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Abstract

We consider the likely size of the endpoint sets produced by Posa
rotations, when applied to a longest path in a random graph with
cn, c ≥ 2.7 edges that is conditioned to have minimum degree at least
three.

1 Introduction

In the pioneering paper [10] Erdős and Rényi asked how large m, the number
of edges, should be for the uniformly random graph on n vertices (G(n,m))
with high probability (whp) to have a Hamilton cycle. The problem was vig-
orously attacked by the various authors, see references in Bollobás [6]; in par-
ticular, Komlós and Szemerédi [18] showed that m = n1+ε suffices. A critical
breakthrough was achieved by Pósa [23]; he showed that m = cn lnn, c > 30,
is enough. Qualitatively this is the best possible, since m = Θ(n lnn) edges
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are needed for G(n,m) to be connected whp, [10]. Progressively stronger ex-
tensions of Pósa’s result for G(n,m) were achieved by Korshunov[19], Komlós
and Szemerédi [20], Ajtai, Komlós and Szemerédi [1], Bollobás [7], Bollobás,
Fenner and Frieze [9], and Bollobás and Frieze [3]. The proofs frequently
used a deceptively simple but surprisingly potent “Pósa’s Lemma” from [23].

Here is the Lemma. Given a graph G and a vertex x0, let P = x0x1 . . . xh
be a longest path from x0. If (xh, xi) ∈ E(G) for some i < h − 1, then
P ′ = x0 . . . xixhxh−1 . . . xi+1 is also a path in G from x0, of the same edge
length h. In words, P ′ is obtained from P by rotation via the edge (xi, xh).
Let S consist of xh and the set of endpoints of all paths obtainable from P
through any number of rotations. Let T be the set of all outside neighbors
of S on the path P , “outside” meaning that T ∩S = ∅. Pósa’s Lemma states
that there are no edges between S and V (P ) \ (S ∪ T ). Since by definition
of P , S has no neighbors outside of P , it follows from Pósa’s Lemma that
T = N(S), the set of all outside neighbors of S. In addition,

|T | < 2|S|. (1.1)

Now if a graph G is not too sparse, one may expect that the not-too-large
vertex sets A are sufficiently expanding, so that |N(A)| ≥ 2|A|. If that is the
case, then it follows from Pósa’s Lemma that |S| has to exceed a threshold
value dependent on G, s = s(G), say. Bollobás’s next crucial observation
was that, if a path P of length h cannot be extended via a sequence of
rotations at either of its ends then there are at least

(
s(G)
2

)
“non-edges” with

a property: adding any such non-edge to E(G) creates a cycle out of a
properly rotated P . Connectivity considerations now lead to the conclusion
that such a non-edge will either create a Hamilton cycle or enable us to find
a path of length h + 1. (The term “boosters” has recently been coined to
describe these edges.) Using these fundamental properties of Pósa’s sets, and
also de la Vega’s theorem on whp existence of long paths in G(n, p), (np >
4 ln 2), [12], Bollobás [7], [6] found a surprisingly direct proof of Korshunov’s,
Komlós-Szemerédi’s result on a sharp threshold value of m and p for whp-
Hamiltonicity of G(n,m) and G(n, p).

Specifically, he proved that, for p in question, whp s(G(n, p)) = Θ(n), that
is the likely number of those beneficial non-edges is quadratic in n. Using
this, he identified a sequence G(n, p0) ⊂ G(n, p1) ⊂ G(n, pk) ⊂ G(n, p),
k = k(n), such that de la Vega’s result applies to G(n, p0) with room to
spare, and for each j, with the conditional probability 1−O(n−2), the length
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of the longest path in G(n, pj+1) strictly exceeds that in G(n, pj), if the latter
is non-Hamiltonian. That G(n, pk) is whp Hamiltonian was then immediate.

Later we used a broadly similar argument to show that a random graph
with minimum degree at least 2, G(2)(n,m) in short, whp has a perfect
matching iff G(2)(n,m) has no isolated odd cycles, see Frieze and Pittel [16].
A counterpart of Pósa’s Lemma in our case was a lemma inspired by Gallai–
Edmonds Structure Theorem and Edmonds’ Matching algorithm. This lemma
allowed us to prove that, in absence of a perfect matching, with high condi-
tional probability there exist Θ(n2) non-edges each of which would increase
the maximum matching number. And the place of de la Vega’s algorithm
was taken up by Karp-Sipser Matching Greedy [17], analyzed in detail in our
earlier paper [2].

As its title indicates, the core of Bollobás’ paper [7] was a proof that
the uniformly random d-regular graph on [n], Gd(n), is whp Hamiltonian,
if d > 107. Fenner and Frieze [11] independently proved that d > 796 suf-
fices and then Frieze [13] came up with an algorithmic proof of a better
bound d > 85. It was commonly believed that d ≥ 3 suffices, and indeed
Robinson and Wormald [24] settled this conjecture affirmatively. Their non-
algorithmic proof was based on a refined version of the second order moment
prompted by their discovery that, for d ≥ 3, E[X2

n] = O(E2[Xn]), Xn being
the number of Hamilton cycles. (The random graphs G(n, p), G(n,m), with
p,m in question, lack this remarkable property.) Very recently, Bohman and
Frieze [3] proved that another well-known random graph, Gd−out(n) is whp
Hamiltonian, if d ≥ 3, in which case the average vertex degree is asymptotic
to 2d.

Now, consider the Hamiltonicity property ofG(3)(n,m), the random graph
on [n] with m edges and minimum degree 3, at least. Of course, m ≥ 3n/2,
and we had better assume m > 3n/2, since equality implies that G(3)(n,m) =
G3(n). From a more general result in Bollobás, Cooper, Fenner and Frieze [8]
it follows that whp G(3)(n,m) is Hamiltonian if m > 128n. Our ultimate goal
is to push this bound down, close to the best possible m > 1.5n, and to con-
struct an algorithm that finds a Hamilton cycle in Op

(
n1+o(1)

)
running time

for m/n in the arising range.
Here is our main result in this paper.

For k ≥ 0, let

fk(x) =
∑
j≥k

xj

j!
,
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a tail of the series for ex.

Theorem 1.1. Introduce x∗ ≈ 4.789771 . . . , the unique positive root of

x3f1(x)

f2(x)2
= 1,

and

a∗ =
x∗f2(x

∗)

2f3(x∗)
≈ 2.6616.

If m ≥ (a∗ + ε)n, ε > 0, i. e. the average vertex degree exceeds 5.32, then
whp for each pair of Pósa’s sets (S, T ),

|S|+ |T | ≥ n1−δn , δn = (ln lnn)−1/2.

In words, the likely Pósa’s sets are, at least, almost linear in size.

Remark 1.1. If the vertex degree range is an arbitrary D ⊆ [3,∞), 3 ∈ D,
then the above assertion continues to hold if we replace f3(x) with

fD(x) =
∑
j∈D

xj

j!
,

and f2(x), f1(x) with f ′D(x) and f ′′D(x) respectively. For instance, if D =
{3, 4}, then the likely Pósa’s sets are almost linear in size if m/n ≥ 17/9 ≈
1.9.

Remark 1.2. Our calculations will reveal that the dominant contribution to
a bound for the expected number of sparse Pósa sets (S, T ) comes from the
pairs (S, T ) with a rather rigid structure of the subgraph induced by S ∪ T ;
see Remark 4.1. Since this dominant contribution is bounded rather sharply,
a further progress toward m > 3n/2, or even m/n > a, a ∈ (3/2, a∗), seems
to be out of sight at this moment.

The proof of this claim takes up the rest of the paper. It is quite technical,
apparently due to exceeding sparseness of G(3)(n,m) for m/n that close to the
best 1.5. We firmly believe that, in a complete analogy with Bollobás’ proof
of Hamiltonicity of G(n, p) and G(n,m), and our result on the existence
of a perfect matching in G(2)(n,m), the random graph G(3)(n,m) is whp
Hamiltonian if m ≥ (a∗ + ε)n.
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In the companion paper [14], instead of using extensions and rotations to
grow a long path, we use them to convert a good 2-matching into a hamilton
cycle. A 2-matching is a spanning subgraph of G(3)(n,m) with maximum
degree at most two. By good, we mean that it has O(log n) components and
the number of components is a good measure of how far it is away from being
Hamiltonian. In this context, a path of length ` has n − ` + 1 components.
To find the good 2-matching, we have found a modification of Karp-Sipser’s
Greedy Matching algorithm.

