- Mathematical Programming 44 (1989) 203-212 203
North-Holland

A RANDOMIZED ALGORITHM FOR FIXED-DIMENSIONAL
LINEAR PROGRAMMING

M.E. DYER
University of Leeds, Leeds, UK

A.M. FRIEZE
Carnegie-Mellon University, Pittsburgh, USA, and Queen Mary College, London, UK

Received 25 September 1987
Revised manuscript received 28 March 1988

We give a (Las Vegas) randomized algorithm for linear programming in a fixed dimension d for
which the expected computation time is O(d*** "' n), where lim,,_ £, =0. This improves the
corresponding worst-case complexity, O(3“ n). The method is based on a recent idea of Clarkson.
Two variations on the algorithm are examined briefly.

Key words: Linear programming, randomized algorithm.

1. Introduction

In [8], Megiddo presented a technique for a multi-dimensional search problem. The
technique is a major component of an algorithm for linear programming for which
the computational effort grows only linearly with the number of constraints in any
fixed dimension d. See also Dyer [3] and Megiddo [7]. The complexity of Megiddo’s
linear programming algorithm, measured in an operation-count model, is 0(2*'n),
where n is the number of constraints and ¢>0 is constant. Dyer [4] reduced this
to 0(3"2n) (as did Clarkson [1] independently), and showed that this approach
could not be expected to lead to algorithms with complexity better than O(d !n).

In [2], Clarkson discusses the application of random sampling to some problems
in Computational Geometry. (For related work, see also [5].) In this note, we show
how the same ideas can be used to obtain a (Las Vegas) randomized algorithm for
fixed-dimensional linear programming and related problems with a better constant
factor than the deterministic algorithms. (A Las Vegas algorithm always computes
the correct answer, but its time-bound is only in expectation.) The (expected)
time complexity of our linear programming algorithm is O(d®*“’“n) where
limy.o &4 =0.



204 ) M.E. Dyer, A M. Frieze [ Fixed-dimensional linear programming

2. The search problem

The following problem was discussed in [4,8]. We are given a set S of n affine
functions in RY:

hi(x)= a,:Tx+b,- (i=1,...,n).

The set {x cR“: h;(x) =0} is the associated hyperplane H;. Let xo€ R%. We wish to
determine the sign of h;(x,) for some fixed proportion an values of i. Here the sign
of a number will mean the usual mapping into the set {—1, 0, 1}. We denote this by
sign(-). We will also abbreviate sign(h;(x,)) to sign(h;) where no ambiguity arises.

An enquiry is an evaluation of sign(h) for some given affine function h in R,
(This need not be one of the h;.) We access information about x, through an “oracle”
which can answer enquiries. We input any h, and it outputs sign(h). Given a, the
problem is to determine an values of sign(h;) while “minimizing” the number of
enquiries. Rather surprisingly, Megiddo showed in [8] that there exists an a for
which a number of enquiries suffices which is independent of n. In fact, he showed
that if @ =2'"2", then 297" enquiries suffice. Dyer [4] (see also [1]) showed that, in
fact, a = § is achievable with not too many more enquiries, i.e. at most 9(v72)“72.
This lead to the above-mentioned improvement in the running time for linear
programming.

The approach taken here to the search problem is somewhat different from [8)
and [4] and is in fact adapted from [2]. We choose a random subset R from the
hyperplanes in S and consider the polyhedral decomposition of R induced by
these r=|R| hyperplanes. Each cell in the subdivision is then triangulated, i.e.
subdivided into simplices. If r is large enough, then, with sufficiently high probability
p, each simplex in this decomposition meets at most 8n hyperplanes of S, for some
fixed 8 <1. If this holds, then all we have to do is to use the oracle to locate x,
within a simplex of the decomposition. By so doing, we will locate x, with respect
to at least (1 — 8)n hyperplanes of S, as required. We can in fact achieve 8 = } with
high probability using O(d” log d) enquiries. It remains to fill in the details. We
will describe the algorithm and develop its analysis as we proceed.

