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Abstract

There has been a significant amount of research lately on solving the edge
disjoint path and related problems on expander graphs. We review the random
walk approach of Broder, Frieze and Upfal.

1 Introduction

The basic problem discussed in this paper can be described as follows: we are given
a graph

�������	��

�
and a set of � disjoint pairs of vertices in

�
. If possible, find

edge disjoint paths ��� that join ��� to ��� for � ��������������� � � . We call this the Edge
Disjoint Paths problem. We also say that

�
is � -routable if such paths exist for any

set of � pairs. For arbitrary graphs, deciding whether such paths exist is in ! for
fixed � – Robertson and Seymour [16], but is "#! -complete if � is part of the in-
put, being one of Karp’s original problems. This negative result can be circumvented
for certain classes of graphs, see Frank [7]. In this paper we will focus on expander
graphs. There have been essentially two bases for approaches to this problem in this
context: (i) random walks and (ii) multicommodity flows. Our aim here is to provide a
summary of the results known to us at present together with an outline of some of their
proofs. We emphasise the random walk approach, see [11, 12, 13] for more detail on
the multicommodity flow approach.

Expander Graphs For certain bounded degree expander graphs, Peleg and Upfal
[15] showed that if

�
is a sufficiently strong expander then

�
is $�% -routable for some

small constant &(' �*),+
that depends only on the expansion properties of the input

graph. Furthermore there is a polynomial time algorithm for constructing such paths.
This result has now been substantially improved and there is only a small factor

(essentially -/.102$ ) between upper and lower bounds for maximum routability.
3
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Using random walks, Broder, Frieze and Upfal [2] improved the result of [15] to
obtain the same result for � � $ )�� -/.10	$ ��� where � depends only on the expansion
properties of the graph. More recently, they [3] improved this by replacing � by

��� &
for any positive constant &���� , at the expense of requesting greater expansion prop-
erties of

�
. More recently still, Leighton, Rao and Srinivasan [13], using the rival

multi-commodity flow technology have improved on this by showing that the & can be
replaced by 	 � �*� . In Section 4 we will show how the random walks approach can be
improved to give the same result, Theorem 3. It is rather interesting that these, in many
ways quite different, approaches seem to yield roughly the same results. We note that
both approaches yield a non-constructive proof [3], [12] (via the local lemma) that in a
sufficiently strong expander � ��
 � $ )�� -/.10	$ ����� is achievable.

Random Graphs Random graphs are well known to be excellent expanders and so
it is perhaps not surprising that they very highly “routable”. Broder, Frieze, Suen and
Upfal [4] and Frieze and Zhao [9] (see Theorems 7,8) show that they are � -routable
where � is within a constant factor of a simple lower bound, something that has not
yet been achieved for arbitrary expander graphs.

Low Congestion Path Sets One way of generalising the problem is to bound the
number of paths that use any one edge, the edge congestion, by some value 
 in place
of one. Bounds on the number of routable pairs in this case are given in Theorem 5.

Dynamic problem In the dynamic version of the problem each vertex receives an
infinite stream of requests for paths starting at that vertex. The times between requests
are random and paths are are only required for a certain time (until the communication
terminates) and then the path is deleted. Again each edge in the network should not be
used by more than 
 paths at once.

The random walk approach gives a simple and fully distributed solution for this
problem. In [3] (see Theorem 6) we show that if the injection to the network and
the duration of connections are both controlled by Poisson processes then there is an
algorithm which achieves a steady state utilization of the network which is similar to
the utilization achieved in the static case situation, Theorem 5.

Approximation Algorithm So far we have only considered the case where all
requests for paths have to be filled. If this is not possible then one might be satisfied
with filling as many requests as possible. Kleinberg and Rubinfeld [10] (see Theorem
10) prove that a certain greedy strategy provides has a worst-case performance ratio of
order

�*)�� -/.102$ -/.102-/.102$ � .
Vertex Disjoint Paths Finally, there is the problem of finding vertex disjoint paths

between a given set of pairs of vertices. In the worst-case one cannot do better than the
minimum degree of the graph. The interest therefore must be on graphs with degrees
which grow with the size of the graph. In this context random graphs [5] have optimal
routing properties, to within a constant factor.

