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We give a simple proof of the result of Bollobas and Simon (1985) on the linear expected time construction of a binary
heap. We also give bounds on the probability that the construction time is much more than this and generalise the result to
d-heaps, d > 2.
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1. Introduction

The binary heap is one of the basic data structures of Computer Science. An array A[0] = —co, A[1],
A[2),..., A[n] is in heap order if A[/] > A[|3i]] for i = 1. It is well known (see, for example, [3]) that an
originally unsorted array 4 can be put into heap order in O(n) time. On the other hand, it is also known
that the ‘repeated insertion’ Algorithm RI below requires £(n log n) time in the worst case.

Algorithm RI. The input, real array A[1..n], is transformed into a binary heap by repeated insertion from
the bortom.

1. begin

2. Al0] = —o0;

3. fort=1to n do

4. begin

5 pi=1t g=|t]; a:=A[1];
6. while A[g] > a do

7. begin

8. Alp)=alql; p=q; q:=13p]
9. end
10. Al pl=a
11. end
12. end

Bollobas and Simon [1] analysed the average case time complexity of Algorithm RI under the
assumption that the input array A[1..n] contains a random permutation of {1, 2,..., n}. If Ty,;(A4) denotes
the (random) number of exchanges (= executions of line 8) for input A, then they proved the following
theorem.
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Theorem A

E(Tai(4))<(1+o¢+0(1))n, wherep= Y, ﬁ = (.7645. (1)
t=1

(Strictly speaking they prove the result for n + 1 a power of 2. We do the same. For arbitrary n one can
only double the bound from what is proved.)

This is a nice result but its proof is rather involved and the main purpose of this paper is to simplify the
proof. (It also removes the o(1) term in inequality (1)). By using a different model of randomness we are
able to cut out most of the ‘combinatorial computation’. We are also able to prove some related results.
For exam;zle, we prove that Algorithm RI is unlikely to require much more than (1 + ¢)n exchanges
(n+1=2%).

Theorem B. Let 0 <e <1 be fixed. Then, for some constant ¢ >0,

Pr(Tp;(4) > (1 + ¢ +&)n) =o(e™"").

We also consider d-heaps, d> 2, where all we require is A[i] > A[l(i + d — 2)/d]] and analyse the
obvious generalisation of Algorithm RI,, in which |3¢] in line 5 is replaced by |(t + d — 2)/d ] and |3p] in
line 8 is replaced by |(p +d — 2)/d]. We prove the following.

Theorem C

d - 1
E(de(A)) < (m +¢d)n, where ¢, = ‘gl T+d

2. Model of randomness and notation

The main device for simplifying the proof of Bollobas and Simon is a change of model. Instead of
considering A[1..n] to contain a random permutation of (1, 2,..., n} we assume that A[1], 4[2),..., A[n]
are independent uniform [0, 1] random variables. All we have to observe is that the number of exchanges
used by Algorithm RI only depends on iy, i,,..., i,, where A[i,] < A[i,] < --- < A[i,] and that i, i,,..., i,
is equally likely to be any permutation of {1, 2,...,n}. (Note that Pr(3i #j: A[i] = A[j]) =0 and such
null events can safely be ignored.)

We obtain a marginal simplification in our description if we imagine the process of heap construction
continuing indefinitely (putting »=co in line 3) and allowing the input to be an infinite sequence
Uy, Us,..., Uy,,...of independent uniform (0, 1] random variables.

The execution of lines 4-11 with a particular value of ¢ takes place during time period t and time ¢
denotes the end of time period .

We imagine that, at time 0, u,, u,,...,u,,... occupy the vertices of an infinite binary tree T, where
vertex i has children 2i and 2i + 1. We let u;, denote the contents of vertex i at time ¢, so that u,o =1y,
and u, ,, U, ,,..., #,, is heap ordered.

For k=0, 1,...,level k of T, consists of the vertices L, = (2%, 2% +1,...,2¥*1 — 1} and 7, =2%*! -1,
the time when Algorithm RI has reached the end of level k.

Next, let

i
A‘v’k= E uj',.k and Bi,k= z aj.k for0<i<k.
JEL; j=0
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3. Proof of Theorem A

Fix k>0 and consider the insertion of the elements in level k. For re L, let P(¢)= {|t/2/]: j=
1, 2,..., k —1} be the vertices on the path from vertex r to the root of T,,.
Let

Xy = |{iep(t):ui.r71>u.'} |
= the number of exchanges in the insertion of u, by Algorithm RI

<|{ieP(t)|u,_>u}|=Y, say,

0Ty
since u; ., <u;, for s=i.
We prove that

E( ¥ Y,)g(1+¢)|Lk1, kel 2 (2)

tEL,

and then inequality (1) follows from X, < Y,, as observed in [1].
Now,

E(Y|u, ,i€P(t))= ¥ Prlu<wu, |u, ,i€P(t))= Y A
i€ P(1) i1€EP(1)

Hence,

E( ¥ ):|ui..,k_l,1sfsﬂrk_1)

tel,

k—1
2 Z Uieo 1 = 2 2}(7}:‘41'.!(*1
J=0

teL, i€ P(1)

k-2
zk( Z Z_U-H)Bj.k—l =+ Z_M_l)Bk—].k—l)
Jj=0

by straightforward algebra.
Removing the conditioning yields

k-2
2 T %) =2’*( Y 2-‘1'“>E(B,-.H)+2-“<-“E(Bk_1.k_1)). 3)

fET, j=0
All that is needed are upper bounds to E(B, ;) for 0 <j <.

