw∈VIc(v) wi((v, w) , c).

This is condition (4.20). Similarly, the second condition of Ci gives us (4.21). So we may conclude

that if

W ∗ =

{
(v, c) ∈ Vk × C : wi(v, c) ≥

1

2k+1
ψ0

}
then

|W ∗| ≥n
k+1

2k+1
. (4.23)
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Let

E∗i :=

{
e ∈ Ei : wi(e) ≥

1

2k+2
max
e∈Ei

wi(e)

}
. (4.24)

We will show that

P
[
|E∗i | ≤

Npi
22k+7

∣∣∣∣RiCi] ≤ n−K1/3
. (4.25)

For 0 < α < 1
2k+1 let

Xα = {x ∈ U1 : ∃ at least αnk choices of (x2, x3, . . . , xk) ∈ U2 × · · · × Uk and c ∈ C
such that ((x, x2, . . . , xk), c) ∈W ∗}.

If |Xα| = θαn then (4.23) implies that

θαn
k+1 + α(1− θa)nk+1 ≥ nk+1

2k+1
,

which implies that

θα ≥
1

1− α

(
1

2k+1
− α

)
. (4.26)

Now for x ∈ Xα and 0 < β < α let

Cβ(x) =
{
c ∈ C : | {(x2, x3, . . . , xk) ∈ U2 × · · · × Uk : ((x, x2, . . . , xk), c) ∈W ∗} | ≥ βnk−1

}
.

A similar argument to that for (4.26) shows that if |Cβ(x)| = ζβn then

ζβ ≥
α− β
1− β

. (4.27)

Putting α = 1
2k+2 and β = 1

2k+3 , we see by (4.26), (4.27) that there are αn vertices in X1 ⊆ U1 such

that if x1 ∈ X1 then there are βn choices for c1 ∈ Cα(x1) ⊆ C such that there are βnk−1 choices

for x = (x2, . . . , xk) ∈ U2 × · · · × Uk, such that if x1 ∈ X1, c1 ∈ C1(x1) then

wi((x1,x) , c1) >
1

2k+1
ψ0 ≥

1

2k+1
max
e∈Ei

wi(e). (4.28)

Now fix 0 ≤ ` ≤ 2kn log n and let Λ = 2`. Fix a vertex x1 ∈ X1 and let

AΛ(x1) =
{
x ∈ V[2,k], c1 ∈ C : wi((x1,x) , c1) ≥ Λ

}
and let

BΛ(x1) =
{
x ∈ V[2,k], c1 ∈ C : (x1,x) ∈ Ei, c1 = ι(x1,x) and wi((x1,x) , c1) ≥ Λ

}
Here Λ will be an approximation to the random variable ψ0/2

k+1. Using Λ in place of ψ0/2
k+1

reduces the conditioning. There are not too many choices for Λ and so we will be able to use

the union bound over Λ. We do not condition on the value ψ0, but we instead use the fact that

ψ0/2
k+1 ∈ [Λ, 2Λ] for some ` ≤ 2kn log n.
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Let S, T denote disjoint subsets of {x1} × V[2,k] × C. Note that without the conditioning RiCi
the event {S ⊆ AΛ, T ∩AΛ = ∅} will be independent of the event⋂

(e,c)∈S

{e ∈ Ei, ι(e) = c} ∩
⋂

(e,c)∈T

¬{e ∈ Ei, ι(e) = c} . (4.29)

This is because wi((x1,x) , c1) depends only on the existence and color of edges f where if x =

(x2, x3, . . . , xk),

{x1, x2, . . . , xk} ∩ f = ∅.

If we work with the model HPn,k,pi in place of Hi, without the conditioning, then E [|BΛ(x1)|] =

|AΛ|pi/n. Also, we can express |BΛ(x1)| as the sum of independent Bernoulli random variables,

one for each possible value of x. The variable Z corresponding to a fixed x will be one iff there is

a c1 ∈ C such that ((x1,x), c1) ∈ BΛ(x1).

Then equations (4.9) and (4.18) imply that

P [|BΛ(x1)| ≤ ∆pi/2n | RiCi] ≤
P [|BΛ(x1)| ≤ ∆pi/2n]

P [RiCi]
≤ nk+K1/3/4P1 [|BΛ(x1)| ≤ ∆pi/2n] .

