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Abstract

Let K
(k)
n be the complete k-uniform hypergraph, k ≥ 3, and let ` be an integer such

that 1 ≤ ` ≤ k − 1 and k − ` divides n. An `-overlapping Hamilton cycle in K
(k)
n is a

spanning subhypergraph C of K
(k)
n with n/(k − `) edges and such that for some cyclic

ordering of the vertices each edge of C consists of k consecutive vertices and every pair
of adjacent edges in C intersects in precisely ` vertices.

We show that, for some constant c = c(k, `) and sufficiently large n, for every coloring

(partition) of the edges of K
(k)
n which uses arbitrarily many colors but no color appears

more than cnk−` times, there exists a rainbow `-overlapping Hamilton cycle C, that
is every edge of C receives a different color. We also prove that, for some constant

c′ = c′(k, `) and sufficiently large n , for every coloring of the edges of K
(k)
n in which

the maximum degree of the subhypergraph induced by any single color is bounded by
c′nk−`, there exists a properly colored `-overlapping Hamilton cycle C, that is every
two adjacent edges receive different colors. For ` = 1, both results are (trivially) best
possible up to the constants. It is an open question if our results are also optimal for
2 ≤ ` ≤ k − 1.

The proofs rely on a version of the Lovász Local Lemma and incorporate some ideas
from Albert, Frieze, and Reed.

1 Introduction

By a coloring of a hypergraph H we mean any function φ : H → N assigning natural
numbers (colors) to the edges of H. (In this paper we do not consider vertex colorings.)

∗Supported in part by NSF grant CCF1013110.
†Supported in part by the Polish NSC grant N201 604940.
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Figure 1: A 2-overlapping and a 3-overlapping 5-uniform cycle.

A hypergraph H together with a given coloring φ will be dubbed a colored hypergraph. A
subhypergraph F of a colored hypergraph H is said to be properly colored if every two
adjacent edges of F receive different colors. (Two different edges are adjacent if they share
at least one vertex.) We say that a subhypergraph F of a colored hypergraph H is rainbow
if every edge of F receives a different color, that is, when φ is injective on F .

In order to force the presence of properly colored or rainbow subhypergraphs one has to
restrict the colorings φ, either globally or locally. A coloring φ is r-bounded if every color
is used at most r times, that is, |φ−1(i)| ≤ r for all i ∈ N. A coloring φ is r-degree bounded
if the hypergraph induced by any single color has maximum degree bounded by r, that is,
∆(H[φ−1(i)]) ≤ r for all i ∈ N.

In this paper we study the existence of properly colored and rainbow Hamilton cycles
in colored k-uniform complete hypergraphs, k ≥ 3. (A hypergraph is k-uniform if every
edge has size k; it is complete if all k-element subsets of the vertices form edges.) There is a
broad literature on this subject for k = 2, that is, for graphs. Indeed, setting r = cn, Alon
and Gutin proved in [2], improving upon earlier results from [5, 6, 16] that if c < 1− 1/

√
2

then any r-degree bounded coloring of the edges of the complete graph Kn yields a properly
colored Hamilton cycle (for the history of the problem, see [3]). It had been conjectured in
[5] that the constant 1− 1/

√
2 can be replaced by 1

2 which is the best possible.
Rainbow Hamilton cycles in r-bounded colorings of the complete graph have been stud-

ied in [1, 8, 10, 12]. Hahn and Thomassen conjectured that their existence is guaranteed if
r = cn for some c > 0. This was confirmed by Albert, Frieze, and Reed in [1] with c = 1

64 .
Again, c = 1/2 seems to be a critical value here, since one can use each of n − 1 colors
exactly n/2 times, making the presence of rainbow Hamilton cycles impossible. In striking
contrast, there is literally nothing known on properly colored or rainbow Hamilton cycles
in colored k-uniform hypergraphs for k ≥ 3.