Step 0. Randomly choose R< S, |R| =r=[(3logd+6)d(d+1)]. (All logarithms
will be to base e.)
Step 1. Construct a polyhedron P containing x, where

P ={xeR’:sign(h;(x)) =sign(h(x,)), i€ R}.

The determination of h;(x,), i € R clearly requires r enquiries of the oracle. If there
exists any i€ R such that h;(x,)=0, then we can obviously reduce the problem
dimension by eliminating a variable. We may therefore assume the worst case, i.e.
dim(P) =d.

We want to partition P into simple regions which are completely determined by
relatively small sets of hyperplanes in R. The motivating example is where P is




M.E. Dyer, A M. Frieze [ Fixed-dimensional linear programming 205

bounded and the decomposition consists of simplices whose vertices are also vertices
of P. Unfortunately, P may be unbounded and/or have no vertices. Nevertheless,
let us assume

A: P is bounded

and return later to discuss the details of removing this assumption.
There are numerous ways of decomposing P into simplices. The following method
(also suggested in [2]) suits us. Choose a vertex z of P, and inductively assume a
decomposition of each facet F;,j=1,2,...,m(m=r) of P into a set A; of (d —
1)-dimensional simplices. Take each oelJ]%, 4;, and, if z¢aff(o) then create a
d-dimensional simplex o. which is the convex hull of oL {z}. Let A denote the set
of simplices so produced.
Step 2. Locate o*€ A such that x,€ o*.
How long does Step 2 take, and more importantly, how many enquiries are needed?
Note first that O(d>r(5)) =O(r**") operations are ample for determining a vertex
of P by examining all possible solutions, i.e. all intersections of d members of R.
-(Note that, unless otherwise stated, the implied constants in O expressions are true
constants, independent of both n and d.) Our next task is to determine j such that
X0 €U we a, 0-. We start by choosing a pair of hyperplanes H,, H,, neither of which
contains z. Let H be the hyperplane containing z and H, n H,;. Determine the
location of x, with respect to H by an enquiry. Whatever the outcome, we can
eliminate one of k and I as a candidate for j. We take another pair of candidate
hyperplanes and repeat. After at most (r —1) enquiries, we will have determined j.
Given j, locating a o, containing X, is essentially a (d —1)-dimensional problem of
the same form: we must find a o € 4; such that the point x; in H; on the line through
z and x, lies in o. Enquiries about the position of xi with respect to a (d —
2)-dimensional hyperplane H'in aff( H;) can be answered by asking for the position
of x, relative to aff(H'u{z}). Thus at most d(r—1) enquiries are needed in Step
2. In addition, there will be O(r**") arithmetic operations.

Step 3. Determine the set S'c S of hyperplanes which cut o*;

if |S’| < 3n then SUCCESS else FAILURE.

The occurrence of SUCCESS means that we have determined sign{h;(x,)) for at
least half of the hyperplanes, using at most r+d(r—1) enquiries. The following
Lemma is somewhat surprising. The essential idea is due to Clarkson [2].

Lemma 2.1. Pr(FAILURE)<(})‘“*"< & ifd=2.

Proof. FAILURE implies the occurrence of the following event:
There exist subsets X,, X>, ..., Xy+, of R, all of size d, such that
(i) the hyperplanes associated with each X; determine the vertices »; of a
simplex o,
(ii) at least n members of S cut o,
(iii) none of the hyperplanes in (ii) are in R.
Hence, if NUM is the number of collections of subsets X, X,, ..., Xy, satisfying



206 M.E. Dyer, A.M. Frieze [ Fixed-dimensional linear programming
(1), (i), (iii),
Pr(FAILURE) < E(NUM)

(2)

< a4 Pr((i), (ii), (iii)) where ay =

d+1
- l(re/d)“J) -
\( d+1 Pr((iii) | (ii))
< a . l%nJ—d(dH))/(n—d(dH))
<((re/d)"e/(d+1)) (r—d(d+1) r—d(d+1)
<((re/d)%e/(d+1))*"'(3) """, (2.1)

Here we have used the inequality (;) <(re/ d)? and the fact that, for any integers
azb>c=d=0,

