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Abstract. We propose a general polynomial time algorithm to find small integer solutions to systems
of linear congruences. We use this algorithm to obtain two polynomial time algorithms for reconstructing
the values of variables x,, - - -, x, when we are given some linear congruences relating them together with
some bits obtained by truncating the binary expansions of the variables. The first algorithm reconstructs
the variables when either the high order bits or the low order bits of the x; are known. It is essentially
optimal in its use of information in the sense that it will solve most problems almost as soon as the variables
become uniquely determined by their constraints. The second algorithm reconstructs the variables when an
arbitrary window of consecutive bits of the variables is known. This algorithm will solve most problems
when twice as much information as that necessary to uniquely determine the variables is available. Two
cryptanalytic applications of the algorithms are given: predicting linear congruential generators whose
outputs are truncated and breaking the simplest version of Blum’s protocol for exchanging secrets.

Key words. pseudorandom numbers, linear congruential generators, lattice basis reduction algorithm,
cryptography
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1. Intreduction. The basic techniques of cryptanalysis are methods for solving
various sorts of reconstruction problems. Given diverse kinds of information about a
cryptosystem together with some enciphered messages, the cryptanalyst wishes to
combine this information to recover the original plaintext messages, which is the
message reconstruction problem. The cryptanalyst often accomplishes this by solving
the possibly harder problem of finding the key used by the encipherer, which is the
key reconstruction problem. From this perspective a general method of cryptanalysis is
one that solves a wide class of reconstruction problems. General reconstruction methods
serve as building blocks in the cryptanalysis of complex cryptosystems and also serve
to set limitations of the possible design of secure cryptosystems.

This paper studies a reconstruction problem arising from the combination of two
basic operations used in the design of pseudorandom number generators and crypto-
systems. These two operations consist of modular arithmetic operations used as a com-
putationally efficient way to “mix” the values of certain variables and the (non-
linear) operation of truncating the binary representation of the results. A simple
scheme of this type (which was used extensively on early computers) generates a
pseudorandom sequence of integers by alternately squaring the previous n-bit value
and discarding the top and bottom n/2 bits of the 2n-bit result. A related scheme is
that of using the high-order bits of a linear congruential sequence, which is generally
called a truncated linear congruential pseudorandom number generator. This was pro-
posed by Knuth [10].
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The problem we consider is that of reconstructing a set (x,, x,, - * +, x;) of integer
variables given two sorts of information about them. First we are given a set of /
modular equations

k
(1.1) Y ayxi=c;(mod M) forl=i=s|,
ji=1

that the variables satisfy. We assume that the a;, ¢; and M are known, and that the
unknowns x; satisfy the bounds

(1.2) 0=x;<M forl=sj=k

Second, we are given side information about some of the bits of the x;, which consists
of knowledge of blocks of consecutive binary digits of the variables x;. More precisely,
this partial information consists of knowledge of

(1.3) ij[-;-%] (mod24) for1=j=k
Here [ z] denotes the greatest integer of a real number z. In this case we know a fraction
8 of the bits of each x;, where 8 is given by

L
§=—"—
[log, M]

whenever /,+1,=[log, M]. The interesting case for cryptanalysis occurs when the
number of equations ! is less than the number of unknowns k. In this case the
congruences (mod M) taken by themselves constrain the variables x; (mod M) but do
not determine them uniquely.

The first question to deal with is: how much side information is needed to make
unique reconstruction possible? We may obtain an information-theoretic lower bound
for the amount of side information required as follows. Suppose 2" ™' = M <2" so that
the x; are n bit integers, and that we know a block of 8n bits of each x;. Now I modular
equations (mod M) with side conditions 0= x; < M can normally be used to eliminate
1 of the variables. The remaining k —/ variables contain (k—1I)n unknown bits of
information which must be uniquely determined by the k&n bits given by the variables
y;- Consequently we infer that a necessary condition for unique reconstruction is that
kén=(k—1)n, which is

I
> ——
(1.4) 8=1 .

In fact it turns out that the fraction 8§ =1—(l/k)+ ¢ of the highest-order bits of each
x; suffice to guarantee unique reconstruction for the overwhelming majority of systems
(1.1)-(1.3), in a sense made precise in § 2. However, there does exist a small minority
of such systems which require a larger 6 than given by (1.4) to guarantee unique
reconstructibility.

The main result of this paper is a general technique for solving this type of problem.
It uses lattice basis reduction ideas and is guaranteed to run in polynomial time, but
is not always guaranteed to produce a reconstruction. In the problems we are consider-
ing there are two major cases. The first case applies when the truncated variables y;
either consist of the highest-order bits of the x;, or consist of the lowest-order bits of
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the x; and M is odd. We show in Theorem 2.1 that our general algorithm succeeds
for “most™ instances when

!
Sl —ts,
k E.

where

Ck

“log M’

We will quantify what “most” means in § 2. The constants ¢, are of size O(k). Our
second case applies to systems with arbitrarily truncated variables ¥;- To be effective
it requires that twice as much side information be given as that needed to guarantee

uniqueness, that is,
6>2 ( 1 I) +
—— | +e,
k

and it then works for “most™ systems (Theorem 2.3). There is a small fraction of
problems on which the algorithms fail, and there is a smaller fraction of exceptional
problems for which unique reconstruction is not possible.

We demonstrate the usefulness of these reconstruction procedures with two appli-
cations:

(1) We show that truncated linear congruential pseudorandom number generators
are cryptographically insecure in most cases.

(2) We show that the simplest version of Blum’s protocol [1] for exchanging
secrets is insecure. We remark that Blum suggests other implementations of this protocol
which do not seem vulnerable to the attack described here.