The structure of the paper is now as follows: Section 3 discusses the problem of
splitting an expander, a basic requirement for finding edge disjoint paths. Section 4
details the aforementioned results on expander graphs and outlines some of the proofs
for the random walk approach. Section 5 details the results on random graphs and
outlines the corresponding proofs. Section 6 describes the result of Kleinberg and
Rubinfeld. A final section provides some open problems.
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2 Preliminaries

There are various ways to define expander graphs; here we define them in terms of
edge expansion (a weaker property than vertex expansion).

For a set of vertices ��� �
let .���� � � � be the number of edges with one end-point

in � and one end-point in
��� � , that is

.	�
� � � �	����� 
���� ������� ��� �������(
 � � � � ������ ��� ��� �
Similarly, � � � � �	� ��� 
���� ������� ��� �����!� 
 � � ���"� �#� ��� �
Definition 1 A graph

��� ��� ��

�
is a $ -expander, if for every set �%� �

,
� � �'&� �(� )��

, we have .	�
� � � �*) $ � � �
.

For certain results we need expanders that have the property that the expansion of small
sets is not too small. The form of definition given below is taken from [3].

Definition 2 An + -regular graph
� � ��� ��

�

is called an
�-, � $ ��. � -expander if for

every set �/� �

.	�
� � � �*)10 � �324,	� + � � �
if

� � �5&6.7� �(�$ � � �
if

.7� �(�98:� � �9&:� �(� )��
In particular random regular graphs and the (explicitly constructible) Ramanujan
graphs of of Lubotsky, Phillips and Sarnak [14] are

�-, � $ �;. � -expanders with
,��< �=.�� >?A@CB-D � and $ close to + )FE

.
A random walk on an undirected graph

� � ��� ��
 �
is a Markov chain

��G(H ��I �
associated with a particle that moves from vertex to vertex according to the following
rule: the probability of a transition from vertex � , of degree J�� , to vertex K is

�*) J � if�
� � K ���(


, and 0 otherwise. (In case of a bi-partite graph we need to assume that we do
nothing with probability 1/2 and move off with probability 1/2 only. This technicality
is ignored for the remainder of the paper.) Its stationary distribution, denoted L , is
given by L �M� � � J9N )�� �O� 
P� �

. Obviously, for regular graphs, the stationary distribution
is uniform.

A trajectory Q of length R is a sequence of vertices S T�U � T > ������� � T'VXW such that� T H � T H=Y > ��� 

. The Markov chain

��GZH �
induces a probability distribution on trajec-

tories, namely the product of the probabilities of the transitions that define the trajec-
tory.

Let � denote the transition probability matrix of the random walk on
�

, and let
�\[ H=]NF^ _ denote the probability that the walk is at T at step ` given that it started at

�
. Leta

be the second largest eigenvalue of � . (All eigenvalues of � are real.) It is known
that � � [ H=]NF^ _ 2 L � T �b�9& a Hdc L � T � ) L �M� � � (1)
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In particular, for regular graphs

� [ H=]NF^ _ � �
$
�/< � a H ���

(2)

To ensure rapid convergence we need
a & � 2 & for some constant & � � . This holds

for all expanders (Alon [1]). In particular if
�

is a $ -expander with maximum degree�
respectively then Jerrum and Sinclair [17] show that

a & �'2 �
�
� $��� � (3)

It is often useful to consider the separation � of the distribution � [ H=]NF^ � from the limit
distribution L given by

� � ` �	���
	��NF^ _ L � T � 2 � [ H=]NF^ _L � T � �
(4)

Then we can write
�\[ H=]NF^
� � � �'2 � � ` � � L � � � ` ���

where
�

is a probability distribution. We can then imagine that the distribution � [ H=]NF^ �
is producing by choosing either

�
with probability � � ` � or L with probability

� 2 � � ` � .
Hence if � is an event that depends only on the state of the Markov chain we have

� �32 � � ` � ����� � � under L � � � � ` �*)���� � � under � [ H=]NF^ � �*) � �'2 � � ` � ����� � � under L ���
(5)

We use this in the following scenario:

Experiment A: Choose
� > � �

with distribution L and do a random walk Q > of
length R from

� > . Let
� > be the terminal vertex of Q > .

