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PROBABILISTIC ANALYSIS OF THE MULTIDIMENSIONAL
KNAPSACK PROBLEM*

M.E. DYER' anD A. M. FRIEZE?

We analyse the multi-constraint zero-one knapsack problem, under the assumption that all
coefficients are drawn from a uniform [0, 1] distribution and there are p = (1) constraints as
the number of variables grows. We show that results on the single-constraint problem can be
extended to this situation. Chiefly, we generalise a result of Lucker on the duality gap, and a
result of Goldberg,/Marchetti-Spaccamela on exact solvability. In the latter case, our methods
differ markedly from those for the single-constraint result.

L. Introduction. This paper is concerned with a probabilistic analysis of the
multidimensional 0-1 knapsack problem IP:

L
(1.1a) Maximise }, p,x,
j=1
subject to
n
(1.1b) Ew,jxjgb[. i=1,2,...,m,
J=1
(1.1¢) 0<x <1, 7= 12N,
(1.1d) x; integer, J=12,...,n.
Here py,..., p,, wy, ..., Wons byy ..., b, are all nonnegative real numbers.

In our random model we have
(1.2) Proeees Pas Wipae e o Wotn
are drawn independently from the uniform [0, 1] distribution, and
(1.3) b= Bin, i=1,2,...,m,

where 0 < B, < 1/2 are fixed, for i = 1,2, .. .. m.
The reason for assuming 8, < 1/2 in (1.3) is that a standard inequality (see Lemma
3.1) implies that

n

Lwy<(l+0())ns2, i=12...m, (as)
j=1

where an event E, occurs almost surely (as.)if lim, ,  Pr(E,)=1.!
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When m = 1 we have the 0-1 knapsack problem. This has been extensively studied
from a variety of viewpoints. Although it is an NP-Hard problem, there is a lot of
empirical evidence suggesting that randomly generated 0-1 knapsack problems are
usually easy to solve—see for example Balas and Zemel [1],

Recent theoretical results of Lueker [8] and Goldberg and Marchetti-Spaccamela [5]
lenc support to this.

There is empirical evidence that multi-dimensional knapsack problems with few
constraints are also easy to solve—see for example [7]. The main aim of this paper is to
extend the results of [5] and [8] to the case m > 1 but fixed and n - oo. The difficulty
in the generalization lies in the relative complexity of linear programming with one
constraint as against many, and of the geometry of two dimensions as against geometry
of an arbitrary number of dimensions. This necessitates somewhat different methods
from those of [5]. However, we believe that our methods are generally more natural
than those of [5], although we do not reproduce all of the results claimed there.

Let v;p denote the value of the optimal solution to IP.

We need to consider the linear programming relaxation LP = LP(b), b=
(by, by, ..., b,) obtained by ignoring (1.1d). We let tp = vy p(b) denote the value of
an optimal solution to this problem. (We write LP(b) as we will also need to consider
linezr programs with small changes to the b,'s.)

Our first result generalizes that of Lueker [8].

THEOREM 1.1.
(1.4) E(vip = vip) < a, log?n/n,
(1.5) Pr(vpp — vip > taylog?n/n) < (1 - a,)’,

jor some ‘constants’ aj,ay>0, 0 <a, <1 depending only on m and B =
min(B,,..., B,,) and positive integers t < —3log n/log(1 — a,).

Our second result generalizes that of Goldberg and Marchetti-Spaccamela [5]:

THEOREM 1.2.  Given € > O there is an algorithm A, which runs in time O(n9(-m-8))
and with probability at least 1 — ¢ solves IP exactly for some function d(e, m, 8) > 0.

We are also able to show, as in [5], that

THEOREM 1.3. Let MAXCH denote the maximum number of variables that have
different values in a pair of optimal solutions to IP and LP respectively.
Then Pr(MAXCH > tlogn) < (1 — a,)' for some a (m, f§) > 0, provided

6a,|
llog(?‘f—e),zZ(m-&-l) and rg—ﬁ.