() (C-ne==()
c—d c—d/ i—a(a—i) \a
since (b—i)/(a—i)sb/afor0<i<a.
Hence, since r““*V(})" decreases for r>d(d+1)/log?2,

@3 logd+6)(d+l)e)" e )"*’
Pr(FAILURE) < (( YL 1 (2.2a)
<)Y ford =2, (2.2b)

To see that (2.2b) follows from (2.2a), first note that we can easily show by induction
that 3 log d +6 <4.04d for all d =2. Thus, since e/(d+1)<1 for d =2,

d+1
4.04ed(d + 1)) . (23)

Pr(FAILURE) <( 324782

The bracketed quantity in (2.3) clearly decreases with d since 3 log2>2, and for
d =2, its value is less than 0.49. O

3. Application to linear programming

Suppose we are given a linear program with constraint set defined by S. Let x, be
the unknown optimal solution. The technical details concerning infeasibility and
unboundedness may be found in references [1, 4, 8].

Once we know sign(h;(x,)), we can eliminate this constraint or reduce the
dimension of the problem. It is shown in the above references that the oracle in the



M.E. Dyer, A.M. Frieze | Fixed-dimensional linear programming 207

search problem has to solve at most three (d — 1)-dimensional linear programs. One
way, therefore, to solve a linear program is

LP Algorithm
repeat
repeat Steps O to 3 until SUCCESS; remove constraints
until x, is determined.

(The one-dimensional problems are solved by computing the minimum or
maximum of n numbers.)

Theorem 3.1. Let T(n, d) be the expected number of operations in the LP algorithm
for a problem with at most n constraints and dimension at most d. Then

T(n,d)=0((clogd)‘(d)’n) (d=2) for some c¢>0.

Proof. Let WAIT be the (random) number of repetitions of Steps 0 to 3 until
SUCCESS. Clearly T(n,1)=an for some a>0, and, applying Lemma 2.1 we get

T(n,d)< E(WAIT)3(r+d(r—=1))T(n,d —1)+ T(|3n}, d)+O(r‘*')+0(d>?n)
< A(rdT(n,d —1)+d’n+r'*"")+ T(|in], d) (3.1)

for some sufficiently large constant A>0. (The O(d’n) term is for checking
SUCCESS or FAILURE.)

Now apply Lemma 3.1 below. (The O(r**'), O(d’n) terms are absorbed into the
O((2r)*'n) term of the Lemma. This is rather larger than needed here, but is
required in later applications of Lemma 3.1.) O

Lemma 3.1. Let 7(n, d) satisfy
(i) 7(n, d)< A(rdr(n,d =1)+Q2r)**'n)+r(|3n],d) for n=2,d=2 where
r=r(d) is as defined above.
(ii) 7(n,1)<an,7(1,d)<bd witha,b=1.
Then
r(n,d)<4(a+b)(K(logd+2))!(d!)’n (3.2)

where K =30(A+10).
Proof. One can easily check (3.2) for the cases n=1,d =1. Otherwise assume,
inductively, that (3.2) holds for (n,d —1) and (|3n], d). Then

r(n,d) - Ar 2A(log d +2)(6d(d +1))**!
4(a+b)(K(logd+2))(d")’n 4K (logd+2)d? 4K‘(d")y?

[SIE

+

< mt+it+i<l.



208 M.E. Dyer, A.M. Frieze / Fixed-dimensional linear programming
To establish the bounds used here, let the first two terms on the right side of the
first inequality be &, n, respectively. Now

_ (3logd+6)d(d+1)+1 log(d—1)+2 (d-1)
(3log(d—1)+6)d(d 1) logd+2 d?

1 (d—1) 2
={d+1+ . <(d+1+1/d)(d—-1)/d
(d 1 3d(logd+2)) d? ( 74X )
=1-1/d*<1.
Also
2 d-1 .
a__ (Hl) .;.(H__?._) _logd+2
Na-1 d/ d-1 d—-1 log(d —1)+2

M

L

K

6 2 .