The notion of a hypergraph cycle can be ambiguous. In this paper we are not concerned
with the Berge cycles as defined by Berge in [4] (see also [11]). Instead, following a recent
trend in the literature ([7, 13, 15]), given an integer 1 ≤ ` < k, we define an `-overlapping
cycle as a k-uniform hypergraph in which, for some cyclic ordering of its vertices, every edge
consists of k consecutive vertices, and every two consecutive edges (in the natural ordering
of the edges induced by the ordering of the vertices) share exactly ` vertices. (See Fig. 1
for an example of a 2-overlapping and a 3-overlapping 5-uniform cycle.)

The two extreme cases of ` = 1 and ` = k − 1 are referred to as, respectively, loose
and tight cycles. Note that the number of edges of an `-overlapping cycle with s vertices is
s/(k − `). Note also that when k − ` divides s, every tight cycle on s vertices contains an
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`-overlapping cycle on the same vertex set (with the same cyclic ordering).
Given a k-uniform hypergraph H on n vertices, where k− ` divides n, an `-overlapping

cycle contained in H is called Hamilton if it goes through every vertex of H, that is, if

s = n. We denote such a Hamilton cycle by C
(k)
n (`).

In this paper we prove the following two results. Let K
(k)
n be the complete k-uniform

hypergraph of order n.

Theorem 1.1 For every 1 ≤ ` < k there is a constant c = c(k, `) such that if n is

sufficiently large and k − ` divides n then any cnk−`-bounded coloring of K
(k)
n yields a

rainbow copy of C
(k)
n (`).

Theorem 1.2 For every 1 ≤ ` < k there is a constant c′ = c′(k, `) such that if n is

sufficiently large and k− ` divides n then any c′nk−`-degree bounded coloring of K
(k)
n yields

a properly colored copy of C
(k)
n (`).

Note that for loose Hamilton cycles (i.e. ` = 1) the above results are optimal up to the
values of c and c′. Theorem 1.2 is trivially optimal, as the largest maximum degree can be
at most r =

(
n−1
k−1
)
∼ 1

(k−1)!n
k−1. To see that also Theorem 1.1 is optimal up to the constant

for ` = 1 consider any coloring of K
(k)
n using each color precisely

r =

(
n
k

)
n
k−1 − 1

∼ k − 1

k!
nk−1

times, and thus using only n
k−1 − 1 colors altogether. Such a coloring is r-bounded and,

clearly, there is no rainbow copy of C
(k)
n (1).

Problem 1.3 For all k ≥ 3 and ` = 1, determine sup c and sup c′ over all values of c and,
respectively, c′ for which Theorems 1.1 and 1.2 hold.

We believe that Theorems 1.1 and 1.2 are optimal up to the constants also for ` ≥ 2,
that is, we believe that the answer to the following question is positive.

Problem 1.4 For all k ≥ 3 and 2 ≤ ` ≤ k − 1, does there exist an r-bounded (r-degree

bounded) coloring φ of K
(k)
n such that r = Θ(nk−l) and no copy of C

(k)
n (`) is rainbow

(properly colored)?

As some evidence supporting our belief, consider the bipartite version of both problems

for k = 3 and ` = 2. Let K
(3)
n,2n = (V1, V2, E), where |V1| = n, |V2| = 2n and E = {e ⊂

V1 ∪ V2 : |e ∩ Vi| = i, i = 1, 2}. To every edge e assign the pair e ∩ V2 as its color.
Clearly, every color appears exactly n times and hence such a coloring is n-bounded (and

thus n-degree bounded). Finally, note that every tight Hamilton cycle in K
(3)
n,2n induces a

cyclic sequence of vertices with a repeated pattern of two vertices from V2 followed by one
vertex from V1. Hence, there is a pair of consecutive edges with the same color (actually,

there are n such pairs), and so no copy of a properly colored (or rainbow) C
(3)
n (2) exists.
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2 The proofs

We will need a special version of the Lovász Local Lemma. A similar result was already
established in [1, 9, 14]. Contrary to the above results, in our formulation of the lemma we
avoid conditional probabilities so that we do not need to make a priori assumptions that
certain events have positive probability.

Lemma 2.1 Let A1, A2, . . . , Am be events in an arbitrary probability space Ω. For each
1 ≤ i ≤ m, let [m] \ {i} = Xi ∪ Yi be a partition of the index set [m] \ {i} and let

d = max{|Yi| : 1 ≤ i ≤ m}.