Experiment B: Choose
�
� and

� � independently from
�

with distribution L and do a
random walk of length R from

�
� to

� � .
We claim that for any event � depending on walks of length R ,� ����� � � > ��� > � Q > �*� � � 2������ � � � ��� � � Q � � � � �b�9& � � R ��� (6)

This follows from the stronger claim that for any
� � �

and any event � depending on
walks of length R� ����� � � > � � > � Q > � � � � � > � � � 2������ � � � ��� � � Q � � � � � �

� � � �b�9& � � R ���
which follows from (5).

The notation � ��� ��� � stands for the binomial random variable with parameters� �
number of trials, and

�(�
probability of success.
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3 Splitting an Expander

Most of the algorithms we describe work in phases. Each phase generates paths and it is
important that the sets of paths produced in each phase remain edge disjoint. One way
of ensuring this is to insist that different phases work on different expander graphs. If
the input consists of a single expander then we need a procedure for partitioning



into�

sets, say

 > ��
 � ������� ��
�� , where the graphs

� � � ���	��
 � � are themselves expanders.
A natural way of trying to split

�
into expander graphs is to randomly partition



into

�
sets. The problem with this is that in a bounded degree expander this will almost

surely lead to subgraphs with isolated vertices. We must find a partition which provides
a high minimum degree in both graphs. The solution in [2, 3] is

Algorithm Partition(
� ��� �

1. Orient the edges of
�

so that
� 	 � ` J�� 
9+���� �M� � 2 � $ J�� 
9+���� �M� �b� & �

for all
�(� �

.

2. For each
� ���

randomly partition the edges directed out of
�

into
�

setsG NF^ > ������� � G NF^ � each of size
� + )�� �	� or 
 + )�� �	� . Let


 � �
� N���� G NF^ � , for� & � &��
.

Define � �=. �2� � � �32 . � >���� . � � � >
and � � & �2� � �'2 & � -

� � �32 & � � & .
Theorem 1 Let

� � ���	��

�
be an + -regular $ -vertex graph that is an

�-, � $ �;. � -
expander. If & ��� � ���*� and

� & + )�� are such that $ � � �=. � � & � � � > - � � � �=. � �
,

then Partition splits the edge-set of
�

into
�

subgraphs. With probability at least 1� 2�� ��� ��2 $ � $ . � � & � ) � 2 -
� � � �=. � �*2 	 � �*� � � , all the

�
subgraphs span

�
and have

edge-expansion at least
� � + )�� � � ���324, + for sets of size at most

. $ .

� � �32 & � $ ) � for sets of size betweem
. $ and $ )�� .

In particular each
� � is a � -expander where

� ��� � � � � + )�� � � ���324, + � � �'2 & � $ ) ��� �
(7)

This does not seem to be the best way to proceed, but it is the best we know construc-
tively. Frieze and Molloy [8] have a stronger result which is close to optimal, but at
present it is non-constructive. Let the edge-expansion � � � � of

�
be defined by

� � � �	� � � �
�� �!" � " #�$ B D .	�
� � � �� � � �

Theorem 2 Let
�1) �

be a positive integer and let & � � be a small positive real
number. Suppose that +

-/.107+ ) % � & � �
� � � � ) E & � � � -/.107+ �

Then there exists a partition

 � 
 >'& 
 � &)(*(*(+& 
�� such that for

� & � & �
1The ,.-0/�1 term tends to 2 as 35476 .
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(a)

� � � � � ) � �'2 & � � � � �� �

(b) � �32 & � +� &���� � � � & � � � � �*& � � � & � +� �

4 Finding paths in Expander graphs

4.1 Edge Disjoint paths

We will first concentrate on showing how using random walks we can achieve the same
bound on the number of routable pairs as given in [13].

Fix integer � ) �
and let -/.10 [�� ] denote the natural logarithm iterated � times e.g.

- .�0 [ � ] $ � -/.102-/.102$ .

Let
� > � -/.10 [�� ] $ and

� � Y > � 
 >��� > U�
	���
���� > U � for � ) �
. Then let � � �� ��� +,$ )���� � � -/.102$ � ����� for � )��

and
� & � � �

be the largest � such that � � � � .
Here

� � < � � � )�� + � � � � is a positive constant – � as in (7).