—K— arl-e" -2 sinced=2
20

< —Os 21
K P
We have used here the fact that (log d +2)/(log(d —1)+2)<2 for all d =2, the
(easy) proof of which we leave to the reader.
Thus both ¢, and 7, are strictly decreasing for d = 2. Therefore we need only
consider the case d =2. But then '

49 A_ 49 A l

A A
< 23500 2 2550,
N2 32 K2 288 (A+10)2
9A
<WS ‘%<;;l*. O

We now consider relaxing the boundedness assumption A. In order to prove
Theorem 3.1, we must partition P into regions which are determined by at most
d(d+1) members of R, and are cut by no other members of R and so that
Pr(SUCCESS) is bounded away from zero.

Now a standard result in polyhedral theory (see for example Schrijver [9]) is that
we may write P = L+ Q where L is a linear space and Q is a (pointed) polyhedron,
such that Q=Pn L*. Write /=dim(L) and q=dim(Q), so d=1+q. Let P=
{xeR“: Ax<b}, where A is an rx d matrix with rows aJ, for i€ R, and b is rx 1.
Now L={xeR’: Ax=0}. A basis for this can be determined from any set A of [
linearly independent rows of A in O(rd*) operations. The a;(i€ A) form a basis
for L*. It is now easy to determine Q. We then partition Q into regions
w,, Wz, ...and use W,+L, W,+L,...as a partition of P. To partition Q, we make



M.E. Dyer, A M. Frieze [ Fixed-dimensional linear programming 209

a projective transformation to a bounded polyhedron Q' as follows. Let us assume,
for notational convenience, that we still have Q={xeR“: Ax<b)}. Choose any
weR? such that >0, u"b>—1. (Such a g clearly always exists, and can be
determined in O(r) operations.) Now make the coordinate transformation f: Q » R,

(1+p"b)y
1+u"Ay’

X

- - . . = l =
1+ 27 (b—Ax) with inverse x=f""(y)

y=f(x)=
Now Q' =c(f(Q)={yeR*:(1+u"b)Ay<(1+u"Ay)b, 1+u"Ay=0} where cl
denotes closure. Q’ is defined by (r+ 1) inequalities. It is straightforward to show
that its recession cone [9] is {0}, and thus it is bounded. We now locate y,=f(x,)
in a simplex o of Q'. Observe that enquiries transform to enquiries. Having located
o, we transform o back to a region f~'(o) of Q. In making the inverse transforma-
tion, vertices of Q' on the facet 1+ u"Ay =0 of Q' transform to extreme rays of Q.
Thus we locate x, in a region W+ L, determined by vertices and rays of Q and
lines of L. The region is determined by at most /+1(g+1)<d(d +1) hyperplanes
in R.
We see that even in the general case we can carry out Steps 0 to 3 using O(r
operations and r+ dr enquiries. Lemma 2.1 still holds, and so does Theorem 3.1.

d+l)

4. Two variations

The expected running time of the algorithm for linear programming in Section 3 is
superior to the worst-case running time of previous algorithms. However, for any
fixed value of d, there remains a significant probability that its running time is wn
with @ = w(n)-> oo sufficiently slowly. The reason for this is that by the time we
realise (in Step 3) that we have not eliminated sufficiently many constraints we may
have already done work proportional to n. We can avoid this as follows. Replace
Step 0 by

Step 0. Randomly choose Rc S;|R|=r. {Use random sampling to reduce the
likelihood of FAILURE}.
m:=[vn]{any m =o0(n/log n) would suffice}.
L1: Randomly choose M = S—R,|M|=m;
for each simplex o in the decomposition defined by R do compute the number
m, of hyperplanes of M that cut o;
L2: if 3o such that m, =0.49m then
Reject R and go to L1 else
Accept R and continue with Steps 1,2, 3.

For various technical purposes below, we need to bound the number of *“‘simplicial
regions”, NR say, into which the partition of R determined by R can be triangulated.
We may do this as follows.



210 M.E. Dyer, A.M. Frieze | Fixed-dimensional linear programming

Lemma 4.1. NR=< (2r)%.