If for each 1 ≤ i ≤ m and all X ⊆ Xi

Pr

Ai ∩ ⋂
j∈X

Aj

 ≤ 1

4(d+ 1)
Pr

⋂
j∈X

Aj

 (1)

then Pr
(⋂m

i=1Ai
)
> 0. (We adopt the convention that

⋂
j∈∅Aj = Ω.)

Proof. We prove by induction on t = 1, . . . ,m, that for every T ⊆ [m], |T | = t, and for
every i ∈ T , setting S = T \ {i}, we have

Pr

(⋂
i∈T

Ai

)
> 0 and Pr

(
Ai

∣∣∣ ⋂
i∈S

Ai

)
≤ 1

2(d+ 1)
. (2)

For t = 1 we apply the (1) with X = ∅, obtaining for each i that Pr (Ai) ≤ 1
4(d+1) ,

equivalently Pr
(
Ai
)
≥ 1− 1

4(d+1) > 0, which confirms (2) for t = 1.

Now, assume truth for some t, 1 ≤ t ≤ m − 1, and consider a set T = {i} ∪ S, where
i 6∈ S and |S| = t. Set X = S ∩ Xi and Y = S ∩ Yi, and observe that S = X ∪ Y and
|Y | ≤ |Yi| ≤ d. By the induction assumption Pr(

⋂
j∈S Aj) > 0. If Y = ∅ (and thus X = S),

by our assumption (1),

Pr

Ai∣∣∣ ⋂
j∈S

Aj

 ≤ 1

4(d+ 1)
.

Otherwise, |X| < |S| = t and, again by (1) (in the numerator) and the induction assumption
(in the denominator) we argue that

Pr

Ai∣∣∣ ⋂
j∈S

Aj

 =
Pr
(
Ai ∩

⋂
j∈Y Aj

∣∣∣⋂j∈X Aj

)
Pr
(⋂

j∈Y Aj

∣∣∣⋂j∈X Aj

) ≤
1

4(d+1)

1− |Y | 1
2(d+1)

≤ 1

2(d+ 1)
.

Thus,

Pr

⋂
j∈T

Aj

 = Pr

Ai∣∣∣ ⋂
j∈S

Aj

Pr(
⋂
j∈S

Aj) > 0,

which completes the proof of Lemma 2.1.
The proofs of Theorems 1.1 and 1.2 extend some ideas introduced by Albert, Frieze and

Reed in [1] and are based on the following technical result.
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Proposition 2.2 For all 1 ≤ ` < k there exist constants δ = δ(k, `), 0 < δ < 1, such that

for every pair e, f of edges of K
(k)
n with |e∩f | ≤ ` and for every set X of pairs g, h of edges

of K
(k)
n satisfying (g ∪ h) ∩ (e ∪ f) = ∅ the following holds. Let

• C be the set of all copies C of C
(k)
n (k − 1) in K

(k)
n such that {g, h} 6⊆ C for all

{g, h} ∈ X, and

• C1 = {C ∈ C : {e, f} ⊂ C}.

Then, if C1 6= ∅, one can find a disjoint family {SC : C ∈ C1} of sets of copies of C
(k)
n (k−1)

from C (indexed by the copies C ∈ C1) such that for all C ∈ C1 we have |SC | ≥ δn2k−`−1.

First we show that Proposition 2.2 together with Lemma 2.1 imply both Theorem 1.1
and Theorem 1.2.

Proof of Theorem 1.1. Let 1 ≤ ` < k and set c = δ
10k , where δ = δ(k, `) is the constant

given by Proposition 2.2. Fix a cnk−`-bounded coloring φ of K
(k)
n and define

M = {{e, f} : e, f ∈ K(k)
n , |e ∩ f | ≤ ` and φ(e) = φ(f)}.

Moreover, for every pair {e, f} ∈M set

Ae,f = {C ⊂ K(k)
n : C ∼= C(k)

n (k − 1) and {e, f} ⊂ C}.