(4.30)

If |AΛ(x1)| ≥ ∆ = β2N then Fact 3.2 and (4.29) imply that

P1 [|BΛ(x1)| ≤ ∆pi/2n] ≤ e−∆pi/12n ≤ n−β2K/12. (4.31)

There are at most n choices for x1. The number of choices for ` is 2kn log n and for one of these

we will have 2` ≤ 1
2k+1 maxwi(Ei) ≤ 2`+1 and so (from (4.30) and (4.31)), with probability 1 −

n2+o(1)+k+K1/3/4−β2K/20 ≥ 1−n−β2K/30 we have that for each choice of x1 ∈ X1 there are β2Npi/2

choices for x, c such that (e = (x1,x), c = ι(x1,x)) ∈ BΛ(x1) and wi(e, c) >
1

2k+2 maxwi(Ei).

Observe that we have 2k+2 in place of 2k+1, because we will want the above to hold for a value of

Λ where Λ ≤ maxwi(Ei) ≤ 2Λ. This verifies (4.25) and we have∑
e∈Ei

wi(e)

maxwi(Ei)
≥
∑

e∈E∗i
wi(e)

maxwi(Ei)
≥ |E

∗
i |

2k+2
≥ Npi

23k+9
≥ |Ei|

23k+10

which implies property Bi if K is sufficiently large.

4.6 Proof of (4.17)

Recall that for a discrete random variable X, the (base e) entropy H(X), is defined by

H(X) =
∑
x

px log

(
1

px

)
where the sum ranges over possible values of X and px = P [X = x] . The following lemma is proved

in [6].

Lemma 4.2. Suppose that X is a positive integer valued random variable defined on some finite

set S that takes values in an interval I = {0, 1, . . . , ν} for some positive integer ν. Suppose that

13



H(X) > log (|S|)−M,M = O(1). Suppose that P [X = i] = w(i)
w(S) for some w : S → I. Then there

are a, b ∈ I with a ≤ b ≤ ρMa such that for J = w−1 [a, b] we have

|J | ≥ σM |S|

and

w(J) > 0.7w(S).

Here we can take ρM = 24(M+log 3) and σM = 2−2M−2.

To prove (4.17), assume that we have Ai and Ri and that Ci fails. Then we have two cases.

Suppose v ∈ Vk−1, x ∈ VIc(v), and c ∈ C. Let Hvxc
i be the sub-graph of Hi induced by V \{v, x}

where all edges of color c have been deleted.

4.6.1 Case 1

Suppose that Ci fails because there exists v ∈ Vk−1 and c ∈ C such that

max
ξ∈VIc(v)

wi((v, ξ), c) > max

{
Φi

2kN
, 2 medξ∈VIc(v) wi((v, ξ), c)

}
.

Let x be the value of ξ which maximizes wi((v, ξ), c). For ease of notation, let us suppose that

v = (v1, . . . , vk−1) ∈ U1 × · · · × Uk−1, so that Ic(v) = {k}. Let X(y,Hvxc
i ) be the (random)

edge-color pair containing vertex y in a uniformly random rainbow matching of Hvxc
i . Then let

y ∈ Uk \ {x} be a vertex with

wi((v, y), c) ≤ medxwi ((v, x), c) (4.32)

and

h(y,Hvxc
i ) := H(X(y,Hvxc

i ))

maximized subject to (4.32). Then

wi ((v, x), c) ≥ 2 meduwi ((v, u), c) ≥ 2wi ((v, y), c) .

We have, using (4.1) and (4.2) and assuming Ai that

log Φi > (k − 1)n log n+ n log pi − (c1 + 1)n. (4.33)

Φ(Hvxc
i ) is the number of rainbow matchings of Hvxc

i . So,

log Φ(Hvxc
i ) = logwi ((v, x), c) ≥ (k − 1)n log n+ n log pi − (c1 + 2)n (4.34)

(by the assumption about v, x, c and the failure of Ci, including wi ((v, x), c) ≥ Φi/((2n)k)).

Now a rainbow matching of Hvxc
i is determined by the {X(z,Hvxc

i ) : z 6= x}. Let M denote a

uniform random rainbow matching of Hvxc
i . Sub-additivity of entropy then implies that

H(M) = log Φ(Hvxc
i ) ≤

∑
z∈Uk\{x}

h(z,Hvxc
i ). (4.35)
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By our choice of y, we have h(z,Hvxc
i ) ≤ h(y,Hvxc

i ) for at least half the z’s in Uk \ {x}. Also, for

all z ∈ Uk \ {x}, we have

h(z,Hvxc
i ) ≤ log dHvxc

i
(z) ≤ log

(
(1 + ε1)nk−1pi

)
.