Theorem 3 Suppose
�

is an + -regular $ -vertex graph that is an
�-, � $ �;. � -expander.

Suppose that ��� �
above when

�(�����
. Then

�
is
� +,$ )�� � -/.102$ � � -/.10 [�� ] $ � -routable.

Proof We first split
�

into
� ��� �

expander graphs
� > ��� � ������� ��� � using al-

gorithm Partition. Note that the minimum degree in each
� � is at least + ) � � � � and

maximum degree is at most + )�� .
Let � � � ��� [ � � > ] Y > & (.(*(�& � � � for

� & � & �
. The algorithm runs in phases.

Phase � is left to deal with at most
� � � � pairs left over from Phases 1 to � 2 �

, assuming
these phases have all succeeded. Thus Phase

�
should finish the job. We run Phase � on

graph � � and this keeps the paths edge disjoint. Denote the set of source-sink pairs for
Phase � by ��� ^ � � �

� > ^ � ������� � ��� � ^ � � and ���7^ � � �
� > ^ � ����� � ��� � ^ � � . Phase � is divided

into 4 subphases.
Subphase � .a: The aim here is to choose T � � Q!� , ��& K & � � � such that (i)T"� � Q!� , (ii)

� Q#� ����� � � �
, (iii) the sets Q!� ��� & K & � � � are pairwise disjoint and

(iv) Q!� induces a connected subgraph of $�� � ��� [ � � > ] Y � .
As in [11] we can partition an arbitrary spanning tree % of $ � . Since % has maxi-

mum degree at most + we can find
� � � vertex disjoint subtrees %&� � � & K & � � � of % ,

each containing between
� � � � and

� + 2(�*��� � �(� vertices. We can find % > as follows:
choose an arbitrary root ' and let ( > � ( � ������� � (*) be the subtrees of ' . If there exists+

such that (*, has between
� � � �

and
� + 2#�*��� � � �

vertices then we take % > � (*, .
Otherwise we can search for % > in any (.- with more than

� + 2(� ��� � � � vertices. Since
% � % > is connected, we can choose all of the %/� ’s in this way. Finally, Q#� is the vertex
set of an arbitrary

� � � � vertex subtree of %&� and T0� is an arbitrary member of Q1� forK � ����� ������� ��� � � .
Subphase � .b: Using a network flow algorithm in

��� [ � � > ] Y > connect in an arbitrary
manner the vertices of �2� ^ � & ���7^ � to Q � �

� T > ������� � T � � � � by
� � � edge disjoint paths

as follows:
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� Assume that every edge in
� � [ � � > ] Y > has a capacity equal to 1.

� View each vertex in � � as a source with capacity 1 and similarly every vertex inQ � as a sink with capacity equal 1.

The expansion properties of
� � [ � � > ] Y > ensure that such flows always exist.

Let
�� � ^ � (resp.

�� � ^ � ) denote the vertex in Q � that was connected to the original end-
point � � ^ � (resp. � � ^ � ). Our problem is now to find edge disjoint paths joining

�� � ^ � to�� � ^ � for
� &��P& � � .

Subphase � .c: If T H
has been renamed as

�� � ^ � (resp.
�� � ^ � ) then rename the elements

of Q H
as

�� � ^ - ^ � , (resp.
�� � ^ - ^ � � �	� &�� & � � . Choose � � ��� & K & � � � � and � � � � & K &� � � � independently at random from the steady state distribution L � of a random walk

on
� � � . Using a network flow algorithm as in Subphase � .b, connect

� �� � ^ - ^ �	� � &
� &
� � ���!&��!&�� � � to

�
� ��� �!& K &�� � � � � by edge disjoint paths in

� � � � � . Similarly,
connect

� �� � ^ - ^ �
� ��&�� & � � ����&���&�� � � to
� � ��� � & K &�� � � � � by edge disjoint

paths in
� � � � > . Rename the other endpoint of the path starting at

�� � ^ -�^ � (resp.
�� � ^ - ^ � ) as�� � ^ - ^ � (resp.