A simple way to use the results of this paper to prove Hamiltonicity goes
like this. Hold back a random edge subset X of cardinality o(n1/2), and then
argue that the results of this paper apply to the remaining random graph.
Then we know that whp there are always Ω(n2−o(1)) boosters that can be used
to move the extension-rotation algorithm along. The edges in X are quite
likely to be boosters (at least likely enough) and because our 2-matching is
good, we only need a boost O(log2 n) times (for details see [14]), and the
mission can be completed.

One can go further though. Another paper, [15] shows how to use this
2-matching algorithm as a basis for finding a Hamilton cycle in O(n1+o(1))
time when c is sufficiently large.

2 Pósa sets in a graph with minimum degree

3 at least

Given a graph G = (V,E) and A ⊆ V , we use G(A) to denote the subgraph
of G induced by A, and e(A) to denote the number of edges in G(A).

Lemma 2.1. Suppose that the minimum degree of G is 3 at least. Let S, T
be derived from a longest path P as explained prior to Theorem 1.1. Then

e(S ∪ T ) > |S ∪ T |, (2.1)

i. e. the edge density of G(S ∪ T ) strictly exceeds 1.

Proof of Lemma 2.1 Let Q be any path obtained from P by rotations.
Posa observed that

every t ∈ T has an S-neighbor on Q. (2.2)
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Introduce T1, the set of all vertices t ∈ T such that t has only one neighbor
s ∈ S. Pósa’s observation implies that, for every such pair (s, t), t and s are
neighbors on every path Q. In particular, when s is an endpoint, t is next
to s. It follows then that for any other vertex t′ ∈ T1 with a single neighbor
s′ ∈ S we have s′ 6= s. Therefore |T1| ≤ |S|.

Let D(S) denote the total degree of vertices in S, and let DS(T )(≤ D(S))
denote the total number of edges with one endpoint in T and another end-
point in S. Since each t ∈ T \ T1 has at least two neighbors in S, and
|T1| ≤ |S|, we have

DS(T ) ≥ |T1|+ 2(|T | − |T1|) ≥ 2|T | − |S|. (2.3)

Hence, as each s ∈ S has degree 3 at least,

D(S) +DS(T ) ≥ 3|S|+ 2|T | − |S| = 2(|S|+ |T |). (2.4)

As
2e(S ∪ T ) = D(S) +DS(T ) + 2e(T ), (2.5)

e(T ) being the number of edges in the subgraph G(T ) induced by T , we see
that

e(S ∪ T ) ≥ |S ∪ T |.
The rest of the argument is needed to upgrade this to the strict inequality.

From the proof of (2.4), and (2.5), it follows that the edge density of
G(S ∪ T ) may be equal 1 only if

(a)
D(S) +DS(T ) = 2(|S|+ |T |);

(b) there are no edges in T ;

(c) |T1| = |S|;
(d) each vertex in S has exactly two neighbors in S ∪ (T \ T1);
(e) each vertex in T̂1 := T \ T1 has exactly two neighbors in S.

If one of (c), (d), (e) is violated then D(S) +DS(T ) > 2(|S|+ |T |).

Case T̂1 = ∅. Given a path P , the S-vertices are distributed over P
as subpaths of vertex length i ≥ 1, next neighbors of subpaths being T1-
vertices. Since T1-vertices remain the neighbors of their single S-neighbors
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on every path, and |T1| = |S|, there can be only paths of length 1 and 2,
“monomers” and “dimers”. An endpoint s of P is a monomer, as its left
neighbor is t ∈ T1. There are no other monomers in P , since an interior
monomer would be flanked by two T1-vertices, sharing a common neighbor
in S, which is impossible. Consequently, the leftmost subpath of P is a dimer
s1, s2, sandwiched between two vertices t1, t2 ∈ T1. No rotation from P can
use either ti, as si is the only S-neighbor of ti, or s2, as t2 /∈ S. If the rotation
uses s1, then t1, s1, s, t becomes the new leftmost dimer with s1 retaining the
left position. Of course, if a rotation does not use s1, then t1, s1, s2, t2 remains
the leftmost subpath. So no sequence of rotations will make s1 an endpoint.
Contradiction.

Case T̂1 6= ∅. By (d)-(e), the graph G(S∪ T̂1) is a disjoint union of cycles.
By (b), each cycle contains at least two vertices from S. In fact, there is just
one cycle, since otherwise there would exist two vertices s1, s2 ∈ S such that
no sequence of rotations starting with a path with the endpoint s1 would
lead to a path ending at s2.

Since there are no edges between vertices in T̂1, two vertices from T̂1 can-
not be neighbors on the cycle. And no two vertices from S can be neighbors
either. Otherwise, there is an arc s1s2t, with s1, s2 ∈ S, t ∈ T̂1. Consider
a path Q that ends at s1. We know that the left neighbor of s1 in Q is a
t1 ∈ T1. By considering the rotation from Q via the edge (s1, s2) we see that
s2 has another neighbor s3 ∈ S distinct from s1. Hence s2 has at least three
neighbors in S ∪ T̂1, namely s1, s3, t. This violates (d).

Therefore the vertices from S and from T̂1 alternate on the cycle. Hence
|T̂1| = |S|, whence

|T | = |T1|+ |T̂1| = 2|S|,

which violates Pósa inequality (1.1).

So the edge density of G(S ∪ T ) exceeds 1.

Remark 2.1. The above argument needs to be refined if we want to put a
bound on the time taken to construct the end-point sets. In this case suppose
that we are doing a sequence of rotations with fixed endpoint v0. If a rotation
would produce an endpoint that has been produced before in this sequence, then
we do not do this rotation. This limits the time spent producing endpoints,
but it will reduce the number of endpoints, but we will now argue that Lemma
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2.1 continues to hold. Indeed, all we have to observe is that (2.2) continues
to hold. The argument being identical to Posá’s argument.

In the course of the proof, having assumed that the edge density of G(S∪
T ) is 1, we saw that then G(S∪T ) must be quite special. Namely |T1| = |S|,
and either (1) T̂1 = ∅ and G(S ∪ T ) is a cycle on S, with each of T1-vertices

attached to its own S-vertex, or (2) |T̂1| = |S|, and G(S∪T ) is an alternating

cycle on a bipartition (S, T̂1), with each of S-vertices hosting its own pendant
vertex from T1. The punch line was that neither of these two graphs, each
of edge density 1, can be a Pósa graph G(S ∪ T ).

In the next section we will show that in the random graph G(3)(n,m) whp
no vertex subset A, with |A| ≤ ε0 lnn can induce a subgraph of edge density
exceeding 1. So, by (1.1) and Lemma 2.1, whp |S| + |T | > ε0 lnn. We will
also show that whp the edge density of the induced subgraph is 1 + o(1), for
every A, with ε0 lnn < |A| ≤ n1−o(1). It is natural then to focus on the o(n)-
Pósa sets of edge density close to 1, anticipating that the induced subgraphs
G(S ∪ T ) should interpolate between those two special, impossible, graphs.
To prepare, let us have a look at the deterministic properties of G(S ∪ T )
with an edge density close to 1.

Introduce G∗ = G∗(S](T \T1)), the subgraph on the vertex set S∪(T \T1)
whose edges have at least one end in S; so we disregard edges of G(S ∪ T )
between vertices of T , and also edges joining the pendant vertices of T1 to
their respective S–“hosts”. For v ∈ S ∪ (T \ T1), let d(v;G∗) denote the
degree of v in G∗; by the definition of G∗, minv d(v;G∗) ≥ 2. Introduce

S2 = {v ∈ S : d(v;G∗) = 2}.

Lemma 2.2.