The two applications are described in §§ 3 and 4, respectively, where we give an
analysis of our algorithm applied to these cases. The main technical difficulty is to
analyze the behavior of the lattices arising in the special problems.

Some of the results of this paper appeared in preliminary form in Frieze, Kannan
and Lagarias [5] and Hastad and Shamir [6].

2. Reconstructing truncated variables satisfying linear congruences. Let M be a
given modulus and x,,- - -, x, unknown values in the range 0=x; <M satisfying |
independent linear congruences (mod M):

k
2.1 2 oapx;=¢ (mod M) forl=i=|
i=1
where | = k. The coefficients a; and ¢; and the modulus M are assumed to be known.
We are given (or somehow obtain) certain bits ¥; of each x; where

(2.2) »= [zi,’] (mod 2"),

and our goal is to combine this partial knowledge with the given linear relationship
to compute the remaining bits of all the x;’s. Our main tools to do this will come from
the geometry of numbers, see [3], [4]. Let us recall some facts. A (full rank) lattice L
is defined to be the set of points

K
L={y:y= Nia b n,-eZ}
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where the b; are linearly independent vectors in R*. The set {b;: 1=i=k} is called a
basis of L and k is the dimension of the lattice. The determinant d(L) of a lattice L
is defined to be the absolute value of the determinant of a matrix whose rows are the
b;. Geometrically the determinant can be interpreted as the volume of the parallelepiped
spanned by the basis vectors. Using this interpretation it is possible to prove that the
determinant is equal to the inverse of the density of the lattice (where the density is
the average number of lattice points per unit volume). This characterization shows
that the determinant is independent of the choice of basis.

We define the ith successive minimum A; = A;(L) of a lattice L to be the smallest
radius r such that the sphere or radius r around 0 in R* contains i linearly independent
points of L in it or on its boundary. We will be interested in lattices whose successive
minima are roughly the same size.

We will be interested in bounding A, from above. To do so, we use the dual lattice
L* which is defined to be

L*={y[{y,x)eZ forallxe L}.

It is well known that d(L*)=d(L)™". A classical result asserts that A,A¥=k! [3,
p. 371}, and a recent result of Lagarias, Lenstra and Schnorr [12, Thm. 4.4] shows that
AFA,=k?/6 for k=7, where AT denotes the length of the shortest vector of L*, and
A¥a.=k* for all k. Thus a lower bound for AT gives the desired upper bound for A,.

The idea to use the dual lattice was suggested to us by C. P. Schnorr [17]. Our
original method gave constants having a worse dependence on k.

Let us return to our problem. Let L(a, M) be the lattice in R* spanned by the !
vectors a;=(a;,, " - -, a;;) (the coefficients of the known modular relations) in (2.1)
and by the k vectors Me; where e; are the unit vectors along the coordinate axes. We
will use this lattice in our algorithm, and the performance of the algorithm depends
on properties of this lattice. Observe that the dual lattice L* = L*(a, M) is

{L
M y
where (y, a;) is the Euclidean inner product.

Let us start by giving the theorem which will be our main tool.
THEOREM 2.1. The system of modular equations

(y,a;)=0(mod M) forléiél},

k
Y ayxi=c¢; (mod M), i=1,2,---,1
j=1

has at most one solution x € Z* satisfying the bound
(2.3) Ix|| = MA g 2~ */2-1,

where A, is the largest successive minimum of the lattice L(a, M). If the a;, ¢, and M
are known then there is a polynomial time algorithm that either finds x or proves that no
such x exists.

Proof. We use a three-stage algorithm. First, we apply a lattice basis reduction
algorithm to the lattice L= L(a, M) of known modular relations to get modular relations
with small coefficients. Second, we use size constraints on the x; to transform these
equations to equations over the integers. Third, we use these equations over the integers
to recover the exact values of the x;.

We apply the lattice basis reduction algorithm of Lenstra, Lenstra and Lovész
[13] to the lattice L of modular relations to obtain a good basis. They prove the
following result.
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THEOREM 2.2. There exists an algorithm, the L*-algorithm, that when given as input
a basis {b;: 1=i=k} of an integer lattice L R* finds a basis {b¥: 1=i=k} such that

(2.4) Ib¥l=2%2A,(L) for1=isk

This algorithm always halts in O(n%(log B)®) bit operations, where B*=Y*_, [|b;[>=
i1 Ty by

WJe do not have a basis for the lattice L(a, M) but we can obtain one as follows.
Using a Hermite normal form reduction algorithm (see [8]) we obtain in polynomial
time an integer matrix V in GL(k+/, Z) such that

- a e
w) S
LD a
ol=v]|. |,
. Me,
0 _Mek_

where the matrix on the left is in Hermite normal form and {w!: 1=<i=k} is a basis
of L(a, M). Now the L*-algorithm applied to this basis produces an L*-reduced basis
{w;: 1=i=k} and a unimodular matrix U in GL(k, Z) such that

W, W
Hl=u]
Wy Wi
and
Iwil =2*%A,, 1=isk

Combining these steps we obtain an integer matrix Y such that

[ ]
" .
(2.5) [ . ] =Y Me,
Wy .
| Me, |

(Alternatively the L*-algorithm can be adapted to work on a set of generators of a
lattice and produce (2.5) directly.) Now by multiplying (2.5) on the right by x and

reducing (mod M) using (2.1) we obtain modular relations with small coefficients:
k
(2.6) L wyx;=c; (mod M), 1sisk

Jj=1
Note that, although we started with I modular equations in (2.1), we have now obtained
a full set of k modular relations which are independent over the integers.
To perform the second stage of the algorithm we observe that
M

= [lwill fixll < 2%/2A, MA 12~k <7

k

T wyX;
j=1
Thus if we choose c; to satisfy |¢]| < M/2 we know that

1

M

J
holds over the integers.
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Finally we solve this system of k linearly independent equations in k unknowns. O
Let us see how to use Theorem 2.1 if the variables are not small but some of the
bits are known. Define for convenience

k1
2.7) so=1log A, +5+510g k+1,
where A= Ak(L(a, M))
CoRroOLLARY 2.3. The system of modular equations

k
Y a;xi=c¢; (mod M), i=1,2,---,1
j=1

has at most one solution x in which either of the following conditions holds:

(i) The s, most significant bits of each x; are specified.