�� � ^ -�^ � ).
Once again the expansion properties of

� � � � � ��� � � � > ensure that flows exist.
Subphase � .d: Choose

�� � ^ - ^ � ��� &�� & � � � � &��4& � � independently at ran-
dom from the steady state distribution L � of a random walk on

� � � . Let Q��� ^ -�^ � (resp.Q����� ^ - ^ � be a random walk of length � -/.102$ from
�� � ^ - ^ � (resp.

�� � ^ -�^ � ) to
�� � ^ -�^ � . Here

� � + ��)�� � � ��� � is chosen so that the separation (4) between L � and the distribution of
the terminal vertex of the walk is

< � $ � � � . ((3) gives
a � & � 2 � � ��) + � where

a � is
the second largest eigenvalue of a random walk on

� � � .) The use of this intermediate
vertex

�� � ^ - ^ � helps to break some conditioning caused by the pairing up of the flow
algorithm.

Let ���� ^ � (resp. ��� �� ^ � ) denote the bundle of walks Q��� ^ - ^ � � �:&��:& � � (resp.Q����� ^ - ^ � � �"&��"& � � ). Following [13] we say that Q��� ^ - ^ � is bad if there exists
� � ����

such that Q��� ^ - ^ � shares an edge with a walk in a bundle ������ ^ � or ��� ���� ^ � . Each walk starts
at an independently chosen vertex and moves to an independently chosen destination.
The steady state of a random walk is uniform on edges and so at each stage of a walk,
each edge is equally likely to be crossed. Thus����� Q �� ^ -�^ � is bad

� & � � � � � � � � � -/.10	$ � � �+,$ & �*) � �
for sufficiently small

�
.

We say that index
�

is bad if either � �� ^ � or � � �� ^ � contain more than
� � ),+ bad walks.

If index
�

is not bad then we can find a walk from
�� � ^ - ^ � to

�� � ^ -�^ � through
�� � ^ - ^ � for some�

which is edge disjoint from all other walks. This gives a walk

� � ^ �"! �� � ^ �#! �� � ^ - ^ �"! �� � ^ -�^ �"! �� � ^ -�^ �#!
�� � ^ - ^ �"!

�� � ^ -�^ �#!
�� � ^ �"! � � ^ � �

which is edge-disjoint from all other such walks.
The probability that index

�
is bad is at most

������� � ��� � ��� �*�*) � � )�+1�*& ��� + � )�� � � 
�� � > U �
7



So with probability at least 1/2 the number of bad indices is no more than� E � � � + � )�� � � 
 � � > U �!& � �
Y > . By repetition we can ensure that Phase � succeeds whp.

The theorem follows. �
4.1.1 Existence Result

In this section we describe the use of the Lovász Local Lemma [6] to prove the exis-
tence of a large number of edge disjoint paths in any + -regular

�-, � $ ��. � -expander, [3].
At the present time we do not see how to make the argument constructive.

Theorem 4 Given a bounded degree
�-, � $ �;. � -expander graph there exists a parame-

ter
�

that depends on
,

, $ ,
.

, but not on $ , such that any set of less than
� $ )�� -/.10	$ � �

disjoint pairs of vertices can be connected by edge disjoint paths.

The proof starts by splitting
�

into 2 $ � � �
expanders and using the first to route

� > ������� � ��� to randomly chosen
�� > ������� � ���� via edge disjoint paths found through a

flow algorithm as in say, Subphase � .b of the algorithm of the previous section.
Then, for

��& � & � ,
���� is joined to

���� via an
< � -/.102$ � random walk Q � through

a randomly chosen intermediate vertex � � . We use the local lemma to show thatQ > ������� � Q � are edge disjoint with positive probability. Ignoring several technical
problems we consider bad event ���M^ � � � Q ��� Q!� ����5�

and argue that ���-^ � depends
only on the

8 � � events of the form ��� � ^ � or ���-^ � � . Since
����� ���M^ � � � < � � -/.10	$ � � ) $ �

we can follow through if � � - .�0 $ � ��) $ ' �
. This gives the theorem.

4.2 Low Congestion Paths

We discuss the following result from [3].