(i) No vertex from S2 can be a neighbor of both a vertex in S2 and a vertex
in T \ T1.

(ii) Suppose that

e(S ∪ T ) = (1 + σ)(s+ t), s := |S|, t := |T |, (2.6)
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for some σ > 0. Then, denoting |T1| = t1,

s− 2σ(s+ t) ≤ t1 ≤ s, (2.7)∑
v∈S∪(T\T1)

[
d(v;G∗)− 2

]
≤ 2σ(s+ t). (2.8)

Remark. Recalling that t < 2s, the bound (2.7) is not vacuous if σ ≤ 1/6.

Proof of Lemma 2.2. (i) Suppose that there are s1, s2 ∈ S2 and t ∈
T \T1 such that (s1, s2) and (s1, t) are edges in G∗. s2 has a neighbor t1 ∈ T1,
since s2’s degree in G(S∪T ) is at least, whence exactly, 3. Consider a path P
with s2 as its endpoint. t1 is necessarily a penultimate vertex of P . Rotating
P via the edge (s1, s2) must make the right P -neighbor of s1 a new endpoint.
(Here we assume that xi+1 is to the right of xi for i ≥ 0). So s1 has a neighbor
in S distinct from s2, and d(s1;G

∗) ≥ 3. Contradiction.

(ii) First, using (2.3), D(S) ≥ 3s, and (2.5), we obtain

2(s+ t) + (s− t1) ≤ 2e(S ∪ T ) = 2(1 + σ)(s+ t),

which implies (2.7) as s− t1 ≥ 0. Second, the total vertex degree of G∗ is∑
v∈S∪(T\T1)

d(v;G∗) = 2e(S ∪ T )− 2t1 − 2e(T ).

Therefore∑
v∈S∪(T\T1)

[
d(v;G∗)− 2

]
= 2e(S ∪ T )− 2t1 − 2e(T )− 2(s+ t− t1)

= 2e(S ∪ T )− 2(s+ t)− 2e(T )

= 2(1 + σ)(s+ t)− 2(s+ t),

which implies (2.8).

Introduce

S3 :=S \ S2,

T2 := {v ∈ T \ T1 : d(v;G∗) = 2}, T3 := (T \ T1) \ T2,
(2.9)
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and denote si = |Si|, ti = |Ti|; so s = s2 + s3, t = t1 + t2 + t3. It follows from
(2.8) that ∑

v∈S3∪T3

[
d(v;G∗)− 2

]
≤ 2σ(s+ t), (2.10)

and then
|S3 ∪ T3| = s3 + t3 ≤ 2σ(s+ t). (2.11)

Let µ1 denote the total number of edges in the subgraph of G∗(S](T \T1))
induced by S, and let µ2 denote the total number of the remaining edges of
G∗(S ] (T \ T1)), those joining vertices of S and T \ T1, and set µ = µ1 + µ2.
Clearly

2µ1 + µ2 =
∑
v∈S

d(v;G∗), (2.12)

µ2 =
∑

v∈T\T1

d(v;G∗). (2.13)

Adding the equations (2.12) and (2.13),

µ :=
1

2

∑
v∈(S∪T )\T1

d(v;G∗) = s2 + t2 +
1

2

∑
v∈S3∪T3

d(v;G∗)

= s+ t− t1 +
ξ1 + ξ2

2
, (2.14)

where

ξ1 :=
∑
v∈S3

[
d(v;G∗)− 2

]
≥ s3, ξ2 :=

∑
v∈T3

[
d(v;G∗)− 2

]
≥ t3. (2.15)

It follows from (2.12), (2.13) and (2.15) that

µ1 = s− t+ t1 +
ξ1 − ξ2

2
,

µ2 = 2(t− t1) + ξ2.
(2.16)

From (2.10),
ξ1 + ξ2 ≤ 2σ(s+ t). (2.17)

Remark 2.2. We note here that Lemma 2.2 continues to hold under the
restrictions described in Remark 2.1.
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Let two disjoint sets, S and T , the partitions S = S2∪S3, T = T1∪T2∪T3,
and ξ1, ξ2 be given. Let N (S,T, ξ) denote the total number of the subgraphs
G∗(S ] (T \T1)), with µ1, µ2 determined by (2.16), such that the constraints
(2.7), whence the constraints (2.10), (2.11) and (2.17) hold for some σ > 0.

Lemma 2.3.

(i)
N (S,T, ξ) ≤N1(s, t, ξ),

N1(s, t, ξ) := 2−s2−t2−µ1
(2µ1 + µ2)!

µ1!
exp

[
O
(
σ(s+ t)

)]
.

(2.18)

(ii) There exists σ0 ∈ (0, 1) such that, for σ ≤ σ0 and

(1 + σ1/2) s ≤ t ≤ 2(1− σ1/2) s, (2.19)

a stronger bound holds:

N (S,T, ξ) ≤ N2(s, t, ξ) := N1(s, t, ξ)(s+ t)2

× exp

[
−(2s− t) ln

s

2s− t
− (t− s) ln

s

t− s
+O

(
σ1/2(s+ t)

)]
.

(2.20)

Proof of Lemma 2.3. It is well known, see Bollobás [4], that g(d), the
total number of graphs on [ν] with vertex degrees d1, . . . , dν , and total vertex
degree 2M :=

∑
i di satisfies

g(d) ≤ (2M − 1)!!
ν∏
i=1

1

di!
. (2.21)

Here is a bipartite counterpart of (2.21). Let ν1, ν2, and d′ = (d′1, . . . , d
′
ν1

),
d′′ = (d′′1, . . . , d

′′
ν2

) be such that∑
i∈[ν1]

d′i =
∑
j∈[ν2]

d′′j = M.

Denote by g(d′,d′′) the total number of bipartite graphs on a bipartition
[ν1] ] [ν2], with the left vertices and the right vertices having degrees d′ and
d′′. Then

g(d′,d′′) ≤M !
∏
i∈[ν1]

1

d′i!

∏
j∈[ν2]

1

d′′j !
. (2.22)
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(i) Let d = {dv}v∈S be the (generic) vertex degrees of the subgraph of
G∗(S ] (T \ T1)) induced by S; so∑

v∈S

dv = 2µ1. (2.23)

Let d′ = {d′v}v∈S and d′′ = {d′′v}v∈T2∪T3 denote the vertex degrees of the
complementary bipartite graph on the bipartition S ] (T2 ∪ T3); so∑

v∈S

d′v =
∑

v∈T2∪T3

d′′v = µ2. (2.24)

Here µ1, µ2, µ = µ1 + µ2 are given by (2.12), (2.13) and (2.14). In addition,

dv + d′v

{
= 2, v ∈ S2,

≥ 3, v ∈ S3,
(2.25)

and

dv

{
= 2, v ∈ T2,
≥ 3, v ∈ T3.

(2.26)

Using (2.21) and (2.22), we get an upper bound for the number of the graphs
with vertex degrees d,d′,d′′:

(2µ1 − 1)!!µ2!
∏
v∈S

1

dv! d′v!

∏
v∈T2∪T3

1

d′′v!
.

Introducing

fk(x) =
∑
j≥k

xj

j!
,
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we have then∑
d,d′,d′′ meet
(2.23)−(2.26)

∏
v∈S

1

dv! d′v!

∏
v∈T2∪T3

1

d′′v!

= 2−t2 [x2µ1yµ2 ]

( ∑
d+d′=2

xdyd
′

d! d′!

)s2 ( ∑
d+d′≥3

xdyd
′

d! d′!

)s3

· [zµ2−2t2 ]

(∑
d′′≥3

zd
′′

d′′!

)t3

= 2−t2 [x2µ1yµ2 ]

[
(x+ y)2

2

]s2[
f3(x+ y)

]s3 · [zµ2−2t2 ] [f3(z)
]t3

= 2−s2−t2
(

2µ1 + µ2

µ2

)
[ξ2µ1+µ2 ] ξ2s2f3(ξ)

s3 · [zµ2−2t2 ]
[
f3(z)

]t3
= 2−s2−t2

(
2µ1 + µ2

µ2

)
[ξ2µ1+µ2−2s2 ] f3(ξ)

s3 · [zµ2−2t2 ]
[
f3(z)

]t3
≤ 2−s2−t2

(
2µ1 + µ2

µ2

)
f3(1)s3+t3 .