(ii) The s, least significant bits of each x; are specified, and M is odd.

If the ay;, ¢; and M are known there is a polynomial time algorithm that either finds x or
proves that no such x exists.

Proof. To prove case (i) we just observe that x; = x{"+x{® where x{" are the
known most significant bits and |x{”| = MA;'2~*/?~ /&7, Substituting the known x{"
we come into position to use Theorem 2.1.

For the case (ii) write x; = 2%x!" + x® where x{? are known and x!" satisfies the
same size bounds. Since M is odd (2*)™' (mod M) is defined, and after multiplying
the equations by (2%)™' (mod M) we can use Theorem 2.1. 0O

Note that the algorithm of Theorem 2.1 can be applied without knowing the value
of A, or whether or not the bound (2.3) holds. To explain this, we associate with any
basis {b;: 1=i=k} of a lattice L in R* the quantity

(2.8) Ar(by,---,by)= max (fIvs ).

Then by the proof of Theorem 2.1 the algorithm succeeds whenever
(2.9) so=log Ap(bF,---,b¥)+3logk+1,

where {b*: 1=i=k} is the L*-reduced basis of the lattice L(a, M) obtained in the
algorithm. The bound (2.9) can be checked during the algorithm.

When can the algorithms of Corollary 2.2 be expected to succeed? This depends
on the value of A,, and to get an idea how large it usually is we estimate it in the case
where the modulus M is a fixed prime and the coefficients a; of the modular relations
(2.1) are drawn independently from the uniform distribution on [0, M —1].

THEOREM 2.4. Let p be prime. For the p*' possible systems A of modular equations

a;x;=0 (modp) forl=i=l
1

I =

j

arising by choosing
0=q;<p for1=i=land 1=j=k

at least (1—¢&—O( p"’ ¥))p*' of these give rise to lattices L(A, p) which have

(2.10) A <S5k¥2g=\kptolrk,

Proof. We will use the previously mentioned result by Lagarias, Lenstra and
Schnorr [12] that A¥A, = k? for all k=1.
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We estimate the probability that L* contains a short vector. We know that pL* is
the integer lattice {y|(y, a;)=0 (mod p); 1=i=1}. Take a sphere S centered around 0
of radius R where R < p. For any nonzero point z in S the probability that ze pL* is
p~". Thus the probability that any point inside S is in pL* is bounded by Sy(R) - p~',
where S, (t) counts the number of lattice points in a k-dimensional sphere of radius
t centered at the origin. Since Si(1)= Vit*+ O(kVit*™") with V, = 7*/?/T(k/2+1) as
t > o we conclude that if we choose R = (#"/?/T'(k/2+1))""*c"*p'"* then p~'S(R) =
e+O0(p~"%) as p>co0. Hence we conclude that with probability 1—&— O(p~"*) the
inequality

AY

v

1 i Tk 1/k l/k>1 1k 1/k=1
o\Tayzrn) € P EsVEE"D

holds, and thus
Ay = 5k~ kpi=k

This completes the proof. 0O

A slightly weaker result than Theorem 2.4 can be proved to hold for all moduli
M. We omit the details.

We may now infer that the algorithm of Corollary 2.3 succeeds in most cases for
a random system (2.1) whenever the number s of known bits exceeds the information
bound (1-(//k)) log M by a small amount. Indeed for M a prime p, for most lattices
L(a, p) the bound (2.7) implies that this happens if s satisfies

(2.11) sg(l—zl) logp+§+210g k+%|]og g|+3,
which exceeds the information bound by a constant depending only on the dimension
k and desired failure rate e.

In cryptanalytic applications, the set of problems (2.1) that arises may be dis-
tributed in an entirely different way than the uniform distribution studied in Theorem
2.4. For this reason, in §§ 3 and 4 we separately analyze the distributions of A, arising
in our two applications. However in the absence of other information, the bound (2.11)
is a useful heuristic to use.

We now describe and analyze our second algorithm, which applies to the set of
modular equations

k
(2.12) Y ayx;=¢; (mod M), 1=i=sl]
i=1

where we are given an arbitrarily located window of bits for each x;. We suppose that
the window of s truncated bits is from bit w to bit w+s—1, i.e.,
%= X027 4275 ®

where x{"<2% xP<2* and x¥<M27* and x{? is assumed to be known. Thus
the unknown is x{V+2%**x{)

To use Theorem 2.1 we want to transform (2.12) to an equation with small
unknowns. To do this we find a which satisfies

(2.13) la|]= M2/ and [a2"** (mod M)|=2"**/2,

Such an a always exists and we can find it in polynomial time using the result of
Lenstra [14] that there is a polynomial time algorithm for solving integer programs in
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a fixed number of variables. This is because (2.13) can be written as the integer program
in three variables (a, y,, y,) given by

-M27" P =a— My, s M2/,
_2 w+(s/2) = azw+s - My2 = 2w+(:/2),
O0<a<M.
Multiplying the equation (2.12) by a and using the unknowns
zi=ax{V+a2"*x®
we obtain the modular equation

k
Y a;zi=c¢; (mod M), 1=i=s],
i=

where the quantities
k
ci=a (c, -2y a,»jx?’)
j=1
are known. Now we know by (2.13) that
|z| =|a||x{"|+]a2"** (mod M)||x{¥|= M27/2*",
Thus provided that
s>2log Ay +k+logk+4

holds that we can apply Theorem 2.1 and find z;. If (a, M) =1 then all that remains
is to compute a~'z; (mod M). If M is prime then (a, M) =1 is guaranteed to hold and
we have proved the following result.