The “constants™ a,, a,, a,. a4 that we construct vary rapidly with m.
1043, a3, Ay ¥ rapial

2. Preliminaries. In this section we introduce some notation and make some
preliminary observations. ' .

Let C =[0,1]"*! be the unit hypercube in R™*! Each variable x, is associated
with the point X;=(w, Wajveoos Wy i ;) € C and the points X = [.\',..,.: X,} are
drawn independently from the uniform distribution in C. We let the slack variahles for
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(1.1b) be denoted by x,.,,,..., x,,,,. Then X+, is the ith column of the (m + 1) X
(m + 1) identity matrix.

Using the continuity of the distribution of X (which relegates equalities to null
events) and the basic theory of linear programming with simple upper bounds (see for
example Chvatal (2), in particular Chapter 8), the optimal solution x° to LP(b) can be
assumed to have the following form: with probability 1 there is a unique set S ¢ Zim
= g}].ﬂf,t s+ m}, |S|=m, of basic indices and dual variables u?, u3,..., u® > 0
such thal

* m
(2.1a) B=p- Lulw,=0, jes,
im]

(p; is the reduced cost of x;)
(z'lb) ij >0 x} =1,
(2.1¢) P<0-x=0.

The values of x/°. J € § are then uniquely determined by (1.1b) with equality, as slacks
have been introduced.

Consider a point w = (w,,...,w,, p) € R™*! and let II = nowm) = (-uf,...,
—up,, 1). Then (2.1) can be rephrased as

(2.20) H-w=0

i\s, thg eq;ation of the unique hyperplane H(b) in R™*! determined by the origin and
s JE€S. ’

(2.2b) If X, is ‘above’ H(b) then x? = 1.

(2.2¢) If X, is ‘below’ H(b) then x? = 0.

LEMMA 2.1. Let II, S be as above and G=Cn{wII-w<0}). Lt N=(j:
X; € C,} in the optimal solution to (1.1). Then, conditional on the (random) sets S, N
and on the X,(I € S), the X, ) (J € N) are uniformly and independently distributed in C,.

PROOF. Let £ = (X, X3,..., X,) be the totality of coefficients to (1.1) excluding
by,..., b,,. Then clearly ¢ is drawn from a uniform distribution on the unit hypercube
C" in R(m*Dn

Now consider all ("2™) possible choices for S. For any such S, let / = Z, — S and
cqnsnder all the 2V!' assignments of 0 (lower bound) or 1 (upper bound) to the x;
(j €1I). The collection of such assignments over all S define all possible diﬂ‘eren{
(extended) bases to (1.1). There are clearly

e £ (5

j=0

such assignments in total.

Novs: tlfese r extended bases partition C” into r regions (some possibly empty) such
that within a given region R, the corresponding basis is feasible and optimal. Note
that, conditional on ¢ € R, ¢ is uniform on R. Now R is completely determined by a
set of (nonlinear) inequalities on the elements of ¢, corresponding to the linear

B s
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programming feasibility and optimality conditions for the basis. These conditions
depend only on S, N. Thus, conditional on § and N, £ € R for some particular region
R. Let u, be the dual variables corresponding to the basis for R, and note that these
are completely determined by the X, (I € S) through (2.1a). If x, is any nonbasic
variable assigned 0 in R (i.e. # € N), it follows that the only defining condition for R
involving X, is the optimality condition (2.1c), i.e. X, € C,. (Note that the feasibility
conditions do not involve the X, € C,.) Conditional on the u,, and hence only on the
X, (1 € S), this is a simple linear inequality on X,.

Thus, conditional on § € R and on its particular components X, (/€ §), X, is
uniform on C, and independent of all other X,. This condition is clearly identical to
that of the Lemma. =

Finally in this section we note that the dual to LP(b) is

m n
DLP(b):  minimise ¥ by, + ¥ v,

i=1 j=1

m
subjectto Y w u, +u,>p, j=12,....n

i=1

u,.u,;O, i=1,2,....m, j=12,...,n.