Theorem 5 There is an explicit polynomial time algorithm that can connect any set of
� �1, � $ � $ ) - .�0 $ pairs of vertices on a bounded degree expander so that no edge is
used by more than 
 paths where


 �
��� �� < � � �
	 -/.102-/.102$

-/.10 � �*) �,	��� � �
for

, 8 �*)���

< � � � , � - .�0 -/.102$ ��� for

, ) �*)����
�, � � � � �-, ���*) - .�02-/.102$ � , and � is the maximal multiplicity of a vertex in the set of
pairs.

See [11] for similar results proved via multi-commodity flows.
The algorithm uses the same flow/random walk paradigm that we have already seen

twice above. � > ������� � � � are joined to randomly chosen
�� > ������� � �� � via edge disjoint

paths found through a flow algorithm. Then, for
� & � & � ,

�� � is joined to
���� via

an
< � -/.10	$ � random walk Q � through a randomly chosen intermediate vertex � � . The

number of paths which use an edge is bounded by the sum of two binomials. We
then see that for a sufficiently large � � � whp there are fewer than $ )�� -/.102$ � � edges
which have congestion greater than 
 . We delete all of the paths through such edges
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and re-join the corresponding pairs via edge disjoint paths, using the algorithm of [2].�
Leighton, Rao and Srinvasan [12] generalise Theorem 4 by showing that for any� ) �

, given enough expansion one can join
� $ )�� -/.102$ � > Y > � � pairs with congestion

at most � .

4.3 Dynamic Allocation of Paths

Broder, frieze and Upfal [3] discuus a stochastic model for studying a dynamic version
of the circuit switching problem. In their model new requests for establishing paths
arrive continuously at nodes according to a discrete Poisson process. Requests wait in
the processor’s queue until the requested path is established. The duration of a path is
exponentially distributed.

Their model is characterized by three parameters:
� � > is an upper bound on the probability that a new request arrives at a given node

at a given step.

� � � is the probability that a given existing path is terminated in a given step. A
path lives from the time it is established until it is terminated.

� 
 is the maximum congestion allowed on any edge.

� The destinations of path requests are chosen uniformly at random among all the
graph vertices

They study a simple and fully distributed algorithm for this problem. In the algorithm
each processor at each step becomes active with a probability ���> � � > . An inactive
processor does not try to establish a path even if there are requests in its queue. The
algorithm can be succinctly described: Assume that � is active at step ` , and the first
request in � ’s queue is for � . Processor � tries to establish a path to � by choosing a
random trajectory of length R � � U -/.102$ connecting � to � . If the path does not use any
edge with congestion greater than 
 2 �

, the path is established, otherwise the request
stays in the queue.

Theorem 6 Let � ��� � � 0 �
-/.10 � 
9+,$ � � + 
R [�� Y > ] � �

� �
There exists a constant

.
such that if � > & . �

� � , then the system is stable and the
expected wait of a request in the queue is

< � �*) � > � .
Before outlining the proof let us see the consequence of this theorem. Let E

��� �2� $ � >
be the expected number of new requests that arrive at the system at a given step, and
let E

��� � � �*) � � be the expected duration of a connection. For the system to be
stable, the expected number of simultaneously active paths in the steady state must be
at least E

��� �
E
��� �	� $ � > ) � � . Plugging 
 � -/.102-/.102$ ) -/.10	� for some � in the rangeS ��� -/.10 $ W in the definition of

�
we get� ��
 � �

� - .�0 $ � �

9



Thus the theorem above implies that for such a congestion 
 , the system remains stable
even if we choose � > and � � such that

E
��� �

E
��� �2� $ � >

� �
� . $ � ��
 � $T -/.102$ � �

in which case the dynamic algorithm utilizes the edges of the network almost as ef-
ficiently as the static algorithm, Theorem 5 (there seems to be an efficiency gap of
maximum order -/.102-/.10 -/.102$ for � & -/.102-/.102$ ).