COROLLARY 2.5. Suppose M is prime and we are given a known system of modular
equations

I ™M=

a;x; = ¢; (mod M), 1=i=1

j=1

and a window of s truncated bits of each x; consisting of bits w to w+s—1 where
s>2log A, +k+log k+4.

Then there is a polynomial time algorithm that either finds a solution x to the modular
equations matching the truncated window data, or else proves that no such x exists.

However in the case of a general modulus M we cannot assume that (a, M) =1.
There might not even exist an a such that (a, M) =1 which has the desired properties.
To get around this problem we will use a different approach. We will prove a result
for general M which depends on Diophantine approximation properties of the number
M/2"**, Define for a real number 6 the quantity

(2.14) a(8,x)= minz |n6 — m|.

lansx

We have the following result.
THEOREM 2.6. Suppose that we are given a known system of modular equations

k
Y a;x;=¢; (mod M), i=1,2,---,1

ji=1
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and that we are given a window of s bits of each of the variables x; whose largest bit is
the (w+s)th bit. If

loga( M \/EZ"‘”)+'A,‘)I+%Iog k+1

2w+s ’

k
(2.15) s=log )\k+§+

then the x; are uniquely determined and can be found in polynomial time.
Proof. As in the proof of Theorem 2.1 we get a system of equations

k
Y wix;=ci (mod M), 1=i=k,
j=1
where [lw;|| =2*2A,. Over the integers we can write this as
k
Jj=1

where we know by the bound for the w; that |d|=vk2Y2\,. Using x=
x§V+x{P2% + x¥2*** where x{* are known we get

k
(2.17) T wix{V=cl+dM (mod2"*),
Jj=1

where the integers c/ are known. Since |x}"|=<2" the bounds on w; imply that

(2.18) =2W/2*w) k.

: )
Y wyx;
j=

Using (2.17) we obtain
c/+d;M=z (mod2*"),

where |z;| = vk 2/2**\,. Now we know that each d; satisfies the integer program in
two variables (d,, ¢;) given by

(2.19a) —VE 2K N <l + dM 27 s VE 2D
(2.19b) ~VE 22\, =d, =VEk 2¥,.

We can find a solution (d;, 1) to this integer program in polynomial time by Lenstra
[14] (see also [7]). We claim that all solutions of (2.19) have d; = d,. Suppose not, and
let d{", d® be distinct solutions. Then their difference d; = d{V — d{? satisfies

(2.20a) |d; M+ 275 (1) — 1) s VE 2K/Drwy,
(2.20b) [d| =Vk2¥/P*),.
Then

:,‘,IK— r|svkaka-sty,

for some integer r=1{"—1. Using the bound on d and the definition of
a(M /275 VE2%/D*) ) if d # 0 this yields

25+w:

This inequality contradicts the bound for s in (2.15). Consequently d; = d;. Hence we
have found d; by solving (2.19). Now we determine the x; by solving the invertible
linear system (2.16). 0O
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To estimate the useful range of Theorem 2.6 we need information about the
quantities a(M/2°"", Vk 2*/2*'7,). Dirichlet’s theorem for Diophantine approxima-

tion (see [3, p. 165], [9]) asserts that for all real 8 one has
a(6, x) él
x

for integer x, and it is known that for most pairs (6, x) one has «(6, x) of size
about 1/x. Hence one expects that for most triples (M, w,s) one has
a(M/2° VE 2% )~ k™22 %2) " and hence that the bound (2.15) is about
twice that necessary to uniquely determine the variables x;. The loss of efficiency of
this algorithm in the information-theoretic sense arises in stage 2 of the algorithm. We
are given a window of s truncated bits. The effect of the low-order bits y; is inflated
by the coefficients w;; of the reduced basis and in the integer program (2.19) they
destroy the information in the bottom log A, bits of the “window.” Since we need
about log A, information bits to recover the input, the window must contain this many
undestroyed bits of information, so it must have at least 2 log A, bits, i.e., its efficiency
is halved.

3. Cryptanalysis of truncated linear congruential pseudorandom number
generators. A linear congruential pseudorandom number generator is based on the
recurrence

(3.1) X =ax;+c¢ (mod M).

Several kinds of reconstruction problems relating to linear congruential generators
have been studied previously. In the case where the parameters (a, ¢, M) are unknown
and {x;: 1=i=k}areknown, J. Boyar [2] shows that one can start predicting subsequent
values of the sequence with hlgh accuracy given a short initial segment. Her method
is to find parameters (4, ¢, M ) consistent with the available data (in polynomial time)
and to extrapolate the sequence using these parameters. If a later disagreement occurs,
the values (4, ¢, M) are changed to remain consistent with the new data. She shows
that at most O(log M) disagreements can ever occur, using this procedure. Knuth [11]
considered problems arising when only truncated high-order bits y; of the generator
are known. He supposed that M =2" is known and that the parameters (a, ¢) are
unknown, and he gave an attack which, when given {y;: 1=i=k} where y;=[x; /24
(mod M), will usually reconstruct the parameters (a, ¢) and seed x, in O(n’2%'/k?)
steps. This running time bound is exponential time, as may be seen for example in the
case when half of the bits are truncated and when the number k of values y; observed
is small. Reeds [15], [16] was the first to study linear congruential generators from a
cryptographic viewpoint. In [16] he studied a cryptosystem which in its simplest version
enciphers the plaintext P; as

E,=y,+ P, (mod 256),

where y, =[257x;/ M] and x; = ax;_, (mod M). He showed how to break it in a reason-
able time when both the modulus M =2%'—1 and multiplier a =7° are known, using
a partially known plaintext attack. His attack appears to take exponential time for
general parameters (M, a, c).