E(Bo.i) = 1/2f+1 (4)
since By, is the minimum of 2'*' — 1 independent uniform [0, 1] random variables.

E(B,)=2'—% (5)

since B;; is the sum of 2'*! — 1 independent uniform [0, 1] random variables.
To estimate E(B;;) for j<i we observe (see [1, Lemma 5]) that

Bg By i~ ), max{0, um,_l—u,},

J
teL;
where v,=min{u,:s€ L, and 1 € P(s)}.
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To see this, note that if v, <u,, , then the corresponding value u, will rise to level j at time s and
push down the contents of . Thus, by this time, when looking at the sum of the contents of the first j
levels, v, has replaced u,,  and some other values may have been reduced. Hence,

B, <B;; 1— > (4, ,—0)=Bj_1;1 + Xy (6)

teL, reL,
and so
E(B;;) <E(B_q-1) +2//(27+1)
since each v, is the minimum of 2~/ independent uniform [0, 1] random variables. Thus,
2742074 .. 42 < 2/t
27/ +1 277417
on using (4). Using (5) and (7) in (3) yields

E(B;;) <E(Boi) + (7)

k-2 ) 2j+1_1
E( > Y,)<2" Y 27U +1-12% | <2¥(1 +¢).
teL, j=0 27741

As | L, | = 2% we have (2) and Theorem A.

4. Proof of Theorem B

Again we consider n +1=2* and the insertion of level k and the random variables ¥, for € L,. Let
&, be the event (¥, ¢, Y, > (1 +e)(1+ ¢)|L,|}. We shall prove that

Pr(&,) = o(e"z"vs/ 2 ) (8)
Since I, e . ¥, <Jj| L;| always, we then will have

Pl‘(i Y K>(1+£)(1+¢)n)<Pr( zk: Y Y>(1+e)(1+¢)n—vn logn

Jj=01€L; Jj=lk/2| teL;

— O(k e—e’n'/w/zs)

and this will prove the theorem.
Let &, be the event

k-2
{ 2 27UB, +27% 0B < (1 + 1)+ ¢)}.
Jj=0

Then,

Pr(&,) < Pr(&, | &) + Pr(&).
We shall show later on that

Pr(&,) = oe==""/%) 9)
and we quickly dispose of Pr(¢&), | &5).
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Consider the following part of Theorem 1 by Hoeffding [2, inequality (2.3)]: let Z,, Z,,..., Z,, be
independent random variables where 0 < Z; <1 fori=1,2,...,m and E(Z,+ Z,+ --- + Z,)/m) =p.
Then, for >0,

Pr((Zy + Z,+ -+ +Z,,)/m>p+1) <e” ", (10)

We now observe that, given u,, ..., 4, _ . |, the variables ¥,, t € L,, are independent and 0 < ¥, < k.
Also,

E(2* T %18)<(+10+9).
teL,

Applying inequality (10) with m=2%, Z,=Y,/k, i€ L,, p<(1 + Le)(1 + ¢)/k and 1=e(l + ¢)/(2k)

yields

Pl'(gl IgZ) < e—n(e(l-i»ct»)/2logn)2

and the theorem follows once we have dealt with equation (9).
Consider r € L; and j <i. We show that

u,, < (j+1)st smallest of {u,: se |J L,and re P(s)},
u=j+1
ie., u,, is at most the (j + 1)st smallest of 2'~/*! — 2 > 2'~/ independent uniform [0, 1] random variables.
To prove this we inductively show that

u,,<(j+1)st smallest of {v,:r€P(s)}, j=0, reL; t>0, (11)

where v, = u, if 1 > 5 and v, = co otherwise.

Now, clearly (11) holds for j =0 and 7> 0; assume it holds for all r€ L;_, and ¢ > 0 for some j > 0.
Now, (11) trivially holds while |{s:r &€ P(s) and v, < o0} | <j+ 1 and so we have a basis for assuming
(11) true up to some value of 7. Let S = {s: r € P(s) and v, < oc}. We must confirm (11) for the next case
t’ >t such that r € P(¢"). Let S"’ =S U {¢’}. We must show that u, - < (j + 1)st smallest of {u,:s€ S’}.
This is clearly true if - >u,, and if u, <u,,, then u, ,» = u,, ), which is at most the jth smallest of a set
which includes S. Hence, (11) continues to hold and the inductive step is complete.