Here we use the fact that Ri holds.

So,

log Φ(Hvxc
i ) ≤ n

2

(
h(y,Hvxc

i ) + log((1 + ε1)nk−1pi)
)

(4.36)

and hence by combining (4.34) and (4.36) we get

h(y,Hvxc
i ) ≥ 2

n
log Φ(Hvxc

i )− log
(

(1 + ε1)nk−1pi

)
≥ 2

n
((k − 1)n log n+ n log pi − (c1 + 2)n)− (k − 1) log n− log pi − ε1

= 2(k − 1) log n+ 2 log pi − (c1 + 2)− (k − 1) log n− log pi − ε1
≥ log

(
dHvxc

i
(y)
)
− (c1 + 3). (4.37)

To summarise what we have proved so far: If we have Ai,Ri but not Ci then (4.37) holds.

Now for i = 1, . . . , k − 1, let Wi = Ui \ {vi} and W = W1 × · · · ×Wk−1. Let L = C \ {c} and

for (z, c′) ∈ W × L, let w′i(z, c
′) be the number of rainbow matchings of Hi − {v, z, x, y} − {c, c′}.

We define wy((z, y) , c′) on

Wy :=
{

((z, y) , c′) : z ∈W , c′ ∈ L, (z, y) ∈ Ei, ι((z, y)) = c′
}

as w′i(z, c
′) and define wx((z, x) , c′) on

Wx :=
{

((z, x) , c′) : z ∈W , c′ ∈ L, (z, x) ∈ Ei, ι((z, x)) = c′
}

as w′i(z, c
′). Then the random variable X(y,Hvxc

i ), which is the edge-color pair containing y in

a random rainbow matching of Hvxc
i , is chosen according to wy and X(x,Hvyc

i ) which is the

edge-color pair containing x in a random rainbow matching of Hvyc
i , is chosen according to wx.

Equation (4.37) tells us that H(X(y,Hvxc
i )) = h(y,Hvxc

i ) ≥ log |Wy| − (c1 + 3). We may

therefore apply Lemma 4.2 to conclude that there exist a ≤ b ≤ ρa, ρ = ρc1+3 and a set J ⊆ Wy

with |J | ≥ σ |Wy| ≥ (1− ε1)σnk−1pi, σ = σc1+3 such that wy(J) ≥ 0.7wy(Wy) and J = w−1
y ([a, b]).

We also let J ′ := w−1
x ([a, b]) and note that

wx(J ′) ≤ wx(Wx) = wi ((v, y), c) ≤ .5wi ((v, x), c)

while on the other hand

wy(J) ≥ 0.7wi ((v, x), c) ≥ 1.4wx(J ′). (4.38)

We will condition on Hi[V \ {v, x, y}] and denote the conditioning by E1 i.e. we will fix the edges

and edge colors of this subgraph of Hi.

Next enumerate{
((z, y) , c′) : Φ(Hi − {v, z, x, y} −

{
c, c′
}

) ∈ [a, b]
}

= {((zj , y) , cj), j = 1, 2, . . . ,Λ} .
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Remark 4.3. At this point we have a small technical problem. To estimate a probability below,

we need to drop the conditioning AiRiC̄i and then later compensate by inflating our estimates by

1/P
[
AiRiC̄i

]
. The existence of a, b depends on this conditioning and we need to deal with this

fact. We tackle this as we did in Section 4.5 with respect to ` and Λ. So we will consider pairs of

integers 1 ≤ λ ≤ µ ≤ λ + log2 ρ ≤ 2n2. Then for some pair λ, µ we will find 2λ ≤ a ≤ b ≤ 2µ. It

is legitimate in the argument to replace a by 2λ and b by 2µ and in the analysis below consider a, b

as fixed, independent of Hi. We can then inflate our estimates of probabilities by O(n2) to account

for the number of possible choices for λ, µ.

We define the events

De,δ = {e ∈ Ei, ι(e) = δ} .