We consider here the situation in which the modulus M and multiplier a are
known, the constant term c is unknown and a segment y; of truncated high-order bits

(3.2) g = [%] forlsisk
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of the linear congruential generator are given as data. We give a polynomial time
reconstruction procedure and prove that it succeeds on nearly all problems in which
sufficient data is available to permit unique reconstruction (Theorem 3.1), provided
the modulus M is squarefree. We also prove a similar result which applies to all moduli
M, provided that any fraction greater than one third of the bits of the original x; is
given as input (Theorem 3.5). In our analysis for simplicity we treat only the case that
high-order truncated bits y; are given as data, but our technique applies to the cases
where the low-order truncated bits are given, or where an interior window of truncated
bits is given. In the interior window case we would achieve only 50 percent efficiency
in the use of the available information.

We will show that unique reconstruction of the sequence x, is usually possible in
the case that the parameter ¢ =0. The case ¢ # 0 is different. In the case ¢ # 0 we set
x!=x.,—x and y}=y,,;—y; and observe that x| satisfies the recurrence

xin=ax; (mod M)

with ¢=0 and y; is essentially a truncated version of x;. Now the methods of this
section will show that x; can usually be uniquely reconstructed. However, x} does not
determine the sequence x; since x; and x;+d for any d will give the same x} and both
are generated by linear congruential generators. In fact for small d the two sequences
{x;} and {x; + d} will usually have the same s most significant bits, and so it is impossible
to uniquely reconstruct the original {x;} in this case. What we can do in the general
case that ¢#0 is to predict future values of the truncated sequence {y;} with great
accuracy, using the s most significant bits of x, together with the uniquely reconstructed
sequence {xi}.

Now we consider the case where the parameter ¢ =0. The k unknowns {x;: 1=<i=
k} satisfy

X =ax; (mod M)

and consequently are related by the following system of k—1 independent
homogeneous congruences:

(3.3) a 'x;,—-x;=0 (mod M) for2=i=k

Since we are given the high-order bits y; of the x; as input, we have exactly a problem
of the kind analyzed in Corollary 2.2. In this case L(a, M) = L, is the lattice consisting
of all vectors (»,, - - -, ») € Z* satisfying (3.3), which has as a basis the vectors

bl=(M’0’09. ”’0),
b2=(a: —l’Os. * '90)$
b3=(a2$0’_1s' o 90),

bk = (ak_ls 09 0’ ST, -1)'
The determinant D= D(L,) is given by
(3.4) D(L,))=M.

The analysis of the size of A.(L,) is the only problem in applying Corollary 2.2. In
the case where M is squarefree we are able to prove that A, is small for most L,.
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THEOREM 3.1. For squarefree M > c(&, k) there is an exceptional set E(M, €, k) of
multipliers of cardinality | E(M, ¢, k)| = M '~ such that for any multiplier notin E(M, ¢, k)
the following is true. The x; are uniquely determined by knowledge of the (1/k +¢) log M +
c(k) leading bits of all {x;: 1 =i=k}, where

k 7
Cr =§+(k—1) log3+§log k+2.

Furthermore, there is an algorithm which runs in time polynomial in log M+ k which
finds the x;.

Remarks. (1) The number of bits needed for unique reconstruction is essentially
optimal on information theory grounds, except for the presence of the e.

(2) Some sort of exceptional set E(m, g, k) is necessary because a =1 is always
a “bad” multiplier. In the case a =1, all the observed truncated bits y; will be equal
to the high-order bits of the seed x,, and one never gets any information about the
low-order bits of the seed. (Of course we can extrapolate future values of the generator
very well in this case.) There are usually other multipliers a in the exceptional set
E(M, ¢, k) defined below, though they are in general not easy to characterize.

(3) The proof actually shows that we could take & to be a constant times
1/loglog M as M - oo,

Proof. Our object is to apply Theorem 2.1, and our only problem is to bound the
number of lattices L, which have a large A,. We define the exceptional set

E(M, &, k) ={L,: A(L,)>2k>3* ' M(/0+e}

and our object will be to show that for squarefree M = c(¢, k) there are at most M 1-e
lattices L, in the exceptional set E(M, ¢, k).

We will study the dual lattice L}, which is generated by 1/M(1, a, a%---,a"™")
and the unit vectors e;,i=1, - - -, k. For notational simplicity let us study ML%. A
short vector in ML* corresponds to an integer ¢ such that {ta’: 0=i=k—1} are all
small (mod M). For a fixed R we are interested in estimating the size of the set

Se={a|3,1=t<M,|ta’'(mod M)|<R for0=i=k-1}.
Define for d dividing M the sets
Sra={a:3,1=t<M,(M,1)=d,|ta’(mod M)|<R for0=i=k-1}.

It is clearly true that Sg = U 4a Sg.4. Let us first estimate the size of Sg;.
LEMMA 3.2. If a€ Sk, then a satisfies an equation

k

(3.5) Y va'=0 (mod M)
i=1

with

(3.6) IV,-|§(2kR)l/(k—”.