Thus

N (S,T, ξ) ≤ (2µ1 − 1)!!µ2! 2−s2−t2
(

2µ1 + µ2

µ2

)
f3(1)s3+t3

= 2−s2−t2
(2µ1 − 1)!!

(2µ1)!
(2µ1 + µ2)! f3(1)s3+t3 .

So, by (2.15) and (2.17), and using (2µ1 − 1)!! = (2µ1)!/2
µ1µ1!,

N (S,T, ξ) ≤ N1(s, t, ξ) := 2−s2−t2−µ1
(2µ1 + µ2)!

µ1!
exp
[
O(σ(s+ t))

]
. (2.27)

(ii) Let {dv}v∈S2 , {dv}v∈S3 be the vertex degrees of the subgraphs ofG∗(S]
(T \ T1)) induced by S2 and S3 respectively. Let {δv}v∈S2 , {δv}v∈S3 denote
the vertex degrees of a bipartite graph induced by the bipartition S2 ] S3.
Finally, let {d′v}v∈S, {d′′v}v∈T\T1denote the vertex degrees of a bipartite graph
induced by the bipartition S ] (T \ T1). By the definition,

dv + δv + d′v = 2, (v ∈ S2), dv + δv + d′v ≥ 3, (v ∈ S3),

d′′v = 2, (v ∈ T2), d′′v ≥ 3, (v ∈ T3),
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and by Lemma 2.2
dv · d′v = 0, v ∈ S2.

Denote ∑
v∈S2

dv = 2ν2,
∑
v∈S2

δv = ν2,3,
∑
v∈S2

d′v = µ2,2,∑
v∈S3

dv = 2ν3,
∑
v∈S3

δv = ν3,2,
∑
v∈S3

d′v = µ3,2;

then ν2,3 = ν3,2, and

2ν2 + ν2,3 + µ2,2 = 2|S2| = 2s2,

2ν3 + ν3,2 + µ3,2 = 2µ1 + µ2 − 2s2,

µ2,2 + µ3,2 = µ2,

ν2 + ν2,3 + ν3 = µ1.

(2.28)

Given the values of ν2, ν3, ν2,3, and µ2,2, µ3,2, the number of the corresponding
subgraphs G∗(S ] (T \ T1)) is bounded, as in part (i), by

(2ν2 − 1)!! (2ν3 − 1)!! ν2,3!µ2! 2−t2 f3(1)t3

×
[
x2ν21 x

µ2,2
2 x

ν2,3
3

]  ∑
d+d′+δ=2
d·d′=0

xd1 x
d′
2 x

δ
3

d! d′! δ!


s2

×
[
y2ν31 y

µ3,2
2 y

ν3,2
3

]( ∑
d+d′+δ≥3

yd1 y
d′
2 y

δ
3

d! d′! δ!

)s3

. (2.29)

The last line factor is(
2ν3 + µ3,2 + ν3,2

2ν3, µ3,2, ν3,2

)[
y2ν3+µ3,2+ν3,2

]
f3(y)s3

≤ 32ν3+µ3,2+ν3,2 f3(1)s3 = 32µ1+µ2−2s2 f3(1)s3 . (2.30)

By (2.16), this is
2µ1 + µ2 − 2s2 = 2s3 + ξ1. (2.31)

Now s3 ≤ ξ1, see (2.15), and so by (2.17) the RHS of (2.30) is bounded by

32s3+ξ1 f3(1)s3 ≤
(
27f3(1)

)ξ1 ≤ (27f3(1)
)2σ(s+t)

. (2.32)
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The second line factor in (2.29) is bounded by(
x21
2

+ x1x3 + (x2+x3)2

2

)s2
x2ν21 x

µ2,2
2 x

ν2,3
3

, (2.33)

for all x1, x2, x3 > 0. The challenge is to select the “best” x1, x2, x3. First of
all µ3,2, ν2,3 ≤ 3ξ1, since ν2,3 = ν3,2 and by (2.15), (2.28) and (2.31)

2ν3 + µ3,2 + ν3,2 ≤ 3ξ1.

Therefore, by (2.7), (2.10), (2.16), (2.17) and (2.28),

ν2 =µ1 − ν2,3 − ν3 ≤ 2s− t+O(σ(s+ t)), (2.34)

µ2,2 =µ2 − µ3,2 = 2(t− s) +O(σ(t+ s)). (2.35)

By the condition in the Lemma, the explicit terms are of order σ1/2(s+ t) at
least, thus dwarf the remainders if σ is small. We pick

x1 = (2ν2)
1/2, x2 = (µ2,2)

1/2, x3 = (ν2,3)
1/2.

Then

x21
2

+ x1x3 +
(x2 + x3)

2

2
=

1

2
(x21 + x22 + x23) + (x1 + x2)x3

=s2 +O
(√

(s+ t)ξ
)

= s+O
(
σ1/2(s+ t)

)
,

as s2 = s+O
(
σ(s+ t)

)
. So the fraction in (2.33) can be bounded from above

by

1

2s2

√
(2s2)2s2

(2ν2)2ν2 µ
µ2,2
2,2 ν

ν2,3
2,3

exp
(
O(σ1/2(s+ t))

)
=

1

2s2
exp

(
ν2 ln

s2
ν2

+
µ2,2

2
ln

s2
µ2,2/2

+
ν2,3
2

ln
s2

ν2,3/2

)
exp
(
O(σ1/2(s+ t))

)
=

1

2s2
exp

[
(2s− t) ln

s

2s− t
+ (t− s) ln

s

t− s
+O

(
σ1/2(s+ t)

)]
. (2.36)
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Turn to the first line of (2.29). Using (2a − 1)!! ≤ 2aa!, and (2.28), (2.34),
we get

(2ν2 − 1)!! (2ν3 − 1)!! ν2,3!µ2! ≤ 2ν2+ν3ν2! ν2,3! ν3!µ2! ≤ 2ν2+ν3µ1!µ2!

= 2µ1µ1!µ2! exp
(
O(σ(s+ t))

)
. (2.37)

Putting together (2.29), (2.32), (2.36) and (2.37), we conclude that the num-
ber of subgraphs G∗(S ] (T \ T1)) with parameters µ, ν is bounded by

µ1!µ2!

2s2+t2−µ1
exp

[
H(s, t) +O

(
σ1/2(s+ t)

)]
, (2.38)

where
H(s, t) = (2s− t) ln

s

2s− t
+ (t− s) ln

s

t− s
. (2.39)

We emphasize that the remainder term estimate is uniform over the range of
the parameters ξ, ν.

Let us compare the bounds (2.27) and (2.38). We have

2−s2−t2−µ1 (2µ1+µ2)!
µ1!

2−s2−t2+µ1 µ1!µ2!
= 2−2µ1

(
2µ1 + µ2

µ1, µ1, µ2

)
.

Using

µ1 = 2s− t+O
(
σ(s+ t)

)
, µ2 = 2(t− s) +O

(
σ(s+ t)

)
,

(cf. (2.34), (2.35)), and the Lemma condition on 2s− t, t− s, it is simple to
show that the last expession is

exp
[
2H(s, t) +O

(
σ1/2(s+ t)

)]
.

Thus the bound (2.38) can be written as

N1(s, t) exp
[
−2H(s, t) +O

(
σ1/2(s+ t)

)]
. (2.40)

The bound (2.40) implies (2.20), since the factor (s+ t)2 is an upper bound
for the number of solutions (ν2, ν2,3, ν3, µ2,2, µ3,2) of (2.28).