In the proof of the theorem, time is partitioned into intervals of length % & �*)��ME � > � .
Let � H

denote the history of the system during the first ` time intervals. Define the event

� �M� � ` � � 0 If the queue of processor
�

was not empty at the beginning of interval` then
�

served at least one request during interval ` �

The goal is to show that for all
�

and ` ,����� � �M� � ` �'� � H � � � � �
� � (8)

Given this we conclude that in any segment of
� % steps processor

�
is serving at least

one request with probability at least
� )��

. The number of new arrivals in this time
interval has a Binomial distribution with expectation at most

� % � > 8 �*)��
. Thus,

under these conditions the queue is dominated by an � ) � ) �
queue with expected

inter-arrival distribution greater than
E % , and expected service time smaller than

E % .
The queue is stable, and the expected wait in the queue is

< � �*) % �	� < � �*) � > � .
To prove (8) we argue that with sufficiently high probability, (i)

�
becomes active at

least once during an interval, (ii) there are no very old paths in the network, (iii) there
are not too many paths in the network altogether and then (iv) we can argue that the
first path that a processor

�
tries to establish is unlikely to use a fully loaded edge.

5 Random Graphs

We deal with two related models of a random graph.
��� ^ 
 has vertex set S $ W �� ������������� � $ �

and and exactly
�

edges, all sets of
�

edges having equal probabil-
ity. The random graph

� ?.� reg is uniformly randomly chosen from the set of + -regular
graphs with vertex set S $ W .

Let
�

be the median distance between pairs of vertices in graph
��� ^ 
 . Clearly it

is not possible to connect more than
< ��� ) � �

pairs of vertices by edge-disjoint paths,
for all choices of pairs, since some choice would require more edges than all the edges
available. In the case of bounded degree expanders, this absolute upper bound on

�
is< � $ ) -/.102$ � . The results mentioned above use only a vanishing fraction of the set of

edges of the graph, thus are far from reaching this upper bound. In contrast, Broder,
Frieze, Suen and Upfal [4] and Frieze and Zhao [9] show that for

��� ^ 
 and
� ?*� reg

the absolute upper bound is achievable within a constant factor, and present algorithms
that construct the required paths in polynomial time.
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Theorem 7 Let
� � � � $ � be such that J � ��� ) $ )�� � � 	 � �*� � -/.10	$ . Then, as

$ 2 !�� , with probability
� 2 	 � � � , the graph

� � ^ 
 has the following property: there
exist positive constants

,
and $ such that for all sets of pairs of vertices

� � � � � ��� �'� � ������ �/� � � �
satisfying:

(i) � & 
 , � - .�07J ) -/.102$ � ,
(ii) for each vertex

�
,

� � �	�1��� �����
� � � � �
� ��� ������� & � � � � J�� �M����� $ J �
,

there exist edge-disjoint paths in
�

, joining � � to ��� , for each � � ����� ������� � � . Fur-
thermore, there is an

< � $ � ��� time randomized algorithm for constructing these paths.

Theorem 8 Let + be a sufficiently large constant. Then, as $ 2 !�� , the graph
� ?*� reg

has the following property whp: there exist positive absolute constants
, � $ such that

for all sets of pairs of vertices
� � ��� � ��� �'� � � �����/� �/� � �

satisfying:

(i) � & 
 , +,$ ) -/.10 ? $ � ,
(ii) for each vertex

�
,

� � �	�1��� �����
� � � � �
� ��� ������� & $ + ,

there exist edge-disjoint paths in
� ?*� reg, joining ��� to ��� , for each � � �,����������� � � .

Furthermore, there is an
< � $ � � time randomized algorithm for constructing these

paths.

These results are best possible up to constant factors. Consider for example Theorem 7.
For (i) note that the distance between most pairs of vertices in

��� ^ 
 is

 � -/.102$ ) - .�07J � ,

and thus with
�

edges we can connect at most
< ��� -/.10 J ) -/.10 $ � pairs. For (ii) note

that a vertex
�

can be the endpoint of at most J�� �M� � different paths. Furthermore
suppose that J ) $ � for some constant

. � � so that � ) 
 , . $ J )���� . Let & �, . ),+
,
� � S & $ W , and � � S $ W � �

. Now with probability 1-o(1) there are less than� � � 	 � �*� � & � � 2 & � $ J edges between
�

and � in
� � ^ 
 . However almost all vertices of

�
have degree

� � � 	 � � � � J and if for these vertices we ask for
� � 2 & )�� � J edge-disjoint

paths to vertices in � then the number of paths required is at most
� � � 	 � �*� � & � � 2

& ),� � $ J 8 � , but, without further restrictions, this many paths would require at least� � 2 	 � �*� � & � � 2 & )�� � $ J � � � � 	 � �*� � & � � 2 & � $ J edges between
�

and � which is more
than what is available. This justifies an upper bound of

�'2 & )�� for $ of Theorem 7. A
similar argument justifies the bounds in Theorem 8.

