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Let the arc-lengths L; of a complete digraph on n vertices be independent uniform [0, 1] random
variables. We consider the patching algorithm of Karp and Steele for the travelling salesman
problem on such a digraph and give modifications which tighten the expected error. We extend
these ideas to the k-person travelling salesman problem and also consider the case where cities
can be visited more than once.
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1. Introduction

Let L= L;|| be an n x n real matrix. The travelling salesman problem (TSP) is that
of computing the minimum value of L;;,+ L+ -+ L;; over all permutations
iy, b2y ..., in0f V,={1,2,..., n}.Itis a very well studied NP-hard problem. (See [9].)

This paper considers random models of the problem and describes heuristics
which are very nearly optimal with very high probability.

The assignment problem (AP) is a closely related problem and can be described
as follows: let S, be the set of permutations of V,. For ce S, let L, =%, v, Liz(i)-
Then AP is defined to be

minimize L,

(1.1)

subjectto o€S,.

Let o* = o*(L) denote the optimal solution to (1.1) and A(L) = L,~ denote its value.
(In our random models the probability of alternate optima is zero.)

Now AP can be solved in O(n®) time (see, for example, [8, 10]) and is used
extensively in branch and bound algorithms for solving the TSP (see, for example,
[2]). To see the relationship we define the digraph D, with vertex set V, and arcs
E,={(i,o(i)):ie V,}. (We will use standard graph-theoretic terminology
throughout the paper without comment.) Now it is easy to show that D, is a set of
k, vertex disjoint cycles covering V,. If k, =1 then D, is a cycle through V, and
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o is called a cyclic permutation. Let T, denote the set of cyclic permutations of V.
Then the TSP can be rephrased as
minimize L,
(1.2)
subjectto 7T€T,.
Now let 7%= 7*(L) denote the optimum solution to (1.2) and let B(L) denote its
value. Clearly A(L)< B(L) and furthermore A(L) is usually ‘very close’ to B(L).
Karp [6] gave some theoretical justification for the latter remark. Let L;, i,je V,,,
be independent uniform [0, 1] random variables and consider the random variables
A, =A(L) and B, = B(L). Karp described an O(n?) algorithm which, starting with
an optimal solution to AP, ‘patches’ together the cycles of o* to make a tour te T,
of length B, , and proved

1< E(An) = E(Bn) = E(Bn,l) = E(A,,) +O((log n)3/2n"°'24),
(Here, and throughout, log n denotes log, n.)

Karp and Steele [7] considerably simplified and strengthened this result by

constructing a simpler O(n?) algorithm which produces a tour 7, of length B, , where
E(B,.)= E(A,)+0(n™"?).

This raises the questions:

(i) What is the magnitude of E(B,—A,)?

(ii) How good can be expected length of a tour found by a polynomial time
algorithm be?

By making extensive use of the ideas of Karp [6] and Karp and Steele [7] we
improve their results and show

Theorem 1.1. There is an O(n®) time algorithm which constructs a tour of length B,
satisfying
E(B,)=E(A,)+0((log n)*/(n log log n)), (1.3a)
Pr(B, — A, = c¢,(log n)*/(n log log n)) = 0(1/n?). (1.3b)

(In this paper c,, ¢, ..., will, without further remark, denote unspecified absolute
constants. If required, appropriate numerical values for them can easily be deduced
from the proofs.) We then consider a variant of the TSP in which we ask for a
minimum length closed walk through V,, i.e., each v € V, may be visited more than
once if this improves matters. This is equivalent to replacing L by Lin (1.2), where
i,,- is the minimum length of a path from i to j using L; as arc length.

We positively answer an open question of [7] by proving the following.