By inspection, we see that
m
b= max(O, p- X w,ju,)
i=1

in an optimum solution, and so only u,, u,,..., u,, need be given for a solution to be
defined.

3. Proof of Theorem 1.1. This section is devoted to the proof of Theorem 1.1.
Let us first define

(3.1a) B=min(B,....8,), B=max{B,....8,) <1/2,
(3.1b) a=9(m+ 5)/B™, k=|aB™logn/4|,
(3.1¢) bi=b-kBs2, i=12,...,m.

These definitions are placed here for ease of reference.
The following lemma is extremely useful in proving that sums of random variables
“behave as expected”. It is implicit in Theorem 1 of Hoeffding [6).

_LeMMA 3.1. Ler X,€(0,1), i =1,2,...,n be independent random variables. Let
X=(X;+ X+ - +X,)/nand let p = E(X) < }. Then

(3.2a) Pr(X<(1-e)n)get™™, o0<gegl,
(3.2b) P(X>(1+e)p)set™, 0O0<e<l. u
The proof of Theorem 1.1 goes along these lines: we solve LP(b), b as in (3.1c). We

round down this solution to obtain a solution to LP(b”) for some b”, We then try to
select some variables T, currently at zero, which we can increase to one. As the
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following lemma shows, we need to find T so that (i) the variables in T have small
reduced costs, (ii) their addition makes the binding constraints nearly tight.

LeMMA 3.2. Letxp,..., x} be the optimal basic solution to LP(b') and let u, ..., u*
define an optimal solution to DLP(b’)

Let S be the optimal set of basic variables and let N = (j € Z, — S: x? = 0). Let N'
be Z, — (N U S), which equals { j &€ Z,;: x| ,‘quh probability l Let p; be as defined in
. la), but with O superscripts replaced by *'s.

For TS N let

B=b- ¥ w, i=12.m
JeN'UT

Let Vp=T o nOTP; = the value of the solution to IP obtained by putting x =1 for
J € N’ UT, and zero otherwise.

Note that this is feasible if and only if 8, > 0 fori = 1,2,..., m. If M* {i: ur >0}
then

(3.3) Vi> Vip(b) + j):rﬁ,- (1+1//n) X 8/8.

ieM*

Proor. Note first that by basic theory of linear programming, if b’ =L, cnw
i=12,...,m, then setung x;=1for jeN and x,=0 for j& V N’ solves
LP(b”). Further, u,..., u% defines an optimal solution to DLP(b") also Thus

Vr=Ve®)+ ¥ p,
JjeT

= VLP(V) + Z Py = Z|Wu“l') + f: u E L7}

jer i=1  jeT

= V() + ¥ p, + Zu,(b—b,"—&)

JjeT i=1
> V) + T - 2 u's,
jeT i=l

using the fact that u?,..., u$ is a subgradient of ¥, at b".
Now

m
VieW) = ¥ bjur+ LoP <n

ieM* j=1
and so for n large

) ,
34 (1 - —) s <1
( ) zﬁ B,EZMou' s

which is weakened to

to yield (3.3). =
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We must now show that a suitable T can be found with high enough probability. For
positive integer ¢ < L, where L = l(log n)?|,

S,=Cn {(wl,....w,,, p) ~p+ léu,‘w,e {(e - 1)6,!8]}

where 8 = a log n/n (see 3.1b) and u* is as in Lemma 3.2
The sets S, form parallel ‘slabs’ of ‘vertical’ thickness & lying underneath the
hyperplane H(b’).