In order to prove Theorem 1.1 it suffices to show that⋂
{e,f}∈M

Ae,f 6= ∅. (3)

Indeed, if (5) is true then there is a tight Hamilton cycle C ∼= C
(k)
n (k − 1) such that for

every pair of its edges e and f with |e∩ f | ≤ ` we have φ(e) 6= φ(f). Since, by assumption,

k − ` divides n, C contains a copy of C
(k)
n (`) which is rainbow, as required.

To prove (5) we apply the probabilistic method and Lemma 2.1. To this end, for a given
pair {e, f} ∈M let

Ye,f = {{e′, f ′} ∈M : {e′, f ′} 6= {e, f} and (e ∪ f) ∩ (e′ ∪ f ′) 6= ∅}

and
Xe,f = M \ (Ye,f ∪ {e, f}) .

To estimate d, we bound from above the size of Ye,f as follows. For given edges e and f we
can find at most 2knk−1 edges e′ sharing a vertex from e ∪ f . For every such e′ we have at
most cnk−` candidates for f ′, since e′ and f ′ must have the same color. Thus,

d = max
{e,f}∈M

|Ye,f | ≤ 2ckn2k−`−1 ≤ δn2k−`−1

4
− 1.
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Now, let us consider a uniform probability space consisting of all tight Hamilton cy-

cles C ∼= C
(k)
n (k−1) in K

(k)
n . In order to prove (5), and thus finish the proof of Theorem 1.1,

it suffices to show that

Pr

 ⋂
{e,f}∈M

Ae,f

 > 0. (4)

Thus, it remains to verify assumption (1) of Lemma 2.1. Fix {e, f} ∈M and X ⊆ Xe,f . If
C1 = ∅, there is nothing to prove. Otherwise, by Proposition 2.2,

Pr
(
Ae,f ∩

⋂
{e′,f ′}∈X Ae′,f ′

)
Pr
(⋂
{e′,f ′}∈X Ae′,f ′

) =
|C1|
|C|
≤ |C1|∑

C∈C1 |SC |
≤ 1

δn2k−`−1
≤ 1

4(d+ 1)
.

Hence, we are in position to apply Lemma 2.1 with m = |M |, Ai := Ae,f , Xi := Xe,f , and
Yi := Ye,f , and conclude that (4), and consequently (5) holds. This completes the proof of
Theorem 1.1.

Proof of Theorem 1.2. This proof goes along the lines of the proof of Theorem 1.1. Let
c′ = δ

10k2
, where δ = δ(k, `) is the constant given by Proposition 2.2. Fix a dnk−`-degree

bounded coloring of K
(k)
n . Here we slightly modify the definition of M . Let

M = {{e, f} : e, f ∈ K(k)
n , 1 ≤ |e ∩ f | ≤ ` and φ(e) = φ(f)}.

As before,
Ae,f = {C ⊂ K(k)

n : C ∼= C(k)
n (k − 1) and {e, f} ⊂ C}.

and in order to prove Theorem 1.2 it suffices to show that⋂
{e,f}∈M

Ae,f 6= ∅. (5)

Indeed, if (5) is true then there is a tight Hamilton cycle C ∼= C
(k)
n (k−1) such that for every

pair of its edges e and f with 1 ≤ |e ∩ f | ≤ ` we have φ(e) 6= φ(f). Since, by assumption,

k − ` divides n, C contains a copy of C
(k)
n (`) which is properly colored, as required.

We define sets Ye,f and Xe,f as before and recalculate the upper bound on |Ye,f |. For
given edges e and f we can find at most 2knk−1 edges e′ sharing a vertex from e ∪ f . For
every such e′ we have at most c′knk−` candidates for f ′ since e′ and f ′ intersect and have
the same color. Thus,

|Ye,f | ≤ 2c′k2n2k−`−1 ≤ δn2k−`−1

4
− 1.

The rest of the proof is identical to the proof of Theorem 1.1 and therefore is omitted.

3 Proof of Proposition 2.2

Let e and f be given edges in K
(k)
n such that |e∩ f | ≤ ` and let C ∈ C1 be a tight Hamilton

cycle containing e and f and missing at least one edge from each pair {g, h} ∈ X. We
describe two constructions depending on the size of e ∩ f .
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Figure 2: The first construction for k = 4 and a = 2. The dashed and solid lines denote C
and C̃, respectively.