Let G∗∗(S∪T ) denote G∗(S∪(T \T1)) adorned with t1 pendant T1-vertices
attached to some t1 S-vertices. That is, G∗∗(S ∪ T ) is G(S ∪ T ) without the
edges joining T -vertices to each other.
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Given two disjoint sets S and T , let N(s, t, ξ) denote the total number
of graphs G∗∗(S ∪ T ) with |S2| = s2, |T1| = t1, |T2| = t2 and the parameters
ξ1, ξ2. The number of ways to select T1 ⊂ T of cardinality t1 and then to
match the vertices of T1 with some t1 vertices in S is t1!

(
s
t1

)(
t
t1

)
. The number

of ways to select S2 ⊂ S of cardinality s2 and to select T2 ⊂ T \ T1 of
cardinality t2 is

(
s
s2

)(
t−t1
t2

)
, at most. (We neglect the constraint that S2 needs

to be a subset of the set of S-partners of T1-vertices.) The total count of
possibilities is bounded by the product of those two.

Lemma 2.4. In the notations of Lemma 2.3,

(i)

N(s, t, ξ)) ≤ t1!

(
s

t1

)(
t

t1

)(
s

s2

)(
t− t1
t2

)
N1(s, t, ξ); (2.41)

(ii) if σ is small enough, and

(1 + σ1/2) s ≤ t ≤ 2(1− σ1/2) s,

then

N(s, t, ξ) ≤ t1!

(
s

t1

)(
t

t1

)(
s

s2

)(
t− t1
t2

)
N2(s, t, ξ). (2.42)

Motivated by Lemma 2.1 and Lemma 2.2, in the next section we will
focus on subgraphs of G(3)(m,n) of size not exceeding n1−o(1), showing as
promised above that the likely edge density of such subgraphs is asymptotic
to 1. It will remain to prove in the last section that whp there are no Pósa
sets S, T of low edge density, with s + t = O

(
n1−o(1)). Lemma 2.4 will be a

key ingredient of that argument.

3 Edge density of subgraphs of G(3)(n,m).

Let m = Θ(n) and let c := 2m/n satisfy c ≥ 3/2 + κ, κ > 0 being fixed and
arbitrarily small. For such a c, an equation

xf2(x)

f3(x)
= c,

(
fk(x) :=

∑
j≥k

xj

j!

)
, (3.1)
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has a unique positive root λ, bounded away from both 0 and ∞ for all n.

Lemma 3.1. Assume that 3/2 < m/n = O(1).

(i) For ε0 = (1/3) ln−1
[
27f3(8λ)/210λf2(λ)

]
,

P
(
∃A ⊂ [n], |A| ≤ ε0 lnn : e(A) > |A|

)
→ 0. (3.2)

Consequently, whp there does not exist an endpoint set S of size below
ε0 lnn.

(ii) Let σn → 0, but (σn lnn)/ ln lnn → ∞, and let ρn = (σn lnn)−1/2, so
that ρn → 0. Then

P
(
∃A ⊂ [n], ε0 lnn ≤ |A| ≤ n1−ρn : e(A) ≥ (1 + σn)|A|

)
→ 0. (3.3)

In words, with high probability, the edge density of subgraphs induced
by sets A, of size from ε0 lnn to n1−o(1), is 1 + o(1) at most.

Proof of Lemma 3.1. Our random graph G(3)(n,m) is distributed
uniformly on the set of all C(n,m) graphs of minimum degree at least 3,
with m edges and n vertices. From a more general result in Pittel and
Wormald [22], for c > 3/2 we have: for n→∞,

C(n,m) ∼ (2πnVar[Z])−1/2(2m− 1)!!
f3(λ)n

λ2m
exp
(
−η − η2/2

)
; (3.4)

here λ is the root of (3.1), and Z is Poisson(λ) conditioned on being at least
3. Probabilistically, (3.1) says that E[Z] = 2m/n. Also η := c−1E

[(
Z
2

)]
.

Constant factors aside, the claim is that

C(n,m) = Θ

(
n−1/2(2m− 1)!!

f3(λ)n

λ2m

)
. (3.5)

Let d1, . . . , dn ≥ 3, meeting
∑

i di = 2m, be such that there exists a
graph with the degree sequence d = (d1, . . . , dn); we call such d graphical.
Existence of graphical d’s for large n,m is a weak consequence of (3.5). Let
g(d) denote the total number of graphs for a graphical d. Introduce Gd, a
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random graph distributed uniformly on the set of all g(d) graphs of a given
graphical d; obviously, Gd equals, in distribution, G(3)3(n,m), conditioned
on {d(G(3)(n,m)) = d}. To handle Gd we use a random pairing model, see
Bollobás [4], defined as follows.

Introduce a partition of [2m] into n disjoint subsets Q1, . . . , Qn, |Qi| = di,
and a set Ω of all (2m− 1)!! pairings ω of 2m points in [2m]. Each ω induces
a unique multigraph: a pair (u, v) ∈ ω with u, v ∈ Qi becomes a loop at
vertex i; a pair (u, v) ∈ ω with u ∈ Qi, v ∈ Qj becomes an edge (i, j). Let
ω be random, distributed uniformly on Ω. Let MGd = MGd(ω) denote the
random multigraph induced by ω. And let Ωg(d) be the set of all graphical
ω’s, those for which MGd(ω) is a simple graph, i.e. has neither loops nor
multiple edges. Then MGd(ω), conditioned on ω ∈ Ωg(d), coincides, in
distribution, with Gd. This implies that, for any graph property G,

P(Gd ∈ G) =
P
(
{MGd ∈ G} ∩ Ωg(d)

)
P(Ωg(d))

≤
P
(
MGd ∈ G

)
P(Ωg(d))

.

Crucially,

g(d) =
(2m− 1)!!∏

i

di!
P(Ωg(d)), (3.6)

[4]. We conclude that

P(G(3)(n,m) ∈ G) =C(n,m)−1
∑
d

P(Gd ∈ G)g(d)

≤ (2m− 1)!!

C(n,m)

∑
d

P(MGd ∈ G)
∏
i∈[n]

(1/di!);

the sums are over all admissible graphical d. So, by (3.5), uniformly for all
graph properties G,

P(G(3)(n,m) ∈ G) ≤b n1/2 λ2m

f3(λ)n

∑
d

P(MGd ∈ G)
∏
i∈[n]

(1/di!). (3.7)

(For brevity, we write A ≤b B when A = O(B) uniformly over parameters
involved, and B is too long to compose nicely with the big O notation.) This
bound is perfectly tailored for G’s implicit in (3.2) and (3.3).

Part (i): Denote the probability in (3.2) by Pn1. Suppose that for some ω
and Q = Q(ω) ⊆ [n], |Q| ≤ ε0 lnn, the sub(multi)graph of MGd(ω) induced

19



by Q has more edges than vertices. Then there exists k = k(ω) ∈ [2, ε0 lnn]
and point sets Qi1 , . . . , Qik such that the pairing ω contains (k + 1) pairs of
points from Qi1 ∪ · · · ∪Qik .

Combining (3.7) and the union bound, we have then

Pn1 ≤b n1/2 λ2m

f3(λ)n

∑
4≤k≤ε0 lnn

(
n

k

)(
2(k + 1)− 1

)
!!
(
2(m− k − 1)− 1)!!

(2m− 1)!!

×
∑
d

(
d1:k

2(k + 1)

) n∏
i=1

1

di!
, (3.8)

d1:k := d1 + · · ·+ dk.
Using a bound

∑
δ1+···+δj=δ

δi≥3

j∏
i=1

1

δi!
= [yδ] f3(y)j ≤ f3(y)j

yδ
, ∀ y > 0. (3.9)

the second line sum in (3.8) can be bounded

∑
3k≤d≤2m

(
d

2(k + 1)

) ∑
d1+···+dk=d

di≥3

k∏
i=1

1

di!

∑
dk+1+···+dn=2m−d

di≥3

n∏
i=k+1

1

di!

≤b
∑

3k≤d≤2m

(
d

2(k + 1)

)
f3(x)k

xd
f3(λ)n−k

λ2m−d
,

for every x > 0. The ratio of two consecutive terms in the last sum is

d+ 1

d− 2k − 1

λ

x
≤ 3k + 1

k − 1

λ

x
≤ 7

λ

x
=

7

8
< 1,

if
x = 8λ.