Theorem 1.2. There is an O(n?) time algorithm which constructs a tour of length B,
satisfying
1< E(A(L))< E(B(L))< E(B,) = E(A(L)) +0O((log n)*/n), (1.4a)
Pr(B, - A(L)= c,(log n)*/n) = o(1/n?). (1.4b)
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The techniques we have developed can be applied to the k-person TSP (k-TSP)
(see [3]). The problem is to find k cycles C,, C,, ..., C, with vertices in V. Each
cycle must include vertex n and each vertex other than n must lie on exactly one
cycle. More formally we require that

V(C)n V(G)={n} (=<si<j<sk) (1.5a)
(V(C;) is the vertex set of C; for i=1,2,...,k),

V(C)= V., (1.5b)

Tt

]

|IV(C)|=2 (I1=<i=<k). (1.5¢)

(1.5¢) will hold with probability tending to 1, without being ‘forced’, and its
assumption clarifies part of the analysis. The objective is to

minimize max{L(C):i=1,2,...,k}

. (1.6)

subjectto  (1.5)
where L(C;) is the length of cycle C; using L; as arc lengths. Let B,(L) denote the
minimum value in (1.6). The problem we use as the basis for our heuristic in this
case will be denoted by AP,. Here we seek cycles C,, C,, ..., C, (I= k) satisfying

V(C)nV(G)={n} (=<i<j<k), (1.7a)
]

EJ V(C,)= Vn9 (l.7b)
V(CINnV(C)=0 (=sislk<jsli<]), (1.7¢)
|[V(CHI=2 (1=<i<k). (1.7d)

Thus we have k cycles through vertex n and ! —k cycles covering the vertices left
uncovered by C,, C,, ..., C;. The objective now is to

1
minimize L(C;
igl () (1.8)
subjectto  (1.7).
We let A,(L) denote the minimum value in (1.8). Assuming once again that the arc
lengths L;; are independent uniform [0, 1] random variables we prove the following.
Theorem 1.3. Let k=1 be constant. There is an O(n*) time algorithm which constructs
a solution to TSP, of value B, such that
1/k< E(Aw(L))/ k< E(Bi(L))< E(B,)
= E(A«(L))/ k+O((log n)°/n), (1.92)

Pr(B, .= Ay (L)/ k+ cs(log n)®/n)=o0(1/n?). (1.9b)
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We prove Theorems 1.1-1.3 in the next three sections. The reader should observe
in what follows that, since we are mainly interested in asymptotic results, we often
use, without comment, inequalities which are true only for sufficiently large values
of n.

2. Proof of Theorem 1.1

Following the approach of [7] our algorithm ‘patches’ the cycles of the optimum
solution to AP together. The ‘large’ ones are dealt with as in [7]. Our contribution
is a procedure for patching in the ‘small’ cycles at smaller expected cost. It has
similarities to the algorithm of Angluin and Valiant [1].

Algorithm 2.1.
Step 1.
Solve AP;
Let C,,Cs,...,C, be the cycles of D,., where |C\|=|Cy=::-=|C/|=
nflogn>|C,.\|=---=|C].
Step 2.
él =C;
fori=2to r do
suppose that the edges of C; are, in sequence, e, es,...;
A: for j=1to |C| do
try to patch’ C to Ci_,, creating C,, by deleting e;=(y, z) and an edge
(u, v) of C, -1, and adding the two edges (y, v), (u, z) if they are both of
length <16(log n)*/n. (See Figure 1.)

Fig. 1.