Construction 1: for 2 ≤ |e ∩ f | ≤ `.
Let |e ∩ f | = a and let e = (u1, . . . , uk) and f = (v1, . . . , vk) be such that uk−a+1 =
v1, uk−a+2 = v2, . . . , uk = va. This way we fix an orientation of C where e precedes f . Let
P = C \ {e ∪ f} be the segment of C between f and e of length n − 2k + a. We select
arbitrarily 2k− a− 1 vertex disjoint edges g1, . . . , g2k−a−1 from P , so that C is of the form
e f  g1  · · · g2k−a−1  e, where the symbol  indicates a path between the given
edges. Clearly, we have Ω(n2k−a−1) = Ω(n2k−`−1) choices for gi’s.

Let gi = (wi1, . . . , w
i
k) for 1 ≤ i ≤ 2k− a− 1, where we list the vertices of gi in the order

of appearance on P . In order to create a cycle C̃ ∈ SC , we remove all edges which contain
at least one vertex from (e∪ f) \ {u1, vk} and also all edges whose first vertex (in the order
induced by C) is wij for 1 ≤ i ≤ 2k−a−1 and j = 1, . . . , k−1. After this removal, the vertices
in the set {u2, . . . , uk, va+1, . . . , vk−1} become isolated and the remains of the cycle C form
a collection of vertex disjoint paths vk  w1

k−1, w
1
k  w2

k−1, w
2
k  w3

k−1, . . . , w
2k−a−1
k  u1.

To create C̃, we connect the above paths by absorbing the isolated vertices. Formally,
we define C̃ as the following sequence of vertices (see Fig. 2):

vk  w1
1, w

1
2, . . . , w

1
k−1, vk−1, w

1
k

 w2
1, w

2
2, . . . , w

2
k−1, vk−2, w

2
k

 . . .

 wk−a−11 , wk−a−12 , . . . , wk−a−1k−1 , va+1, w
k−a−1
k

 wk−a1 , wk−a2 , . . . , wk−ak−1 , uk, w
k−a
k

 wk−a+1
1 , wk−a+1

2 , . . . , wk−a+1
k−1 , uk−1, w

k−a+1
k

 . . .

 w2k−a−2
1 , w2k−a−2

2 , . . . , w2k−a−2
k−1 , u2, w

2k−a−2
k

 w2k−a−1
1 , w2k−a−1

2 , . . . , w2k−a−1
k−1 , u1  w2k−a−1

k , vk.

It is easy to check that every new edge intersects a vertex from e∪ f . Thus, C̃ \C contains
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no edge from any pair of edges belonging to X. Moreover, note that different choices of gi
yield different cycles C̃. Thus, |SC | = Ω(n2k−`−1).

It remains to show that for any two tight Hamilton cycles C 6= C ′ ∈ C1 we have
SC ∩ SC′ = ∅. In order to prove it, one can reverse the above procedure and uniquely
determine C and the edges g1, g2, . . . , g2k−a−1 from C̃. Note that we do not know the order
in which the vertices of e and f are traversed by C.

To reconstruct C, we first find in C̃ a unique e f path with no endpoint in e∩ f , say
Q. From this we deduce that u1 = Q ∩ e, vk = Q ∩ f and w2k−a−1

k is the last vertex on Q

before vk. Now we start at vk and follow C̃ in the direction opposite to w2k−a−1
k . Before we

reach u1 we will intersect f ∪ e exactly 2k − a− 2 times. This way we restore the vertices
vk−1, vk−2, . . . , va+1, uk, uk−1, . . . , u2 (in the order of appearance on C). Note that every
one of these vertices is adjacent to two vertices wjk−1 and wjk for some 1 ≤ j ≤ 2k − a− 2.
Consequently, we can uncover all edges gi and hence C itself.