Proof. If d =1, clearly NR=<2r. Assume inductively that the result is true for d —1.
Each hyperplane in R will therefore be triangulated, as a copy of R?~', into at most
(2(r—1))¢"'<(2r)?"" simplicial regions. There are thus at most r(2r)?~" such
(d —1)-dimensional regions in total. But each such (d —1)-dimensional region is a
face of at most two d-dimensional regions. Hence there can be at most 2r(2r)? ™' =
(2r)¢ d-dimensional regions. O

Lemma 4.2. Let E denote the following event:

R is not rejected by Step 0', and yet R gives rise to a region which is cut by more than
in members of S—R.

Then Pr(E) < (2r)*e Y™, where B >0 is some constant.

Proof. For a fixed region o, let n,, be the total number of hyperplanes that cut . Then
E c\U{m, <0.49m and n, = jn}.

But since E(m, )~ mn,/n, it follows that Pr(m, <0.49m|n, = in)<e ®" as may
be deduced from Section 6 of Hoeffding [6] (which deals with probability bounds
for sampling without replacement). As there are at most (2r)“ regions (Lemma 4.1),
the Lemma follows. [

Lemma 4.2 shows that we are very unlikely to accept an R in Step 0’ which would
lead to FAILURE in Step 3. From Lemma 4.1, the computation cost of the statements
between L1 and L2 of Step 0’ is clearly O(d*(2r)“vn), but what of the probability
that we accept R in Step 0'?

Lemma 4.3. Pr(R is rejected in Step 0')< (1+0(1))2)““*" where the o(1) term is
valid for n - o provided d = o(n"*).

Proof. In the notation of Lemma 4.2, Pr(m, =0.49m|n, <0.48n) < e~ """ for some
v > 0. This again follows from Hoeflding [6]. Thus, if a, is as defined in the proof
of Lemma 2.1, it follows that

Pr(R is rejected) < (2r)*e~"Y" + a, Pr((i), (i), (iii))

where, in the notation of Lemma 2.1, (ii)’ is (ii) with §n replaced by 0.48n. The
Lemma now follows after a similar calculation to that of Lemma 2.1. First observe
that the condition on d implies that (2r)?e™""" = 0(c*‘“*") for every constant c.
Also, the effect of replacing (ii) by (ii)’ is that the 4 in (2.1) becomes 0.52, and then
the 32 (=(0.5)"") in (2.2a) becomes 26.3 (<(0.52)~%). Thus the } in (2.2b) becomes
0.49 % 32/26.3 < 1. (Here we have used the value 0.49 given in the proof of Lemma
2.1, rather than the 3 claimed there, since using 3 does not quite establish the
bound.) O



M.E. Dyer, A M. Frieze / Fixed-dimensional linear programming 211
It follows that if TIME is the (random) execution time to complete Step 0',
E(TIME) =0(d*(2r)*Vn). (4.1)

We now consider the effect of replacing Step 0 by Step 0’ in our linear programming
algorithm. We shall assume that the value of m used in Step 0’ is constant throughout,
i.e. it does not change when the number of constraints is reduced. We choose a
random subset of size min{m, |S — R|}. Thus the probability bound in Lemma 4.2
will continue to hold as the recursion progresses. The effect of this change is
summarized in the following.

Theorem 4.1. Suppose we replace Step 0 by Step 0' in our linear programming algorithm.
Let RUNTIME be the random execution time of the modified algorithm on a linear
program with n constraints and d variables. Then, for some constants A', ¢' >0,

(a) T'(n,d) = E(RUNTIME) < A'(c' log d)*(d!)’n

and, for any € >0,

/2=

(b)  Pr(RUNTIME= A’(c’log d)*(d!)*n+o(n))=0(""")

Jfor some constant >0 and the 0,0 terms are valid as n- o provided d=
o(log n/log log n).

Proof (outline). (a) Proceeding as in Theorem 3.1 we find
T'(n,d)< E(WAIT){E(TIME)+O(rd)T'(n,d —1)+0(d*n)}
+T(|3n], d)+0(r"*"). (4.2)
.