At the end of Step 2 we (should) have a large cycle G plus small cycles C,,,,
Cr+2,- .., C;. We continue to ‘absorb’ the C; into one cycle.
Step 3. A
begin
fori=r+1to s do
(arbitrarily) choose e=(y, z)e C;;
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construct a digraph H with vertices CA}_. v {x}, where if ve C‘i_, then there
is an edge (x, v) of length L, , and an edge (v, x) of length L, .. (Distances
within éi_. are as before.)
Call DHAM (below) to try to find a hamilton cycle in & using ‘few’ (i.e.
O(log n/(log log n))) edges of length at most 35(log n)*/n. (See Figure 2).
If successful we can replace vertex x by the path (C;—e) to create a cycle (:‘,-
through the vertices of CA‘,~_, and C;;
end
Procedure DHAM(C, x);
begin
let E ={(u, v): {u, v}< Cu{x} and L, ,<35(log n)*/n};
let ¢ : C > C be such that the cycle C = (v, ¢(v), ¢*(v),...) for any ve C (we
have used the same names for cycles and their vertex sets here, hopefully
without confusion);
for each (x, v) € E create a path P of length |C| with endpoints x and end(P) =
¢~'(v). (See Figure 3.)
Py:={paths created}; E,:={end(P): P e P,}—in general we construct paths P
from vertex x to vertex end(P);
for t=1to T=[log n/(4loglogn)] do
begin
for each path Pe P,_, check for the existence of edge (end(P), x)
if one exists then terminate {a cycle has been found}
else for each path P e P,_, create all paths obtainable as follows.

Fig. 2.

Fig. 3.
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Let P=(x=1X0, X155 Xm);
if (X, x:), (xi—1, X;) € E where 1=i<j
then let ROTATE(P, i,5)=(Xos X1s ey Xicts Xjs Xjrr1s -+ o s Xy Xis Xit 15+
x;_1). (See Figure 4.)
P, = {paths created in this stage}; E, = {end(P): Pe P,}
end

I'd ~ =
8, z \\\V end (P)

Fig. 4.

Analysis of Algorithm 2.1

The first lemma describes the likely cycle structure of the digraph D,.=(V,, E,-).
Most of it is stated in [7], with or without proof, but we give a full proof here for
completeness.

Lemma 2.1. (a) Each o€ S, is equally likely to be optimal in AP.
(b) Pr(s=6log, n)=o0(1/n?).
(c) Pr(|Ci|+- - -+|C.|=4n/(loglog n)) = o(1/n?).

Proof. (a) Let P = || P;|| be a 0-1 permutation matrix with P; =1 iff j = (i), where
o€ S,. Then PL has the same distribution as L and o, is optimal for L iff o, = 00,
is optimal for PL.

(b) If C is the cycle of D,« containing vertex 1, then

Pr(|V(C)|=k)=1/n fork=1,2,...,n.

This follows from the observation that there are (i_})(k—1)!(n—k)! permutations
in which | V(C)} = k. Furthermore, removal of the cycle C containing vertex 1 leaves
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the cycle structure of a random permutation of a set of size n—|V(C)|. It follows
therefore that the following algorithm constructs a sequence c,, . . ., ¢, with the same
distribution as that of the cycle sizes in D,«.
Algorithm CYCLESIZES.
begin
t=1,m:=n,
repeat
¢, is chosen randomly from [m];
m=m-c¢;t=t+1
until m=0
end
Let so=|6log, n]. Consider a random 0-1 sequence x,, x,, ..., X,, generated as
follows: run algorithm CYCLESIZES and suppose it produces a sequence of length
s. Let

. __{O if t<sand ¢ < [3m],
"1 otherwise.

Then ¢=Y7°, x, dominates the binomial random variable B(sy,3). Furthermore if
5> 5, then £<log, n. Thus

[log,n]
Pr(s>sy)<Pr(¢<logyn)s ¥ (Sto) 2 % =0(n"?).
=0

(c) For K< V,,|K|=k=a=|4n/loglog n], the probability that K is the union
of cycles of o* is, by (a), k¥(n—k)!/n!=1/(}). Conditional on this event, the
probability that all of these cycles have fewer than b= |n/log n] vertices is no more
than |k/b]!™". To see this suppose m = b and let o,, be a random permutation of
V,,. Let u,, be the probability that all cycles in o, are of size at most b. We need
to show that u,, < |m/b]!™". This is true for m = b and so inductively assume it is
true for some m = b. Then .., < [(m+1)/b]!™" follows immediately from

Ups+1 = (b/(m + 1)) max{um’ Up—15 0+ um+l—h}'