LeMMA 3.3. (a) For positive integer 1, let E, denote the following event:
AT: |T| = k (see 3.1b) such that

(3.58) jET-X€ES,

(3.5b) Yw,ele-0,c]l, i=12...,m, where
JjeT

m+1 1/m
oz(n‘/%a)((ﬂk);k ”’) . a=L5f(1-28(1 + 1/n)) and

c=b-b', ieM*
=b,- b, i€ M.
Then
Pr lr_‘]lzf) ( 1 1:2;‘(;_)) ) o(1/n*) forlsrtsL.
(b) If E, occurs then, for large n,
Vip = Vip < 2187"(m + 5)*t(log n)*/n.
PROOF. (a) We first show that, for n large,
m
(3.6) Prl Y ur<1-2801+ 1/n'/’)) = 0(1/n*).
i=l

Let o=XLur. If s <1let C*=Cn {(w, p): p> o). Clearly Vo(C*)=1~0
and X; € C* implies p, — IiL ,u*w,; > 0. Hence

3.7 X,eC* impliesx*=1, ifo<l.

Letnow C;'= C N {(w, p): p>s/Vn) fors=1,2,...,/n — 1. We show that, for n
large,

(3.8) Pr(Els,i: T w1 —e)(nsf )/2) = 0(1/n%)

xec

where ¢ = 1/2n'/%,
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Now since C*2 C;* for s > a/n we find that (3.6) follows from (3.7), (3.8).
To see this note that (3.7) and (3.8) imply

Bn> ¥ w,>(1- ‘)(" - ["‘/'?]‘/;)/2

%€ oy

and (3.6) follows for large n.
. To prove (3.8) consider a fixed s, i. We define the random variables Y,i=12...,n
Y

Y=w, if X,€C},

=0 otherwise.
Now E(Y)) =(1 - s/ Vn)/2 and so applying Lemma 3.1
n

Pr| ¥ Y,<(1-¢)(n-svn)/2 < exp(—(n = sy )e?/4)

=1

< e A= o(1/n').

Next let
B={(w,....w,):acw<(1-1//n)Bfori= 1,2,...,m}.

Let §, = {((w,,..., W, p) € 8 (w,...,w,) € B).
We note first that if w € B, (3.4) holds and I/ ,u* > 1 — 28(1 + 1/n'/%) then

(3.9a) [Zlu,’w, -8, Yurw, - (t-1)8|c[0,1] forlsr<L.
i- i=1

ghl’llfh each point of s‘, is part of a vertical line segment of length & contained entirely in
. Thus

(3.96) Vol(S)) > (B’ - a)™8, where B’ = (1 - 1/Vn).

We now use (3.9) to show that
(3.10) Pr(31 < ¢ < L such that |{ j: X, €5,)| < (Balog n/2)) = 0(1/n*).

Unfortunately, because of conditioning problems, we cannot say immediately, Pr( X, €
S;) = Vol(S,) and apply Lemma 3.1. We are instead forced to prove (3.10) forlall
po::lblefpo:tgls of the plane H(b').
ow for fixed S ¢ Z,,,, let H(S) = {(w, p): p = L™ u,w,) denote t

through the origin and (X;: j€S). Let A( g ; b,; the tlew.'en‘t & he hyperplane

() w,...,u,20.

(i) (1 = 1/2Vn)BLu, < 1.

(i) T yu, > 1 — 28(1 + 1/n'/%),

If A(S) occurs, then (3.9) holds, and we define the sets T}, Ty,..., T, T,... as we
defined S,, S,,..., §), $,,... above. This time there is no conditioning on the points
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not in S and so for a given ¢ we have, by Lemma 3.1 with ¢ = 1/2

a1 p(l(j: X, e T)|
< (B - a)"8(n — m)/2) < exp(= (B’ = a)"8(n — m)/8)
< exp(—(m + S)log n) for n large.

By summing over all possible values for S and ¢ = 1,2,..., L we obtain (3.10).

Suppose now W, € R" is defined by X, = (W), p;) for j = 1,2,..., n. Then because
the whole of S, projects down onto a rectangular region B in the hyperplane p =0
and because of Lemma 2.1 we know that

(3.12) (w: x,e5)

are independently and uniformly distributed over B.
We will therefore restrict our attention to X, € S, in our search for T satisfying
(3.5). We now define

W)= (“’tj_ 1B+ a)V12 /(B - ) for X, € S,.