For the moment replace Hi by HPn,k,pi . We note that the event Φ(Hi−{v, zj , x, y}−{c, cj}) ∈ [a, b]

does not depend on the occurrence or otherwise of D(zj ,y),cj for any k. Hence, given

{((zj , y), cj), j = 1, 2, . . . ,Λ} we find that without conditioning on AiRiC̄i, |J | is distributed as

the sum of independent Bernoulli random variables, as in (4.29). Note also that Ri implies that

|Wy| ≥ (1− ε1)nk−1pi. We can assume that P
[
AiRiC̄i

]
≥ n−K

1/3/4, else we have proved (4.17) by

default. (We have extra conditioning E1, but this is independent of the De,δ). Therefore, using Fact

3.2,

1 = P
[
|J | ≥ (1− ε1)σnk−1pi | AiRiC̄iE1

]
≤ nK1/3/4

(
2eΛ

(1− ε1)σN

)(1−ε1)σnk−1pi

.

It follows that for K sufficiently large, we have

Λ ≥ σN

10
. (4.39)

Then let

Γj = Hi − {v, zj , x, y} − {c, cj} .

Note that the Φ(Γj) = w′i(zj , cj) are completely determined by the conditioning E1.

Then let

wy(J) =
∑
z∈W

1{z,y}∈Ei

∑
j:zj=z

Φ(Γj) · 1ι((zj ,y))=cj (4.40)

wx(J ′) =
∑
z∈W

1{z,x}∈Ei

∑
j:zj=z

Φ(Γj) · 1ι({zj ,x})=cj (4.41)

Let

Xz =
∑
j:zj=z

Φ(Γj) · 1ι({zj ,x}=cj .

Yz =
∑
j:zj=z

Φ(Γj) · 1ι((zj ,y)=cj .

Note that Xz, Yz ≤ b.
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We have

Zy =
wy(J)

b
=
∑
z∈W

1{z,y}∈Ei

Yz
b

Zx =
wx(J ′)

b
=
∑
z∈W

1{z,x}∈Ei

Xz

b

It follows directly from the expressions (4.40), (4.41) that Zy and Zx are both equal to the sum

of (conditionally) independent random variables, each bounded between 0 and 1. Furthermore, we

see from (4.40), (4.41) that

E [Zy | E1] = E [Zx | E1] . (4.42)

What we have to show now is that we can assume that this (conditional) expectation is large.

Let

Lz = {j : zj = z}

and

W ′ = {z ∈W : |Lz| ≥ γn}

where γ = σ/20.

Note that

z ∈W ′ implies that E [Yz | E1] ≥ a|Lz|n−1 ≥ aγ.

We have

|Lz| ≤ n and
∑
z

|Lz| = Λ.

We deduce that

|W ′|n+ γn(nk−1 − |W ′|) ≥ Λ ≥ σN

10
.

Therefore

|W ′| ≥ σ − 10γ

10(1− γ)
nk−1 ≥ σnk−1

20
.

Hence,

E [Zy | E1] ≥ |W ′|pi ×
aγ

b
≥ Kσ log n

20ρ
.

Now, Hoeffding’s theorem implies concentration of Zy around its (conditional) mean i.e. for

arbitrarily small constant ε and for large enough K,

P [∃v ∈ Vk−1, c ∈ C : |Zy − E [Zy | E1] | ≥ εE [Zy | E1] | E1] ≤ nk−dK ,

for some d = d(k).

The same holds for Zx. But this together with (4.42) contradicts (4.38). This completes the

proof of Case 1 of (4.17). We should of course multiply all probability upper by bounds by O(n2)

to account for Remark 4.3, and there is ample room for this. We can also multiply by O(n2) to

account for the number of choices for x, y.
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4.6.2 Case 2

Suppose that Ci fails because there are vertices v = (v1, . . . , vk) ∈ Vk such that

max
d∈C

wi (v, d) > max

{
Φi

(2n)k
, 2 medd∈C wi (v, d)

}
.

Let c be the color that maximizes wi (v, d). Let c∗ ∈ C \ {c} be a color with wi (v, c∗) ≤
medcwi (v, c) and

h(c∗, Hvc
i ) := H(X(c∗, Hvc

i ))

maximized subject to this constraint. Similarly to Case 1, X(c∗, Hvc
i ) denotes the edge-color pair

using the color c∗ in a uniformly random rainbow matching of Hvc
i . Then we can show as before

that

h(c∗, Hvc
i ) ≥ log

(
cdHvc

i
(c∗)

)
− (c1 + 3). (4.43)

Indeed, we have

wi (v, c) ≥ 2 meddwi (v, d) ≥ 2wi (v, c∗) . (4.44)

We have (4.33) and so if Φ(Hvc
i ) is the number of rainbow matchings of Hvc

i ,

log Φ(Hvc
i ) = logwi (v, c) ≥ (k − 1)n log n+ n log pi − (c1 + 2)n (4.45)

(by the assumption about v, w, c and the failure of Ci, including wi ({v, w}, c) ≥ Φi/((2n)k)).