But this follows directly from the remarks at the start of (b) above. Thus

Pr((c) fails)< ¥ |k/b]! " =0(1/n?). O
k=a

The next lemma claims a pessimistic assumption about the distribution of the
lengths of arcs not in E,«. This was proved in [7], and is a key insight that makes
much of the analysis possible. We require a similar result for Theorem 1.3, and this
is proved later as Lemma 4.2,

Lemma 2.2. Conditional on an event of probability 1—o0(1/n*) we may assume that
the lengths of arcs not in E,« are independent uniform random variables in the range
[a,, 1] where a, = 15(log n)*/n. O
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We turn next to the analysis of Step 2 of Algorithm 2.1. We first prove that not
too many arcs have their lengths examined in loop A.

Lemma 2.3. Pr(3i<r:j reaches 3n/(log n)* in loop A)=o0(1/n?).

Proof. If (y, z)€ C; and (u, v)e C,_, in Step 2 then Lemma 2.2 implies that
Pr(L,., L. <16(log n)*/n) = (log n)"/ n’.

The lengths of arcs (y, v) and (u, z) are only examined once during Step 2, for each
possible y, z, u and v. Hence for any given i, the probability that j reaches 3n/(log n)*
is no more than

(1 _ (log n)4/nZ)(3n/(logn)z)(n/logn) < l/nl.

Multiplying by at most 6 log, n (Lemma 2.1(b)) yields the result. O

Let X; be the set of edges of C; that are examined for deletion in Step 2. Let
X =J;_, Xi and Vx be the set of vertices incident with an arc of X. If both u,0# Vx
and (u, v) € A,» then we have no information about L, , other than that given by
Lemma 2.2. Hence with probability 1—0(1/n*) we complete Step 2 with a cycle
C.,|C.|=n—4n/loglog n, and a set of vertices Vy, | Vx|= O(n/log n), such that the
lengths of the arcs which are not incident with Vyx or contained in E,- can still be
treated as independent uniform [e«,, 1] random variables.

We now analyse Step 3 of Algorithm 2.1, and, in particular, procedure DHAM.
Let us consider the digraph H with vertex set V(H)= V( C‘,) —Vx and arcs E(H)
where (x, y)e E(H) if L,,<35(log n)’/n. Let p=20(log n)*/(n—15(log n)?). Our
assumption enables us to treat H as the random digraph D, , where h=|V(H)| =
n—o(n) and each possible arc exists independently with probability p. To analyse
Step 3 of Algorithm 2.1 we bound, from below, the expected growth rate of the
endpoint set E, in DHAM. We do this by considering the H-neighbourhoods of
‘small’ vertex sets.

For Tc V(H), let N*(T)={w: wg T and (v, w)e E(H)}.

Lemma 2.4. Let II, be the event

AT<c V(H): 1<|T|<n/(logn)’ and |(|N*(T)|—20(log n)* T|)|= (log n)3T|.
Then 7, = Pr(I1,) = o(1/n?).
Proof. If |T|=t and wg T, then let p,=Pr(we N*(T))=1-(1-p)". Note p, ~ pt.
Now |N™(T)| is distributed as the binomial random variable B(h —1t, p,). We make

use of the following ‘large deviation’ inequality for sums of bounded random
variables.
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Let Z,,2,,...,Z, be independent random variables with 0<Z ;<1 for j=
,2,...,m, and u=E(Z,+2Z,+ --+Z,)/m). Then as a simple corollary of
Theorem 1 of Hoeffding [5],