Then by (3.12) the w/; are independent and uniformly distributed in [ v3,V3] and
hence have mean 0 and variance 1. This will allow us to use Lemma 3.4 below.

Now let N, denote some set of 2k indices j with X, € §,. By (3.10) we can find such
a set for all ¢ = 1,2,..., L with probability exceeding 1 — O(1/n*).

Conditional on this we show that independently, for t = 1,2,..., L,

(3.13) Pr(aK, € N, such that
() IK,| =k,

where

) 1+ 0(1)

i w.€[c/-8,c)fori=1,2,....,.m| 2 ——————
()Z ij [l 4] 1+(2/‘/3—)

iEKI

= (e $(8 + ) and

(m+1)72\1/m
4= B',/?a0=(("k)4,‘ ) VZ.

Note that
lef) < B'/%max(m,ak/z) = o(1)

as m is constant. But (3.13) follows directly from the following Lemma. It generalizes a
lemma of Lueker [8]. The proof is rather long and messy and is given in an appendix.

LemMa 34. Let Y, i=1,...,m, j=1,...,2k be independent, identically dis-
tributed random variables in the range | —a, a). Let E(Y,,) = 0 and Va(Y,,) = 1 and
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suppose Y\, has a continuous density g satisfying g(x) € M. Given m intervals I, =
[A, ~ 0, A, + 0] where 6 = ((ﬂk)(""'l)ﬂ/"h)l/m/jzi and A; = O(k®) where a < 1‘/2

Pr(SKg (L2,....2k}: |[K|=k, ¥ Y,el,i= 1'2,“_"") > 1+0(1) _
jeK 1+ (2/V3)
assuming k — 0. ®

(’lt‘)he proof of (a) is now complete,
) If E, occurs then, in the notation of Lemma 3.2, we consider th i =
if and onl;r it j € N U T. We then have reider the solution x, = 1

y W, € [b-0,5], i€ M,
sawor (b= (6 = br) - 8,6,- (5 - b7)], i Mo,
We then have only to substitute the following inequalities into (3.3) to obtain the result
p>-8, jeT,
8,<0, iEM*. n

The Qroof ‘of Theorem 1.1 Is essentially complete. (1.5) follows from Lemma 3.3 and
(14)isa consequence of (1.5).

4. Proof of ﬂ!e Theorers 1.2 and 1.3, In this section we prove Theorems 1.2 and
L.3. In the following a,, dy are as in (1.5). Let us first describe

Algorithm A "

(0) ‘°:=[W%]+l‘

(1) Solve LP(b);
let x* denote the optimal basic feasible solution;
let§,=(je v, x? =i}, i=0o0r1and
S=(jeV, x; is basic}. o
(Note that S = Z,,' = (Sp U §,) with probability one.) -
xIE)seeLe(tz .IT;’.E (J € Vi 1B < toa,((log n)2/n)) where P; is the reduced cost of
(3) Foreach Y g ¥, satisfying

(4.1a) T=(Yns)u(s,-v)cT,
(4.1b) ¥ 15 < tea, ("’g")z.
JET n

check feasibility i.e. check if © eyW &b, i=1,....m

(.4) 'lf Step 3 finds any feasible solutions, let ¥ be the one found with the largest
objective value, and let I be this value,

If

- P2 Vie - ‘o“z((losn)z/n)

then output ¥ is optimal
else output 7 is approximate.
END
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We must show that if Step 4 claims Y to be optimal, then it is, and that this occurs
with probability exceeding 1 — e. Also we must show that the algorithm runs in

polynomial time.
Thus let us consider any feasible solution x to IP and let Y = {j € V,;: x;=1).