Proof. By assumption we have t such that (, M) =1and |ta’ |I<Rfor0=i=k-1.
Consider all linear combinations ¥, 5;1a* with 0=s,<(2kR)"*"" for 0=i=k—1.
There are (2kR)*/**~" such combinations and the value of any such combination is
bounded in absolute value by kR(2kR)"/**~V. Thus by the pigeonhole principle there
are two different sets of s;’s which give the same value. Subtracting the two expressions
and dividing by ¢ we get the desired solution to (3.5). O
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To estimate the size of Sg, we must estimate how many numbers a satisfy an
equation (3.5) with small coefficients. Let M =H{=| pi- We count the number of a’s
satisfying this equation having

(3.7) d=gcd. (M, v, - »).

If d is the product of g of the prime factors of M then an upper bound for the number
of solutions is d(k—1) "% The reason for this is that we have at most k — 1 solutions
to the congruence

k .
Y va'"'=0 (modp)
i=]
for each of the f—g primes p; of M not dividing d. We next bound the number of
vectors v= (v, - - *, ¥) satisfying the condition (3.7), using the following lemma.
Lemma 3.3. If d divides M then the number of nonzero integer vectors satisfying

gcd. (M, v,,---,5)=d

and |v|= T for 1=i=k is less than (3T/d)".

Proof. Dividing all »; and M by d shows it is enough to prove the lemma for
d = 1. In this case the estimate follows from a trivial bound on the number of lattice
points in the region considered. 0O

Combining the above results we get

1(k=1) , a\ k
ISR,1|§ Z k;_gd((sz)—3)
diM d
<K (2kR)X/*-V .3k ¥ gk
d[M

To simplify this further we use a well-known number-theoretic estimate valid for
squarefree numbers M that shows that there is a constant ¢, such that for M =20
one has

log M
fg co_o_g___‘
loglog M
Hence
k) =< Mcolosk)/ (loglog M)

and

Y d'7rF= ¥ 1=2 = M(%'os?)/Uoslog)

d|M dimM ’
giving
(3-8) ISR.II < 3k(2kR)k/(k—l)Mcnlogzk/loglog m.

Next let us consider Sg 4 for d > 1. Whether a € Sg 4 only depends on a(mod M/d).
To be more precise a € Sg4 if and only if there exists an integer ¢ with 1=t<M/d,
and (t, M/d) =1 with

|ta' (mod M/d)|=R/d, 0=i=k-1.
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Reasoning as in Lemma 3.2 we find that a solves an equation with small coefficients
(mod M/d). Using that each solution (mod M/ d) lifts to at most d solutions (mod M)
we get

2kR

k/(k=1)
|SRd|<d3k(—' M (Cotos2k)/(loglog M)
’ d

= 3k d—-l/(k—1)(2kR)k/(k—l)M(colog2k)/(logIogM).

Thus we obtain
|SR| = | 9 SR,dl §§ |SR.d| < 3k(2kR)k/(k—I)M(cologzk)/(loglogM) z d—-l/(k—l)

d|M
(3.9) é3k(2kR)k/(k—l)M(coIong)/(loglogM)zf
é3"(sz)k/(k'l)M(‘o|°84k)/(l°g'°3M).
Now choose R = M*V/*3=(=D(31)~! Then (3.9) yields for M = c(e, k) that
|Sg|< M,

and that for all a not in Sz we have
1
ALYz 37C D MVEe
(L3) 2k

Then the inequality A¥A, = k® proved in [12] yields
(3.10) A(Lp) S 21335 M/ kre,

Hence E(M, &, k)< Sg so |[E(M, g, k)|=M'™".
To complete the proof of Theorem 3.1, we choose

sZ (i+ s) log M +c(k)
with ¢(k) = k/2+(k—1) log 3+3 log k+2, and apply Corollary 2.2, after observing that
if ag E(M, g, k) then (3.10) implies that

k1
sés¢,=logAk+5+Elogk+l. o

This proof of Theorem 3.1 does not carry over very well to non-squarefree moduli

M, the worst case being M =p° a prime power. The problem in that case is that
polynomials (mod p°) may have many roots, e.g.,

k

T va'"'=0 (modp)

i=1
may have up to kp®~' roots, and we get a much weaker estimate for |Sg| in this case.
We can still use this weaker bound to extend the proof of Theorem 3.1 to apply to
moduli M which are almost squarefree. Define a number M to be §-squarefree if

s !
M=T]] p# and T[] pi'=M>
i=1 i=1
Then we have the following result.

THEOREM 3.4. Suppose that the modulus M is 8-squarefree and let the number of
iterates k and a constant € >0 be given. Then there exists a constant c,(e, 8) such that
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for all such M > ¢,(&, 8) and all residues not in an exceptional set E (e, M) of cardinality
at most M~ given knowledge of s leading bits of {x;: 1= i= k} where

s>(%+e+8) log M +c(k)

suffices to determine the {x;: 1=i=k} uniquely. Furthermore, there is an algorithm that
runs in time polynomial in log M + k which always reconstructs all the x; in this case.

The proof is essentially the same as that of Theorem 3.1, using the weaker bound
for |Sk|, and we omit the details.

For the special case k=3 we are able by a more careful argument to prove an
essentially optimal bound valid for all moduli M.

THEOREM 3.5. Given & >0, for any M the knowledge of (3+ ¢) log M + c(k) leading
bits of x,, x, and x; allows the recovery of x,, x, and x; in polynomial time for all
multipliers a except a set of cardinality c(e)M '™/,

Proof. As we have seen the hard part of the proof will be to count the number of
solutions to second-degree congruences when the modulus is highly composite. To fix
notation let V(x)=vo+ v;x+ v,x* and v= (v, »,, ¥,) with |v]| = (v3+vi+»3)"2% We
want to estimate the size of the following set:

F(u)={a:1=a<M and 3||v| = M* with V(a)=0 (mod M)}.