So the sum is of order (
3k

2(k + 1)

)
f3(8λ)k

(8λ)3k
f3(λ)n−k

λ2m−3k
.
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Using this bound,
(
n
k

)
≤ nk/k!, 2m/n = λf2(λ)/f3(λ), and

(
2(k + 1)− 1

)
!! =

(
2(k + 1)

)
!

2k+1(k + 1)!
,

we easily transform (3.8) into

Pn1 ≤b m−1/2
∑

k≤ε0 lnn

k (3k)!

2k(k!)3

[
n

2m

λ3

(8λ)3
f3(8λ)

f3(λ)

]k
≤b n−1/2

∑
k≤ε0 lnn

k

[
27

210

f3(8λ)

λf2(λ)

]k
→ 0, (3.10)

as

ε0 = (1/3) ln−1
[

27 f3(8λ)

210 λf2(λ)

]
.

Part (ii): Let Pn2 be the probability in (3.3). This time we need to bound
the probability that there exists A ⊂ [n], of cardinality k ∈ [ε0 lnn, n1−ρn ]
that has at least ` = `(k) = d(1 + σn)ke edges. The counterpart of (3.8) is

Pn2 ≤b n1/2 λ2m

f3(λ)n

∑
ε0 lnn≤k≤n1−ρn

(
n

k

)(
2`− 1

)
!!
(
2(m− `)− 1)!!

(2m− 1)!!

×
∑
d

(
d1:k
2`

) n∏
i=1

1

di!
. (3.11)

The bottom sum is bounded by a sum∑
3k≤d≤2m

(
d

2`

)
f3(x)k

xd
f3(λ)n−k

λ2m−d
,

with the consecutive terms ratio bounded by 3.01λ/x ≤ 0.76, if x = 4λ. So,
like (3.10),

Pn2 ≤b n1/2
∑

ε0 lnn≤k≤n1−ρn

(
n

k

)(
2`− 1

)
!!
(
2(m− `)− 1)!!

(2m− 1)!!

×
(

3k

2`

)
γk, γ := 4−3

f3(4λ)

f3(λ)
.

(3.12)
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Here (
3k

2`

)
≤
(

3k

2k

)
≤b
(

33

22

)k
,

and (
2`− 1

)
!!
(
2(m− `)− 1)!!

(2m− 1)!!
=

(
m
`

)(
2m
2`

) ≤ (m
`

)−1
.

Using the last two bounds and(
n

k

)
≤
(en
k

)k
, m−1/2

(m
`

)`
≤b
(
m

`

)
,

we simplify (3.12) to

Pn2 ≤b n
∑

ε0 lnn≤k≤n1−ρn

(n
k

)k (m
`

)−`
γk1 , γ1 := e 33 2−2 γ.

Here, since ` ≥ (1 + σn)k,

(n
k

)k (m
`

)−`
γk1 ≤

(n
k

)k ( n

k(1 + σn)

)−k(1+σn)
γk1

≤
(n
k

)−kσn
·
[
(1 + σn)−(1+σn)

]k
γk1 .

The last expression is decreasing for k ≤ n1−ρn , because its logarithmic
derivative is

− σn ln
n

k
+ σn − (1 + σn) ln(1 + σn) + ln γ1

≤ −σn ln
n

k
+ ln γ1 ≤ −σnρn lnn+ ln γ1

= −(σn lnn)1/2 + ln γ1 → −∞,

as σn lnn→∞. So

Pn2 ≤b exp
[
−ε0σn(lnn)2 +O

(
(lnn) ln lnn

)]
→ 0,

as σn lnn� ln lnn.
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4 Moderately large, sparse Pósa sets are un-

likely.

Let dmax = dmax(n,m) denote the largest vertex degree in G(3)(n,m). Then
let S, T be disjoint subsets of [n], of cardinalities s and t, with t < 2s. In view
of Lemma 3.1, part (i), we may and will confine ourselves to s+ t ≥ ε0 lnn.
Lemma 2.4 asserts two upper bounds for the total number of subgraphs
G∗∗(S ∪ T ) with parameters s, t and ξ. (See (2.15) for definition of ξ1 and
ξ2.) Let us bound the number of ways to extend this subgraph to a graph
on [n], of minimum degree 3 at least, with m edges.

Recall that the edge set of G∗∗(S ∪ T ) does not contain edges between
T -vertices. So any such extension of G∗∗(S ∪T ) is determined by an induced
subgraph G(Sc). Let di denote the degree of vertex i ∈ Sc in G(Sc). An
admissible d = {di}i∈Sc meets the conditions

di ≥

{
3, i ∈ Sc \ T,
3− i, i ∈ Ti, i = 1, 2, 3,

(4.1)

and ∑
i∈Sc

di = 2m− 2D, D := µ+ t1 = O(n1−ρn) = o(n). (4.2)

Then, by (2.21) and the definition of fk(y), the number of ways to extend a
given G∗∗(S ∪ T ) is bounded above by

(
2(m−D)− 1

)
!!

∑
d meets

(4.1)−(4.2)

∏
i∈Sc

1

di!

=
(
2(m−D)− 1

)
!! [y2(m−D)]

3∏
i=1

(∑
d≥3−i

yd

d!

)ti (∑
d≥3

yd

d!

)n−s−t

=
(
2(m−D)− 1

)
!! [y2(m−D)]

3∏
i=1

f3−i(y)ti · f3(y)n−s−t.
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By the Cauchy integral formula,

[y2(m−D)]
3∏
i=1

f3−i(y)ti · f3(y)n−s−t

=
1

2πi

∮
|y|=r

1

y2(m−D)+1

3∏
i=1

f3−i(y)ti · f3(y)n−s−t dy.

Here n− s− t ∼ n. Using |fk(y)| ≤ fk(|y|), an inequality ([21])

|f3(y)| ≤ f3(|y|) exp

(
−|y| − Re y

4

)
,

and selecting r = λ, we obtain∣∣∣∣∣∣∣
1

2πi

∮
|y|=r

1

y2(m−D)+1

3∏
i=1

f3−i(y)ti · f3(y)n−s−t dy

∣∣∣∣∣∣∣
≤b

1

λ2(m−D)

3∏
i=1

f3−i(λ)ti · f3(λ)n−s−t
∫ π

θ=−π
e−(n−o(n))λ(1−cos θ)/4dθ

≤b
1

n1/2λ2(m−D)

3∏
i=1

f3−i(λ)ti · f3(λ)n−s−t

And so the number of extensions of a given G∗∗(S ∪ T ) is of order

Next(s, t, ξ) :=

(
2(m−D)− 1

)
!!

n1/2λ2(m−D)

3∏
i=1

f3−i(λ)ti · f3(λ)n−s−t,

at most. Then, multiplying Next(s, t, ξ) by N1(s, t, ξ), the first bound given
in Lemma 2.4, we get an upper bound for the total number of graphs on [n]
with m edges, such that S∪T induces a subgraph G(S∪T ) with parameters
s, t,µ. Multiplying N(s, t, ξ)Next(s, t, ξ) by

(
n
s,t

)
≤ ns+t/s!t!, and dividing

by C(n,m), the total number of the (n,m)-graphs of minimum degree 3 at
least, we obtain a bound O

(
En,m(s, t, ξ)

)
for the expected number of Pósa
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subgraphs with parameters s, t,µ, where

En,m(s, t, ξ) = ns+t
(2µ1 + µ2)!

2µ1µ1!

(
2(m−D)− 1

)
!!

(2m− 1)!!
exp

[
O
(
σ(s+ t)

)]
× λ2D

2s2+t2f3(λ)s+t

3∏
i=1

f3−i(λ)ti

× 1

s! t!
t1!