Basic linear programming theory gives that

Z 1783 Vie - Z 12l
jey JE(YOS)U(S - V)
We thus have
(log n)?
Lp<Ve- fo“z__s,, )
jey

unless (4.1) holds.
Thus if Step 4 declares Y to be optimal, it is.
Now Theorem 1.1 shows that

2
Pl’( VLP - VlP p-1 loaz'(—lo‘an—nl) < ((l - a,)

and so the probability that A, fails to find the optimal solution is no more than
A - ay)e.

We must now consider A,’s execution time. Thus let W = {Y ¢ V,: (4.1) holds}). We
show next that :

4.2) Pr(|W| 2 ndole-m-B) = O(1/n)

for some dy(e, m, 8) > 0.

Let a = (m + 2)/(3log(3/¢)) and & = a log n/n.

Let the S, for integer ¢ (positive or negative) be defined relative to H(b) as they were
relative to H(b’) prior to Lemma 3.3. Foreach t let N,= {j € Z: X, ; € S,}. We prove

4.3) Pr(3¢: |1) < (toa,logn)/a + 1and |N| > 3alogn) = O(1/n).

Because of conditioning problems, we have to proceed as in the proof of (3.10) and

consider all O(n™) possible sets of basic variables and their associated hyperplanes.
So let us fix a set of m basic variables S, the hyperplane H through X: jeSand

integer ¢ and the set S, defined relative to H.
By projecting S, down onto the face p = 0 of C we see that Vol(S,) < 8. Thus

n—m
Pr(JN| = 3alogn) < ([3a tog n] )slinlognl
ned flatogn]
< ( [3alogn] )
= o(,,-(»n-z)).

(4.3) follows immediately.
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We now follow the general line of the argument of (5). Let

2-1
RIE' U sr#l.

re2-1

2-1
R-l= U S_,' i= 1'2"-""mu“082(’oaz logn/a)" and

re-!
Ro = So V) Sl‘

For a given T in (4.1a) there are at most 2" sets Y € Z, giving this 7. As m is con-
stant we need only estimate the number of T satisfying (4.1b). So assume (4.1b)
holds and let n,=){je T X, € R;}| Then (4.1b) implies n, < a,, where a
= [2""’!00, log n/af]ori + 0.

Let now B, = |3 x 2"~! x a log n|. Then it follows from (4.3) that

. ‘mﬂ
(4.9) Pr(lWI;» 2~+”°rgA%) = 0(1/n) where
-

24 for 2%'-Y < 40a,/a2,
A ha
o E (ﬁ,) otherwise.

r=0 r

H&e we are éstimating |W| by the product of the number of subsets of R, i €ip,,,
which have cardinality no more than a,.

In the second alternative, denoted by i > iy say, a, < (8; + 1)/3 which implies
A g ( A ) for n large. Thus

a+l

:’_ﬁ:"’: < 2% “ﬁ ((Bie)/(a, + 1))*eh

’“l
< zwfoﬂ: log n n (3014" Ie/azfo)zﬂ' “'tyaylog n/a+ 1)

i=ig
= o(nd.(t.m.ﬁ))

for some dy(e, m, B), as ﬁo(i/2') converges and i, = O(loglogn). This implies
4.2).

Our model of computation is a real RAM as in, for example, {3), so it should be clear
from the proof of (4.3) that Step 3 runs in polynomial time with probability 1 — O(1/n).
We of course have the option of stopping after cn*"-M sybsets, for some suitable

constant c, have been enumerated, if we have not exhausted W.