First consider Theorem 7. The edge set



is first split randomly into 5 sets

 > ��
 � ������ ��
 �

. The graphs
� � � ��� ��
 � � will all be good expanders whp. As usual,

� >
is used to connect � > ������� � ��� to randomly chosen

�� > ������� � ���� using network flows.
A random walk is then done in

� � starting at each of these latter vertices and ending
at

�� > ������� � ���� . After each walk, the edges are deleted from
� � which keeps the walks

edge disjoint. The length R of these walks is
< � -/.102$ ) - .�0 J � but long enough so that the

endpoints
�� > ������� � ���� are (essentially) independent of their start points. This handles

any possible conditioning introduced by the pairing of
�� � with

���� . Finally,
���� is joined

to
���� directly by a random walk of length R in

� � . � � and
� �

and the algorithm of [2]
are used to connect the few pairs not successfully joined by the above process.

The success of this algorithm rests on the fact that if not too many walks,< ��� -/.107J ) -/.102$ � , are deleted then
< ��� �

edges will be deleted and we will be easily
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be able to ensure that the degrees of almost all vertices stay logarithmic in size. Thus
the remaining graphs will be good expanders. The reader should notice that we only
need a constant number of short random walks to connect each pair and this is why we
are within a constant of optimal.

In Theorem 3 where degrees are bounded, we find that this argument breaks down
because many (order $ ) vertices would become isolated through the deletion of the
requested number of walks. The cure for this is to force the “action” to take place on
a core of each subgraph (The

�
-core of a graph � is the largest subset of

�
which

induces a subgraph of minimum degree at least
�

in � . It is unique and can be found
by repeatedly removing vertices which have degree less than

�
.) This raises technical

problems, such as what is to be done when one of the endpoints of a proposed walk
drops out of the core. These problems are dealt with in [9].

The problem of finding vertex disjoint paths in random graphs is dealt with in
Broder, Frieze, Suen and Upfal [5].

Theorem 9 Suppose
� � �

� � -/.102$ � � � where � � $ � !�� . Then there exists
, � $ � �

such that whp for all
� � �

� > � � � ������� � ��� �1� � � �
� > � � � ������� � � � ��I S $ W satisfying

(i)
� � � � �

(ii)
� � ��� � � � &�� ��� ���� �	� �

(iii)
� � �M� � � � � & � �b�9& $ � � �M� �b�

.

there are vertex disjoint paths � � from ��� to ��� for
� & � & � . Furthermore these paths

can be constructed by a randomised algorithm in
< � $ � � time.

This result is best possible up to constant factors.

6 Approximation Algorithm

Kleinberg and Rubinfeld [10] describe an on-line Bounded Degree (BGA) Approxima-
tion algorithm for the edge disjoint paths problem. BGA is defined by a parameter




as follows:

(i) Proceed through the terminal pairs in one pass.

(ii) When
� ��� � ��� � is considered, check whether ��� and ��� can still be joined by a path

of length at most



. If so, route
� � � � ��� � on such a path ��� . Delete � � and iterate.

They prove the following:

Theorem 10 Suppose
�

is an expander of maximum degree
�

. Then there exists
� � �

such that with

 � � � -/.102$ , BGA is an

< � -/.10	$ -/.102-/.102$ � -approximation algorithm
for the edge disjoint paths problem.
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7 Final Remarks

There has been a lot of progress since the first paper of Peleg and Upfal. The most
interesting questions that remain to my mind are:

1. Can we take � ��
 � $ ) -/.102$ � , given sufficient expansion, in Theorem 3?

2. More modestly, can we remove the -/.10 [�� ] $ factor and make Theorem 4 con-
structive?

3. Can we achieve near optimal expander splitting as in Theorem 2, constructively?

4. Is there a constant factor approximation algorithm for the edge disjoint paths
problem on expander graphs?

5. Can any of the above results be extended to digraphs?
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