The result follows on using Lemma 3.2, E(WAIT)=0(1), and (4.1).
(b) Suppose that we execute the algorithm without any occurrences of FAILURE.
In this case, the number £(n, d) of executions of Step 0 satisfies

&(n,d)< A"rdé(n, d —1)+ £(|3n], d) for some constant A”> 0.

One can easily show from this that £(n, d)=0((A"d*log n)) for all n, d. (Note
that £(n, 0) = O(1)).

It follows from these remarks and Lemma 4.2 that, except for probability
O((A"d* log n)"e"’ﬁ), there are no occurrences of FAILURE in our algorithm.
From Lemma 4.3, we can then see that there exists >0 such that, except
for probability O(e™™"""""), a given execution of Step 0’ requires at most
n'/?7* repetitions of loop L1 to L2. Thus, except for probability
O((A"d*log n)? e™*""""), Step 0’ requires no more than O((A"d*log n)“ x
n'"**xd*2r)*vn)=o0(n) (provided d=o(log n/loglog n)) operations in total.
Thus, with the required probability, RUNTIME < #(n, d)+o(n) where 7(n,d)=<
A'(c'log d)*(d!)*n, by comparison with (4.2). O



212 ' M.E. Dyer, A.M. Frieze | Fixed-dimensional linear programming

Note that the condition on d in (b) of Theorem 4.1 is equivalent to requiring that
T'(n, d) be “almost linear” in n, i.e. T'(n, d)=0(n'**"). This is the region of most
interest, though a similar sort of result can be obtained for 4 growing somewhat
faster with n.

Finally let us consider a version of our algorithm in which we omit to check the
number 7, of hyperplanes cutting the region o in which we have located x,. Let
T"(n,d) denote the maximum expected running time of the linear programming
algorithm that uses this strategy for problems with at most n constraints and
dimension at most d. Then

T"(ﬁ,d)sO(rd)T”(n,d—1)+0(r"“)+ T(|3n], d) Pr(n, < |3n))
T"(n d) Pr(n,> |in)).

But Lemma 2.1 implies that Pr(n,> [3n))<@3)““*" and, since T"(|3n],d)=<
T'(n,d ), we obtain

(1= @) T"(n, d)<0(rd)T"(n d—1)+0(r ") +(1- (z)‘“‘””)T"(lonJ d)

and, on dividing through by (1-( Yy

T’(n, d)<O(rd)T"(n, d = 1)+ O(r**") + T"(|4n}, d). - (4.3)

Thus we have

Theorem 4.2. If we omit‘ 1o check the number of hyperplanes which cut the region
containing x, (i.e. Step 3 of the search algorithm), then the expected running time of
the linear programming algorithm is O((c" log d)*(d')*n) for some c"> 0.

Proof. Lemma 3.1 and 4.3). O

References

[1] K.L. Clarkson, *“Linear programming in O(n >(3"") time,” Information Processing Letters 22 (1986)
21-24.

[2] K.L. Clarkson, ““New applications of random sampling to computational geometry,” Journal of
Discrete and Computational Geometry 2 (1987), 195-222.

[3] M.E. Dyer, “Linear time algorithms for two- and three-variable linear programs,” SIAM Journal on
Computing 13 (1984) 31-45.

[4] M.E. Dyer, “On a multidimensional search problem and its application to the Euclidean one-centre
problem,” SIAM Journal on Computing 15 (1986) 725-738.

[5] D. Haussler and E. Welzl, **-nets and simplex range queries,” Discrete and Computational Geometry
2 (1987) 127-151.

[6] W. Hoefiding, *“Probability mequalmes for sums of bounded random variables,” Journal of the
American Statistical Association 58 (1963) 13-30.

[7] N. Megiddo, *“Linear-time algorithms for linear programming R* and related problems,“ SIAM
Journal on Computing 12 (1983) 759-776.

[8] N. Megiddo, “Linear programming in linear time when the dimension is fixed,” Journal of the
Association for Computing Machinery 31 (1984) 114-127.

[9] A. Schrijver, Theory of Linear and Integer Programming (Wiley, Chichester, 1986).