The probability that A, fails to solve IP is then ¢(1 - a,) + O(1/n) and Theorem
1.2 follows. m

Since m is fixed, Step 2 can be executed in O(n) time—see Dyer [3).
We turn now to the proof of Theorem 1.3 Consider the solution to LP(b). Let
T={j €V, |5 <logn/n). Then

(4.5) MAXCH < (Vip — Vip)n/logn + |T)
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where the first term bounds the number of ‘changes outside 7* and the second term

bounds the number of changes inside 7.
Now Theorem 1.1 yields

2
t (logn t/2a
(4.6) P"(VLP - Vp2 7(—3,,—')_) <(1-a))"™

and using the same technique as was used to prove (3.9) and (4.3) we have

- tlogn/2-ml
o o> 29 ol 1) g 22

n/2-mj —m
ne )ltlog 72 2103")|ll°|n/2 |
= 0| n"| ———— ——
tlozgn —m n

= O(n'"'('n)"’“('/“’(t/4e)m).
The result now follows from (4.5), (4.6) and (4.7). =
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Appendix 1.

il d density functions of
PROOF OF LEMMA 3.4. Let G,, g, denote the probability an
the l:um of k independent Y, 's. Define G(x) = G(xvk) and g(x) = g(xvk Wk. For
Kc(1.2,....2k), |K| = k, let

Se=1 it LY,€l, i=1..m,
jek

=0 otherwise.

Let Z = X, 8,. We use the following standard inequality to prove the lemma

(A1) Pr(Z > 0) > E(Z)'/E(Z?).
Then
B(2) = (%) [1(G4(4,+ 6) - Gu(4, - )
- ()(a*F) - (427
= (% )fl. ',(%) : %_f— for some 4 € I, (Rolle’s Theorem)
- (G (e[ #) + ol )
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(where ¢(x) = e“'/’/ V2w and we have used Theorem XVI1.2.1 of Feller [4])

- (2,"‘)('52’%?)"(1 +0(1)) since 4] = o(vk).

Nextlet S, = (i,i+1,...,i+k—-1),i=12,... , k+1
Then

E(Z%) = ZZE(sxax')
X K
kY %
= (iﬂié%zﬁfls(ssﬁsm)'
k

Case1. r=0: E(8]) = E(5;) = (26/ V2Znk)™(1 + o(1)).

Case2. rzl:letly =L Y, V= Ef-m}',-,- and W, = zfjiﬂyu. Then

£« [1([o 0G4~ v+ 0) - 604~ v o ay,

4011 [ g1-(V)g,(4; - V) v,

where 4] € [A, - 6, A, + 0] by Rolle’s Theorém.

Now g(x) € M (Vx) implies g,(x) < M (¥x, 1). This can be i i
L 1) proved by induction.
We thus have E(858;, ) < 4™8°"M*™. For |r - k/2| < /k log k, we choose 1/2 < 8

<'1 and consider

L]
f 8--(V)8,(4] - V,)’dv,=f-*’+ f”
- L

Now
0 ) k~r
/;' <M?Pr IEIYIIZ,(B)

< Mlexp{—(1 + 0(1))k %! /a?},

=o0(k™*) foranys > 0,since 8 > 1/2,

using Theorem 2 of Hoeffding [6), with

ne(k=r)=t(1+0(1), pe=0, t«kP/(k-r). a,« —a, b,—a

00
+ f , inan obvious notation.
f
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The same inequality holds for fZ%;.
LT B RN TR
f-—k"-f-k”gk—’(\lk-") —r B\ T

R O R

using Feller [4] as before

1 e 1 124
= (ffk»’/z—?e""(‘ 2(k - r))

=

- o= el 17
(- aflr = ))2 " 7% 'A'z)) v o(kH))
- w3
‘(V: - A;/(I + 2(,(—"_'_)-))2) av, + O(kp"))

- G (ff{ s + 2) + o)
o 1to()
Zﬂ‘/}(T__}_)'

1+0(1) . k
= ——ﬂ—k—‘E—- smcelr— 7| < vk log k.

Now Hoeffding {6] shows that

z M =1-o0(k"?), foranyp>0.
Jr—k/21< VK log k (k)

1t follows that
E(z%)=(1+ o(l))(—fr%)m(zk" ) + (%K) amormmrimo(-=)

+(1+ 0(1))(2,(")2(;‘%%)”(1 - o(1)).

The result now follows from (Al) after some algebra.
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