Construction 2: for |e ∩ f | ≤ 1.
Here we show a stronger result, namely, we construct a family SC of size Ω(n2(k−1)). Let
e = (u1, . . . , uk) and f = (v1, . . . , vk). Note that it might happen that uk = v1 if |e∩f | = 1.
Let P be a segment of vertices between e and f of size Ω(n). For given two vertices x and
y denote by d(x, y) the number of vertices on P in the segment between x and y. Now
we select 2(k − 1) vertex disjoint edges g1, . . . , g2(k−1) from P so that C is of the form
e f  g1  · · · g2(k−1)  e and

d(vk, w
1
k−1) < d(w1

k, w
2
k−1) + 1 < d(w2

k, w
3
k−1) + 1 < · · · < d(wk−2k , wk−1k−1) + 1. (6)

This way we fix an orientation of C. (The above sequence of inequalities will be needed
later to establish the orientation of C from C̃.) Clearly, we have Ω(n2(k−1)) choices for gi’s.

Let gi = (wi1, . . . , w
i
k) for 1 ≤ i ≤ 2(k − 1), where we list the vertices of gi in the order

of appearance on P . In order to create a cycle C̃ ∈ SC , we remove all edges which contain
at least one vertex from (e∪ f) \ {u1, vk} and also all edges whose first vertex (in the order
induced by C) is wij for 1 ≤ i ≤ 2(k−1) and j = 1, . . . , k−1. After this removal, the vertices
in the set {u2, . . . , uk−1, v2, . . . , vk−1} become isolated and the remains of the cycle C form

a collection of vertex disjoint paths vk  w1
k−1, w

1
k  w2

k−1, w
2
k  w3

k−1, . . . , w
2(k−1)
k  u1,

and uk  v1. (The latter may be degenerated to the set of isolated vertices.)
To create C̃, we connect the above paths by absorbing the isolated vertices. Formally,

we define C̃ as the following sequence of vertices (see Fig. 3):
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Figure 3: The second construction for k = 4. The dashed and solid lines denote C and C̃,
respectively.

v1, w
1
k−1,w

1
k−2, . . . , w

1
1  vk, w

1
k

 w2
1, w

2
2, . . . , w

2
k−1, vk−1, w

2
k

 w3
1, w

3
2, . . . , w

3
k−1, vk−2, w

3
k

 . . .

 wk−11 , wk−12 , . . . , wk−1k−1, v2, w
k−1
k

 wk1 , w
k
2 , . . . , w

k
k−1, uk−1, w

k
k

 wk+1
1 , wk+1

2 , . . . , wk+1
k−1, uk−2, w

k+1
k

 . . .

 w2k−3
1 , w2k−3

2 , . . . , w2k−3
k−1 , u2, w

2k−3
k

 w2k−2
1 , w2k−2

2 , . . . , w2k−2
k−1 , u1  w2k−2

k , uk  v1.

It is easy to check that every new edge intersects a vertex from e∪ f . Thus, C̃ \C contains
no edge from any pair of edges belonging to X. Moreover, note that different choices of gi
yield different cycles C̃. Thus, |SC | = Ω(n2(k−1)).

It remains to show that for any two tight Hamilton cycles C 6= C ′ ∈ C1 we have
SC ∩ SC′ = ∅. In order to prove it, one can reverse the above procedure and uniquely
determine C and the edges g1, g2, . . . , g2(k−1) from C̃. Note that we do not know the order
in which the vertices of e and f are traversed by C.

Note that there are exactly two e  f paths in C̃, say Q1 and Q2. One with uk and
v1 as its endpoints and the second one with uk−1 and v2 as the endpoints. Our goal is to
determine vertex v1. Once this is known then as in Construction 1 we can uncover all edges
gi and hence C itself.

We assume for a while that v1 = Q1 ∩ f . Then we start at v1 and follow C̃ in the
direction opposite to the second endpoint of Q1. Before we reach edge e we will intersect

9



edge f exactly k − 1 times. This way we pretend that we restore vertices vk, vk−1, . . . , v2
(in the order of appearance). Let d̃(x, y) be the number of vertices on C̃ between vertices
x and y. Note that d(vk, w

1
k−1) = d̃(v1, vk) − 1 and d(wjk, w

j+1
k−1) = d̃(vk−j+1, vk−j) − 2 for

1 ≤ j ≤ k − 2. Now we check if (6) holds. If so then Q1 is really the path with endpoints
uk and v1; otherwise Q2 is the one.
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