It then follows that

. s g2 a2 .
Pr(4;,> 2% ) < Pr(Are Liu, 302/ ) <2/ J1-a2/")77 ifag2',
g2 e ta@i2! T =ji=)logeD) ¢ 9) g=(a=aj2TI=kY) ip o DI,
Since 4, ; < 2/ always, we can remove the restriction on « in the above inequality. Hence,

Pr(B,, > $a2%~') < Pr(3f<j: 4;,> a2¥")

f = J hd . N -
< e~ (a—aj2’ ‘= k?) z 2/ g 2/+1 e—(u—a_ﬂ/ ‘-kz). (12)
j=0
Putting « = 2%/% we see that
13/5)
Pr| ¥ 27U*VB > $27%| <Pr(3j< 3k:27UDB, > § x2/7%/3)

Jj=0

<25 7277, (13)
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Next we give a simple consequence of Hoeffding’s Theorem 1 [2] (easily derivable from inequality (2.1) of
that paper): if Z,, Z,,..., Z,, are as in (10) and 0 <e <1, then

Pr((Z,+ Zy+ -+ +Z,)/m> (1 +e)p) e /3, (14)
Now suppose that i > |3k]. It follows from (6) and (14) that
2i-r —e2g2i=k=r s3
Pr| Bi ., k-1-r— Bicror,k-2-+2 1+ G)W <e (15)
for 0 <r<s=i—|3k). Thus,
[ G+ 521 5—(r+1)
—(i+1 —(i+
Pr|27¢*DB, =270 VB_ 1,2 (1+¢) ,go W)
sl 292i-k-r 29k /5
< Y etV T Bcsem TN, (16)
r=0

If |3k] < i <|$k], then we can use (12) with a = 2*/> to show that
Pr(Bi_s'k_l_‘/zHl > ;2—1.:/5) < 2i—.r+]e_2k/5-—l.

If i > |$k), then we use B;_; ,_,_,/2"" <277 <27/
In conjunction with (16) we get that, for i > |3k],

Pr(B, ,_1/2* > (1+6€) /(2K +1) + § X 27/5) = o n e=#'""/6). (17)
It follows next from (14) that

Pr(2~*-PB,,_,>1+¢) < et @' -1/2/3 (18)
as By, _, is the sum of 2* — 1 independent uniform [0, 1] random variables. (In)equalities (13), (17), and

(18) then imply that

k-2
Pr| ¥ 27YU*DB,, ,+27% VB, 1> (A+e)(1+¢)+4X2755| =o(n e="/5).
i=0

(19)
Replacing ¢ in (19) by & satisfying (1 + &’ }1 + ¢) + 4 X 27%/% = (1 + }e)(1 + ¢) yields (9).

5. Proof of Theorem C

The idea of the proof is the same as that of Theorem A. This time T, denotes an infinite d-ary tree
where vertex i has children (i —1)d+j, j=2, 3, d+ 1. The level sets L, and the 4, ,, B, , are defined
analogously, as are the variables X,, Y,, t € L,. In place of (3) we have

k—2
E( r Y,) =d"( Y. d~YU*D(d=1)E(B; 1) +d ¥ VE(By_y4-1) |- (20)
tel, Jj=0

108

7Y



Volume 27, Number 2 INFORMATION PROCESSING LETTERS 29 February 1988

In place of (4) we have

E(By,)=(d-1)/(d"""+d-2). (21)
In place of (5) we have
E(B,;)=(d""'-1)/[2(a-1)]. (22)

In place of (6) we have
d*t -1

E(B;;)<E(Bj_y;1)+d’/(d'"/+1) < (d=1)(d"7+1)°

(23)
It then follows from (20)-(23) that

k-2 i
AR | 1 dk-1
E Y, | <d* . — 4
(,EELk ’) (Eo /' 4V 1 2d%Y(d-1)

and Theorem C follows.

6. Final comments

We do not believe that the upper bound in Theorem A is tight, although it is not clear how to improve it
significantly. We have not mentioned lower bounds. We can obtain a rather weak bound of approximately
3n on the expected number of exchanges as follows: the number of exchanges needed to insert u,, t€ L,,
is at least what would the required assuming that levels Ly, L,,..., L,_, have their contents at time 7.
Thus,

k-2
E( T x| >z"( T 27U E(B4) + 27 VE(B-14) | (24)
tel, j=0

Now, B{,k is at least the sum of the 2/*' — 1 smallest values in u,, us,..., us+1_;, and so E(B; ) >
2/*1(2/%1— 1)/2%*2, Substitution of this into (24) yields E(T, < 1, X,) > (3 — o(1))2*.
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