(
s

t1

)(
t

t1

)(
s

s2

)(
t− t1
t2

)
. (4.3)

(See (2.14) and (2.28) for µ1, µ2 expressed through ξ1 and ξ2.) In view of
(2.6), (2.10), (2.11) and Lemma 3.1, part (ii), if we allow only s+ t ≤ n1−ρn ,
ρn → 0, which we do, we need to consider only s, t, ξ such that

0 ≤ s− t1 ≤ 2σn(s+ t), s3 + t3 ≤ 2σn(s+ t), ξ1 + ξ2 ≤ 2σn(s+ t), (4.4)

where σn → 0. (See Lemma 3.1 for a more precise definition of σn, ρn.) Our
remaining task is to show that the sum of En,m(s, t, ξ) over the admissible
(s, t, ξ) approaches zero.

To this end, let us first bound En,m(s, t, ξ) by a simpler E∗n,m(s, t, ξ) times

exp
(
o(s+ t)

)
. First, by (4.2) and (4.4), in the second line of (4.3)

λ2D

2s2+t2
f0(λ)t3 [f3(1)]s3+t3 =

λ2(s+t)

2t
exp
(
O(s3 + t3 + s− t1)

)
=
λ2(s+t)

2t
exp
(
O(σn(s+ t)

)
. (4.5)

Next, using

(2a− 1)!! =
(2a)!

2aa!
= Θ

[(
2a

e

)a]
,

we obtain that the second fraction in the first line of (4.3) is of order( e

2m

)D
(1−D/m)m−D = (2m)−D eO(D2/m)

= (2m)−t1−µ exp
(
O(n−ρn(s+ t))

)
=(2m)−(s+t+ξ/2) exp

(
O(n−ρn(s+ t))

)
, (4.6)

ξ := ξ1 + ξ2. Further, by (2.7), (2.16) and (2.17),

(2µ1 + µ2)!

2µ1µ1!
=

(2s+ ξ1)!

22s−t
[
s− t+ t1 + (ξ1 − ξ2)/2

]
!
exp
(
O(σn(s+ t))

)
. (4.7)
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Given ξ, the last fraction attains its maximum at ξ1 = ξ, ξ2 = 0, and it is

(2s+ ξ)!

22s−t(s− t+ t1 + ξ/2)!

=
(s+ t− t1)! (ξ/2)!

22s−t

(
2s+ ξ

s− t+ t1 + ξ/2, ξ/2, s+ t− t1

)
. (4.8)

The reason behind (4.8) is that the multinomial coefficients are amenable
to easy but sharp estimates. The factorial (s + t − t1)! combined with
(t1!/s! t!)

(
s
t1

)(
t
t1

)
in (4.3) will later produce another friendly trinomial co-

efficient.
Using an inequality(

a+ b+ c

a, b, c

)
≤ (a+ b+ c)a+b+c

aa bb cc
, (4.9)

the trinomial coefficient in (4.8) is bounded above by eH1(s,t,ξ), where

H1(s, t, ξ) = (s− t+ t1 + ξ/2) ln
2s+ ξ

s− t+ t1 + ξ/2

+ ξ/2 ln
2s+ ξ

ξ/2
+ (s+ t− t1) ln

2s+ ξ

s+ t− t1
. (4.10)

Consider the first summand. Notice that

s− t+ t1 + ξ/2 = 2s− t− (s− t1) + ξ/2 ≤ 2s− t+ ξ/2,

and 2s− t > 0. Suppose that 2s− t ≥ σ
1/2
n (s+ t). Then, as s− t1 and ξ are

of order O
(
σn(s+ t)

)
, the summand is

(2s− t) ln
2s

2s− t
+O

(
σ1/2
n (s+ t)

)
.

If 2s − t ≤ σ
1/2
n (s + t), then, as x ln(a/x) is increasing for x ≤ a/e, the

summand is bounded above crudely by

(2s− t+ ξ/2) ln
2s+ ξ

2s− t+ ξ/2
≤ 2σ1/2

n (s+ t) ln
3s

σ
1/2
n (s+ t)

≤ (2s− t) ln
2s

2s− t
+ 2σ1/2

n (ln(1/σn))(s+ t).
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Thus the summand is always

(2s− t) ln
2s

2s− t
+ 2σ1/2

n (ln(1/σn))(s+ t),

at most. For the second summand in (4.10),

ξ/2 ln
2s+ ξ

ξ/2
≤ σn(s+ t) ln

3s

σn(s+ t)
= O

(
σn(ln 1/σn)(s+ t)

)
.

The third summand in (4.10) is

t ln
2s

t
+O

(
σn(s+ t)).

Thus

H1(s, t, ξ) ≤ (2s− t) ln
2s

2s− t
+ t ln

2s

t
+O

(
σ1/2
n (ln(1/σn))(s+ t)

)
, (4.11)

uniformly for 2s− t > 0. The equation (4.7) becomes

(2µ1 + µ2)!

2µ1µ1!
≤ (s+ t− t1)! (ξ/2)!

22s−t

× exp

[
(2s− t) ln

2s

2s− t
+ t ln

2s

t

]
· exp

[
O
(
σ1/2
n (ln(1/σn))(s+ t)

]
. (4.12)

Collecting (4.5), (4.6) and (4.12), we conclude that

En,m(s, t, ξ) ≤ E∗n,m(s, t, ξ) exp
[
O
(
σ1/2
n (ln(1/σn))(s+ t)

]
,

where

E∗n,m(s, t, ξ) =
(ξ/2)!

mξ/2

ns+tλ2(s+t)f2(λ)sf1(λ)t−t1

(2m)s+tf3(λ)s+t 22s

× exp

[
(2s− t) ln

2s

2s− t
+ t ln

2s

t

]
× (s+ t− t1)!

s! t!
t1!

(
s

t1

)(
t

t1

)(
s

s2

)(
t− t1
t2

)
. (4.13)

Here, recalling again (4.4),

s3, t3 ≤ 2σn(s+ t), ξ ≤ 2σn(s+ t).
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Subject to this constraint, let us bound
∑

s2,t2,ξ
E∗n,m(s, t, ξ). First of all,

∑
ξ

(ξ/2)!

mξ/2
≤
∑
ξ

(
eξ

2m

)ξ/2
≤
∑
ξ≥0

(
eσn(s+ t)

m

)ξ/2
→ 1.

Secondly, ∑
s2+s3=s

s3≤2σn(s+t)

(
s

s2

)
=

∑
s3≤2σn(s+t)

(
s

s3

)

≤b
(

s

2σn(s+ t)

)
≤
(

es

2σn(s+ t)

)2σn(s+t)

= exp
[
O
(
σn(ln(2/σn))(s+ t)

)]
.

Likewise ∑
t2+t3=t−t1
t3≤2σn(s+t)

(
t− t1
t2

)
= exp

[
O
(
σn(ln(2/σn))(s+ t)

)]
.

Observing also that

(s+ t− t1)!
s! t!

t1!

(
s

t1

)(
t

t1

)
=

(
s+ t− t1

s− t1, t1, t− t1

)
,

we then have∑
s2,t2,ξ

E∗n,m(s, t, ξ) ≤ En,m(s, t, t1) exp
[
O
(
σn(ln(2/σn))(s+ t)

)]
,

where

En,m(s, t, t1) :=
ns+tλ2(s+t)f2(λ)sf1(λ)t−t1

(2m)s+tf3(λ)s+t 22s

× exp

[
(2s− t) ln

2s

2s− t
+ t ln

2s

t

]
·
(

s+ t− t1
s− t1, t1, t− t1

)
. (4.14)
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The trinomial coefficient in (4.14) is bounded above by

exp

[
(s− t1) ln

s+ t− t1
s− t1

+ t1 ln
s+ t− t1

t1
+ (t− t1) ln

s+ t− t1
t− t1

]
. (4.15)

Recall that

s− 2σn(s+ t) ≤ t1 ≤ s =⇒ 0 ≤ s− t1 ≤ 2σn(s+ t). (4.16)

Since

(s− t1) ln
s+ t− t1
s− t1

= (s− t1) ln
t

s− t1
+O

(
(s− t1)2/t

)
,

and x ln(t/x) is increasing for x < t/e, we obtain

(s− t1) ln
s+ t− t1
s− t1

≤ 2σn(s+ t) ln
t

2σn(s+ t)
+O

(
σ2
n(s+ t)

)
=O

(
σn ln(1/σn)(s+ t)

)
,

(4.17)

where σn ln(1/σn)→ 0, as σn → 0. Furthermore,

t1 ln
s+ t− t1

t1
= s ln

t

s
+O(σn(s+ t)). (4.18)

Turn to the last summand in (4.15). By (4.16),

0 ≤ t− t1 ≤ t− s+ 2σn(s+ t) < t− s+ 3σn(s+ t).