Now, as in (4.35),

log Φ(Hvc
i ) ≤

∑
d∈C\{c}

h(z,Hvd
i ).

By our choice of c∗, we have h(d,Hvc
i ) ≤ h(c∗, Hvc

i ) for at least half the d’s in C \ {c}. Also,

for all d ∈ C \ {c}, we have

h(d,Hvc
i ) ≤ log cdHvc

i
(d) ≤ log

(
(1 + ε1)nk−1pi

)
.

So

log Φ(Hvc
i ) ≤ n

2
h(y,Hvc

i ) +
n

2
log((1 + ε1))nk−1pi) (4.46)

and hence by combining (4.45) and (4.46) we get (4.43), just as we obtained (4.37) from (4.34) and

(4.36).

Now for i = 1, . . . , k, we let Wi = Ui \ {vi} and W = W1 × · · · ×Wk. We let L = C \ {c, c∗}
and for z = (z1, . . . , zk) ∈ W , let w′i(z) be the number of rainbow matchings of Hi − {v, z} which

do not use c∗ or c. Then define wc∗(z) on

Wc∗ := {z ∈W : z ∈ Ei, ι(z) = c∗}

as w′i(z) and define wc(z) on

Wc := {z ∈W : z ∈ Ei, ι(z) = c}

as w′i(z). Then the random variable Xc∗ = X(c∗, Hvc
i ), which is the edge of color c∗ in a random

rainbow matching of Hvc
i , is chosen according to wc∗ and Xc = X(c,Hvc∗

i ) which is the edge of

color c in a random rainbow matching of Hvc∗
i is chosen according to wc.
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Equation (4.43) tells us that H(Xc∗) ≥ log |Wc∗ |− (c1 +3). Therefore we may apply Lemma 4.2

to conclude that there exist α ≤ β ≤ ρα and a set J ⊆ Wc∗ with |J | ≥ σ |Wc∗ | ≥ (1 − ε1)σnk−1pi
such that wc∗(J) ≥ 0.7wc∗(Wc∗) = 0.7wi (v, c) and J = w−1

c∗ ([α, β]). We also let J ′ := w−1
c ([α, β])

and note that

wc(J
′) ≤ wc(Wc) = wi (v, c∗) ≤ .5wi (v, c)

while on the other hand

wc∗(J) ≥ 0.7wi (v, c) ≥ 1.4wc(J
′). (4.47)

Now let Hi denote the graph induced by the edges e ∈ W for which ι(e) 6= c∗, c. Fix Hi and let

Fi = W \ E(Hi).

Next enumerate

Ψ = {z ∈ Fi : Φ(Hi − {v, z} − {c∗, c}) ∈ [α, β]} = {zj , j = 1, 2, . . . ,Λ} .

Here we can proceed as indicated in Remark 4.3 and treat α, β as constants.

Suppose that we replace Hi by HPn,k,pi . In this case, Ψ is determined by Hi and is independent

of the events zj ∈ Ei, ι(zj) ∈ {c, c∗}. It follows that if we omit the conditioning AiRiC̄i then |Wc∗ |
is distributed as Bin(Λ, pi/n). We still have the conditioning AiRiC̄i but we can argue as before

that (4.39) holds.

Then with

Γj = Hi − {v, w, xj , yj} − {c, c∗}

(i.e. the graph induced by vertices V \ {v, zj}, not including edges of color c, c∗), we have

wc∗(J) =
Λ∑
j=1

Φ(Γj)1zj∈Ei,ι(zj)=c∗ (4.48)

wc(J
′) =

Λ∑
j=1

Φ(Γj)1zj∈Ei,ι(zj)=c (4.49)

We have already observed the conditioning on Hi means that the Φ(Γj) are independent of the

1zj∈Ei ,1ι(zj)=c∗ ,1ι(zj)=c. Thus we may condition on the values of the Φ(Γj).

It follows directly from the expressions (4.48), (4.49) that Zc∗ = wc∗(J)/β and Zc = wc(J
′)/β

are both equal to the sum of independent random variables, each bounded between α/β and 1.