Assume first that g.c.d. (¥, »;, ¥2, M) = 1. Suppose M =]'[{,=l pit where the p; are

distinct primes. We study the number of solutions to a quadratic equation modulo
prime powers p°. Let D(V)=v}—4v,v, denote the discriminant of the quadratic
polynomial V(x). Note that the polynomial has a double root (mod p) if and only if
D(V)=0(mod p). We have the following lemma.

LEMMA 3.6. If p does not divide g.c.d. (vy, v,, v,) then the number of solutions of

nx*+rx+v,=0 (modp®)
is at most 2 min (p'¥/?), p\*/2)) where r is the largest integer such that
D(V)=0(mod p").

Proof. We can assume that the highest-degree coefficient of V is not divisible by
p since otherwise the congruence has at most one solution.

Suppose now that there is at least one solution, so that V factors as t(x+a)(x+b)
(mod p°) with (t, p) = 1. The discriminant D(V) (mod p°) is t*(a —b)? and if s is the
largest integer such that a=b (mod p°) then r=min (2s, ). We have two cases,
depending on the size of 2s.

If 2s < e then the solutions of the congruence are precisely those x =a (mod p°™*)
and those x=b (mod p°~°). There are 2p* solutions in this case.

If 2s=e then the solutions of the congruence are exactly those x=a=b
(mod p'*’?1) and there are p'/?) such x (mod p°).

In both these cases the bound of the lemma holds. 0O

We next estimate the frequency with which the condition in Lemma 3.6 is satisfied.

LemMA 3.7. Given £ >0 and d < M** the number of ||v| = M* that satisfy

D(V)=0 (modd)

is O((1/d)M>#*¢),
Proof. The congruence »>—4v,»,=0 (modd) splits into the O((1/d)M>*)
equations

vi—4vov,=kd for|k| é% M2,
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over the integers. For each fixed », the equation is of the form 4v,v, = c. If ¢# 0 this
equation has as many solutions as divisors of ¢, and it is not hard to see that this
number is O(M®) since ¢ = M**. The remaining case ¢ =0 gives 4M* possibilities for
vo and », but in this case », is determined by k and hence the total number of solutions
is 0((1/d)M***°). DO

Now we are able to estimate F(u) in the general case.

LEmMA 3.8. For any € >0 it is true that

[F(w)| = c(e) max (M3#+e, MY+ 0u/Drey
Proof. First observe that by Lemma 3.6 if (D(V), M)=d then the number of
solutions to V(x)=0 is bounded by d2/, where f is the number of prime factors of

M. The contribution S,(x) to |F(u)| from V(x) with g.c.d. (¥, ¥, v, M)=1 and
D(V)#0 can be estimated using Lemma 3.7 by

Si(u)s ¥ c,d2f(-1—M3“+‘/2)
d|M d

dsM*
s d(M)2PM3#+e/2 < o, M3H+e,
where d(M)= O(M”V/ &8 M) denotes the number of divisors of M.

Now we let S;(u) count the set of a in |F(u)| arising from polynomials V(x)
with g.c.d. (M, v,, v,, »,) =d and D(V)#0. Dividing such an equation for V(x) by d
we get a polynomial (1/d) V(x) with integer coefficients of size (1/d)M* and modulus
M/d, and g.cd. (M/d, vo/d, v,/d, v,/d}=1. Looking at the corresponding F-set
(mod (M/d)) we see by the argument giving (3.11) that the F-set has cardinality
O((1/d*)M?**) and furthermore that each solution to it (mod M/d) will lift to
exactly d distinct solutions (mod M). This leaves us with the bound

1
Sd (#) = O(? MB;-H—:) .

We need also to estimate the number of a that satisfy the congruence V(x)=0
(mod M) with D(V)=0and |v|| < M* If g.c.d. (o, ¥,, o, M) = d then the congruence
is

(3.11)

(3.12) %x2+%x+%50 (mod %)
By the analysis of the second case in Lemma 3.6 this congruence has at most
2¢M/D(M/d)"? solutions (mod M/ d), where w(M/d) counts the number of distinct
prime divisors of M/ d. These lift to a total of at most 2‘*’v/Md solutions x (mod M).
Since d=M*, we have at most 2“‘*d(M)M'**#/2 solutions to (3.12). This is
O(M'/3*#/2+</2) for any fixed &, as M - co. Finally the number of polynomials V that
satisfy D(V)=0 and [|v]| < M* is O(M***/?) for any fixed ., by similar reasoning to
that of Lemma 3.7.
The total count of solutions F(u) therefore satisfies

|F(p)|= ?.I Sq(p)+ M2ty D(V) =0}
d|M

1
§C3 M3u+e (d'z F) +C2Ml/2+3u/2+s
M

= C4(M3“+E+Ml/2+3“/2+t).

This proves Lemma 3.8. 0O
Now Lemma 3.8 implies Theorem 3.5 by a proof similar to that of Theorem 3.1. 0O
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4. Cryptanalysis of Blum’s protocol for exchanging secrets. Blum’s paper [1] was
one of the first to deal with the issue of simultaneity in sequential processes. He
proposed several versions of a protocol to enable two parties to exchange the factoriza-
tions of their two published moduli m, and mg, which are the products of two large
primes in a fair and verifiable way. The simplest of these is as follows. Let n =log m, =
log my be the size parameter. The protocol is symmetric, and the two parties alternately
perform the following steps:

(1) Choose k random numbers y,, - - -,y and send their squares modulo the
opponent’s modulus to the other party.