Further

(t− t1) ln
s+ t− t1
t− t1

= (t− t1) ln
t

t− t1
+O(s− t1)

= (t− t1) ln
t

t− t1
+O(σn(s+ t)).

Suppose that
t− s+ 3σn(s+ t) < t/e (4.19)

which is equivalent to

t <
s(1− 3σn)

1− e−1 + 3σn
.
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Then, for t > s,

(t− t1) ln
t

t− t1
≤
(
t− s+ 3σn(s+ t)

)
ln

t

t− s+ 3σn(s+ t)

≤(t− s) ln
t

t− s
+O

[
σn(s+ t) ln

t

σn(s+ t)

]
= (t− s) ln

t

t− s
+O(σn ln(1/σn)(s+ t)).

(4.20)

If t ≤ s, then (4.19)

(t− t1) ln
t

t− t1
≤
(
t− s+ 3σn(s+ t)

)
ln

t

t− s+ 3σn(s+ t)

≤ 3σn(s+ t) ln
t

3σn(s+ t)

=O(σn ln(1/σn)(s+ t)).

(4.21)

Suppose that

t ≥ s(1− 3σn)

1− e−1 + 3σn
.

Then t− s = Θ(s), and so

(t− t1) ln
t

t− t1
− (t− s) ln

t

t− s
= O

(
s− t1

)
= O

(
σn(s+ t)

)
. (4.22)

Combining (4.14)-(4.22), we obtain

En,m(s, t) :=
∑
t1

En,m(s, t, t1)

≤E∗n,m(s, t) exp
[
O
(
σn(ln 1/σn)(s+ t)

)]
,

(4.23)

where

E∗n,m(s, t) := t
ns+tλ2(s+t)

(2m)s+tf3(λ)s+t 22s
f2(λ)sf1(λ)t−s

× exp

[
(2s− t) ln

2s

2s− t
+ t ln

2s

t
+ s ln

t

s
+ (t− s)+ ln

t

(t− s)+

]
; (4.24)

here x+ := max{0, x}, and 0 ln(t/0) := 0. The exponent in (4.24) equals

2s ln 2 + (2s− t) ln
s

2s− t
+ (t− s) ln

s

t
+ (t− s)+ ln

t

(t− s)+
,
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and the term 2s ln 2 cancels with 22s in the denominator of the first line
fraction in (4.24).

The rest is a bit of calculus. Recalling that 2m/n = λf2(λ)/f3(λ), and
setting t = xs, we write

E∗n,m(s, t) = sxesH1(x),

where

H1(x) = (1 + x) lnλ− x ln f2(λ) + (x− 1) ln f1(λ)

+ (2− x) ln
1

2− x
+ (x− 1) ln

1

x
+ (x− 1)+ ln

x

(x− 1)+
.

Since

H ′1(x) =


ln

(
λf1(λ)

f2(λ)

2− x
x

)
+

1

x
, x < 1,

ln

(
λf1(λ)

f2(λ)

2− x
x− 1

)
, x ∈ (1, 2),

and λf1(λ)/f2(λ) > 2, we see that H1(x) is unimodal on (0, 2), and attains
its maximum at x∗ ∈ (1, 2)

x∗ =
1 + 2λf1(λ)/f2(λ)

1 + λf1(λ)/f2(λ)
,

and

H1(x
∗) = ln

[
λ2

f2(λ)

(
1 + λf1(λ)/f2(λ)

)]
(4.25)

Maple shows that the function on the RHS of (4.25) increases with λ and it
is zero at λ∗ = 5.162717.... At the first glance it would seem necessary to
put a constraint λ > λ∗ in order to claim that , for those λ’s, whp there are
no Pósa sets of cardinality |S|+ |T | ≤ n1−o(1).

We can do better though! Indeed, by the unimodality of H1(x),

max
{
H1(x) : x ∈ [0, 1 + σ−1/2n ] ∪ [2− 2σ1/2

n , 2]
}

= max
{
H1(1 + σ−1/2n ), H1(2− 2σ1/2

n )
}

= max

{
ln

λ2

f2(λ)
, ln

λ3f1(λ)

f2(λ)2

}
+O

(
σ1/2
n ln(1/σn)

)
= ln

λ3f1(λ)

f2(λ)2
+O

(
σ1/2
n ln(1/σn)

)
, (4.26)
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as λf1(λ)/f2(λ) > 2. As for x = t/s ∈ [1 + σ
1/2
n , 2 − 2σ

1/2
n ], we use (2.42)

instead of (2.41) and improve the bound (4.24) by the factor

(s+ t)2 exp

[
−(2s− t) ln

s

2s− t
− (t− s) ln

s

t− s
.

]
So we can re-define

E∗n,m(s, t) = s3x(1 + x)2esH2(x),

where
H2(x) = (1 + x) lnλ− x ln f2(λ) + (x− 1) ln f1(λ),

a linear function! Now

max{H2(x) : x ∈ [1, 2]} = H2(2) = ln
λ3f1(λ)

f2(λ)2
,

and this function decreases with λ.
Indeed, introducing F (λ) = λ/f1(λ) that decreases from 1 at 0+ to 0 at

∞, we have
λ3f1(λ)

f2(λ)2
=

λ3f1(λ)(
f1(λ)− λ

)2 = λ2
F (λ)(

1− F (λ)
)2 .

So

d

dλ

λ3f1(λ)

f2(λ)2
= 2λ

F (λ)(
1− F (λ)

)2 + λ2
1 + F (λ)(
1− F (λ)

)3 F ′(λ)(
using F ′(λ) =

1

f1(λ)
− λeλ

f1(λ)2
= λ−1

(
F (λ)− eλF (λ)2

))
=

λF (λ)(
1− F (λ)

)3 [3− F (λ)− eλF (λ)
(
1 + F (λ)

)]
=

λF (λ)(
1− F (λ)

)3
(eλ − 1)

D(λ);

here
D(λ) = (3− λ)e2λ − (6 + λ2)eλ + λ+ 3 =

∑
j≥4

djλ
j,

and
dj = 3 · 2j − j2j−1 − j(j − 1)− 6, j ≥ 4.
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By induction on j ≥ 4, dj < 0 for all j ≥ 4. Hence

d

dλ

λ3f1(λ)

f2(λ)2
< 0, ∀λ > 0.

Maple shows that λ3f1(λ)/f2(λ)2 attains value 1 at

λ∗∗ = 4.789771...

The corresponding average vertex degree

c∗∗ =
λ∗∗f2(λ

∗∗)

f3(λ∗∗)
= 5.323132...

It follows that for m ≥ 2.662n the expected number of the likely Pósa sets
(S, T ) of size |S|+ |T | ≤ n1−o(1) approaches zero as n,m→∞.

Remark 4.1. As a final remark, observe that within the constraints on the
G(S ∪ T ), the dominant contribution to the expected total number of sparse
Pósa sets (S, T ) comes from those with G(S ∪ T ) very close to either a cycle

on S or an alternating cycle on the bipartition S + T̂1, (|T̂1| = |S|), with the
|S| pendant T1-vertices each attached to its own S-vertex in both cases. It is
not difficult to get directly the asymptotic expected number of such extreme
subgraphs in our random graph, and it turns out to be essentially the same
as the current estimate.

What this likely means is that it is fruitless to search for another con-
straint on G(S ∪ T ) with a potential to further decrease λ∗∗ via a sharper
bound for the expected number of Pósa sets (S, T ).

Acknowledgment. We thank the editors and the referees for a very
high quality refereeing process that allowed us to improve readability of the
paper.

References

[1] M. Ajtai, J. Komlós and E. Szemerédi, First occurrence of Hamilton
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