Furthermore, we see from (4.48), (4.49) that

E [Zc | E1] = E [Zc∗ | E1] . (4.50)

We can argue as before that Λ ≥ σN/10. Then note that

E [Zc∗ | E1] ≥ αΛpi
nβ

≥ Kσ log n

10ρ
.

Now, Hoeffding’s theorem implies concentration of Zc∗ around its (conditional) mean i.e. for

arbitrarily small constant ε and for large enough K,

P [∃v ∈ Vk : |Zc∗ − E [Zc∗ | E1] | ≥ εE [Zc∗ | E1] | E1] ≤ nk−d′K ,
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for some d′ = d′(k).

The same holds for Zc. There is room to inflate all probability bounds by O(n4) as in Case 1.

But this together with (4.50) contradicts (4.38). This completes the proof of Case 2 of (4.17), as

well the proof of Theorem 1.1.

5 Proof of Theorem 1.4

Janson and Wormald [5] proved the following theorem.

Theorem 5.1. Let G = Gn,2r, 4 ≤ r = O(1) be a random 2r-regular graph with vertex set [n].

Suppose that the edges of G are randomly colored with n colors so that each color appears exactly

r times. Then w.h.p. G contains a rainbow Hamilton cycle.

Suppose then that we have G = G
(n)
n,m where n = 2ν is even and m = Kn log n where K is

sufficiently large. We randomly assign an integer `(e) ∈ {1, 2, 3, 4} to each edge. We then randomly

partition the set [n]× [4] into 8 sets C1, C2, . . . , C8 of size ν. We then partition the edges of G into

8 sets E1, E2, . . . , E8. We place an edge e into Ei if (c(e), `(e)) ∈ Ci where c(e) is the color of e. An

edge goes into each Ei with the same probability, 1/8, and so w.h.p. we find that |Ei| ≥ m/10 for

i = 1, 2, . . . , 8. If |Ei| = mi then the subgraph Hi induced by Ei is distributed as G
(ν)
n,mi and so we

can apply Theorem 1.1 to argue that w.h.p. each Hi contains a rainbow perfect matching Mi. If we

let Γ =
⋃8
i=1Mi and drop the `(e) part of the coloring, then it almost fits the hypothesis of Theorem

5.1. It is 8-regular and each color appears exactly 4 times. Now M1 is a uniform random perfect

matching of Kn and in general Mi is a uniform random matching, disjoint from M1, . . . ,Mi−1. If

we take 8 independent random perfect matchings M ′1,M
′
2, . . . ,M

′
8 then the probability that they

are disjoint is bounded below by an absolute constant. We omit the proof. It mirrors the proof

that the configuration model (Bollob’as [1]) of 8-regular (multi)graphs is simple with probability

bounded below. So, if Γ′ =
⋃8
i=1M

′
i has a rainbow Hamilton cycle w.h.p. when each color appears

exactly 4 times, then so does Γ. It is however well-known, see for example Wormald [8] that Γ′ is

contiguous to the random 8-regular graph Gn,8 and this implies Theorem 1.4 for the case where n

is even.

When n = 2ν + 1 is odd, and m = ωn log n where ω → ∞ then we proceed as follows. Let

p = m/N and for convenience, we work with G = G
(n)
n,p, an edge colored copy of Gn,p, in place of

G
(n)
n,m. We decompose G = Γ1 ∪ Γ2 ∪ · · · ∪ Γω/K where each Γi is an almost independent copy of

G
(n)
n,p′ where 1− p = (1− p′)ω/K . The dependence will come when we insist that if an edge appears

in Γi and Γi′ then it has the same color in both. We fix an i and we choose some edge e = {x, y}
and contract it to a vertex ξ. We also delete all edges of Γi that have color c(e) to obtain Γ′i. Edges

in Γ′i between vertices not including ξ now occur independently with probability p′′ = (n− 1)p′/n.

Edges involving ξ appear with about twice this probability. Now n − 1 is even and by making K

large enough, we can make the probability that any Γ′i fails to contain a rainbow Hamilton cycle Hi

less than 1/n. Let ej = {ξ, zj} , j = 1, 2 be the edges of Hi that are incident with ξ. Now replace ξ

with x, y. If the edges e1, e2 are disjoint in Γi then Hi can be lifted to a rainbow Hamilton cycle in

Γi. This happens with probability 1/2 and the lift successes are independent. So the probability

that none of the Γi contain a rainbow Hamilton cycle is at most 2−ω/K → 0. This completes the
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proof of Theorem 1.4.
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