(2) Extract the four square roots modulo your own number of each number y?
received from the other party. This is possible since you know the factorization. Now
write the 4k square roots in a 4k X n binary matrix where the least significant bits are
in the last column.

(3) Send the ith column of the matrix to the other party (for i=1,---, n).

The idea behind this procedure is that by having one of the square roots of y? at
hand it is possible to check that what you receive is correct information. If B wants
to cheat he can guess which square root A has and send that square root and its
negation correctly while the rest are unrelated bits. The probability that such cheating
would not be detected by A is 27%. The security of the protocol depends on the inability
of the parties to factor efficiently before all (or almost all) the columns have been
exchanged. Blum stated this as an assumption in the proof of correctness in this
protocol. We show that this assumption is incorrect.

THEOREM 4.1. There is an algorithm which when given as input k random numbers
y; and the n/k+ ¢, most significant bits of all square roots of the y? (mod M) factors
M with probability 1— e. The probability is taken over the probability distribution on the
y; and the running time of the algorithm is polynomial in n but not in k.

Proof. For each i the four square roots of y? can be denoted by y;, —y;, x;=ry;
and —x;=—ry;, (mod M) where r is a square root of 1 (mod M) different from +1.
Since y, is known, we can easily pair y; and —y; with their N/k+ ¢, . most significant
bits in the data received. However, we do not know how to pair the remaining two
sets of most significant bits with x; and —x;, so we must guess. However, for fixed k
the total number of guesses is the constant 2¥. When the correct guess is made we have
paired each x; with its N/k+ ¢, most significant bits. Observe that if we can recover
any of the x; we can factor M since g.c.d. (x;—y;, M) will be nontrivial.

Since the unknown values of the x; are fixed multiples of the known values of
the y;, they are related by k—1 modular linear equations:

y;xl—ylx,»EO (mod M) fori=2,"',k.
The lattice L, spanned by the k—1 coefficient vectors
(}’i,O,' * ‘,0,_.)’h0,’ ) '90)

together with the vectors Me,, - - -, Me, is the set of vectors
k
( Z YiVis =NV, " " °, _ylvk) +(alMa T, akM)
i=2

for all possible choices of v,,: -+, and a,,- -+, a, in Z. When y, is invertible
(mod M), as is usually the case, we obtain the following characterization of this lattice:

k
L,={vez" Y yvi=0(mod M)},
i=1



RECONSTRUCTING TRUNCATED INTEGER VARIABLES 279

and L, has determinant M. To apply our general technique, we only have to bound
Ar(L,) from above for almost all choices of y.

As usual we do this by bounding from below the length of the shortest vector in
the dual lattice L}. In this case Ly is the lattice spanned by (1/M)(y, " - -, yi) and
the unit vectors e;. We use the following lemma.

LEMMA 4.2. Let ¢ >0 and k be given. Then there is a positive constant d., such
that for a random drawing of integers (y,,- -, yx) in (Z/ M2Z)* where M = p,p, and
min (p, p2) Z3di, MV, then with probability at least 1— ¢ the inequalities

(4.1) |ty, (mod M)| = d\ , M*~V/k
cannot be solved with 0<t <M, and so
MLHzd MV
Proof. For each fixed t and a fixed index i the probability that
|ty: (mod M)| = d, , M~/

is at most
(&M) od M =3d, MY,
M
since
(t M) M+M<d M(k l)/k
M P P2

Since the draws for different i are independent, the probability that (4.1) holds for
fixed t is <(3dk_,)"M !. Summing over 0< ¢ < M the total probability that (4.1) holds
is at most =(3d,.)%, and we may choose d;. =3¢"* 0

Now we complete the proof of Theorem 4.1. By Corollary 2.2 we can recover
(%, -+ *, Xxi) if we know so=1log A+ (k/2) +1 log k+ 1 significant bits of each x;. Using
Lemma 4.2 and the bound A§A, =k we obtain

ALy sSkPdii MYK,
Since n=1log M this yields

k 3
So=— L. + logk—logdk,e+l.

k

We are given s, = n/k+ ¢, significant bits, so on choosing
k 3
Cre =5+510g k-logd, . +1

we can find the x;. As pointed out earlier, this enables us to factor M by calculating
g.c.d. (x; = y;, M) so the theorem follows. O

Theorem 4.1 shows that Blum’s original protocol can be broken by somebody
who only deviates from the protocol by stopping early and using this algorithm—there
is no need to control the choice of random bits or to lie to the other party.

The alternative protocol in which the columns of the matrices are exchanged in
reverse order (from least significant bits to most significant bits) is just as insecure,
again using the algorithm of Corollary 2.2, noting that M is odd.
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Discussion. Blum proved that his protocol is secure assuming the truth of certain
(unproved) assumptions. Due to the care with which Blum listed his assumptions, it
is easy to trace the source of the cryptographic weakness we exploit to the following
one [1, p. 187]:

“Alice cannot use the 100X k most significant bits, y¥, - - -, ytoo, to split M any

better than she can use just the kK most significant bits yr.”

Our attack shows that this assumption was too strong. Blum considered the
possibility that his original protocol might be insecure, and in his paper he described
a modified protocol in which the participants use several moduli each. A second
possible modification is to ask the parties to exchange fewer columns from their matrices
and to use our algorithm to factor the moduli at an earlier stage. Neither of these
variants seems to be vulnerable to the cryptanalytic attack proposed in this paper.

The existence of this cryptanalytic attack demonstrates once more the extremely
delicate nature of proofs of security in cryptology. It also shows the importance when
proposing cryptographic protocols to clearly distinguish sources of insecurity. Blum’s
paper certainly does this.
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