Pr(|Z,+ Z,++ -+ Z, —mp|=emp)<2e” "™/ (0<eg<1). (2.1)
Hence, since B(n,p)=2Z,+Z,+-:-+Z,, where Pr(Z;=1)=p for j=1,2,...,m,

tn/(logn)?) 2
m< ¥ 2 (f) e eulonn

=1

since E(|N*(T)|)=(h—1t)p, ~20(log n)*t. Thus

«©
m < Z 2nl e—c,(logn)-r=0(n-2)' Q
=1

Continuing the analysis of Step 3, consider a certain partition of the cycle C.
Let A = [(log n)*/logloglog n] and partition C, into paths Q,, Q-,..., Q, each
containing |h/A] or [h/A] vertices of H. Let S; denote the vertices of Q; that are
in H fori=1,2,..., A. The following lemma shows that, with high probability, no
vertex will have ‘too many’ of its out-neighbours (in H) concentrated in ‘too few’
of the S;’s. This is used later to show that there are always sufficiently many arcs
which are ‘useful’ in DHAM.

Lemma 2.5. Let [A]={1,2,..., A}, and let II, be the event

N*(v)nU S;' =12(log n)~.

iel

veV(H), Ic[A): |I|<3%A and
Then 'n'2=Pr(H2)=0(l/n2).

Proof. We can clearly restrict attention to |I|=[3A ). For a fixed ve V(H) and
I<=[A], it follows that [N*(v)nlJ, , Si| is dominated by the random variable
B([3%n]+A, p). Applying (2.1) we see that

o

where (1+8)([%n]+A)p=12(log n)>. Now & ={;—0(1), and so after multiplying
by the numbers of possible v and I we obtain

—_ 3 b -2
7T2$ n24\+l e 0.03(logn) =O(n ). O

N (v)nU S.-‘ = 12(log n)2) <2 e~ (BY/ANR/201+0)p
icl

We can now put these results together to prove that DHAM almost always works.
Lemma 2.6. Pr(3i: r+1=<i<s and DHAM fails to patch C; into C‘,_.) =o(1/n?).

Proof. We can assume, by Lemma 2.4, that

@+ T< V(H), |T|<n/(logn)’ implies |N*(T)|=19(log n)’|T|,
(2.2)
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and, by Lemma 2.5,

ve V(H), I<[A)], |I|<3A implies

N*(v)nU S,-I <12(log n)>.

) (2.3)

We shall use (2.2) and (2.3) to show that, in an execution of DHAM, |E,] grows
rather rapidly. To this end, fix i (r+1=<i<s). Let E, = E,n V(H). We show first that

Pr(| Eo| < 18(log n)?) = o(1/n*). (2.4)
Note that prior to the construction of P,, the arc lengths L., are assumed to be

independent and uniform in [«,, 1], by Lemma 2.2.
Let

W,={ve V(H): L,,<35(logn)’/n} and W,=¢ '(W)).

(Recall that the arcs of the cycle C in DHAM are of the form (v, ¢(v)).) Now | W
(=|Wa|) is distributed as B(h, p) and so, using (2.1), we have

Pr(| W,| < 19(log n)*) = o(1/n*).
Now Ey,2 W, V(H) and thus if we prove that

| W, — V(H)|=o0((log n)*) (2.5)
then (2.4) follows. Now, because T =O(log n/log log n) and DHAM is only called
O(log n) times,

é;_l is obtained from é, by deleting O((log n)*/log log n) arcs,

permuting the pieces, and then adding arcs or paths to make a

cycle. (2.6)

Now é, contains at most r arcs (u, v) with u¢ V(H) and ve V(H) and (2.6) implies
that C‘i_. contains o((log n)*) more. Thus, since r=O(log n), (2.5) follows.

We show next that for, 1<¢=<T, either we terminate DHAM (having found a
cycle), or

|E,|<n/6(log n)® implies |E,.,|=36(log n)*|E,|. (2.7)

The aim here is to show that the number of end-points in é, grows so rapidly that
we can (almost always) find an arc from one of these back to x to close the cycle.
We prove (2.7) in two parts, corresponding to the two new arcs used in the rotation
step. (See Figure 4.) We show that most paths have ‘many’ such candidate arcs.
The proof involves splitting paths in the middle so that f (of Figure 4) is in the first
half-path and z in the second. There are, however, some technicalities in applying
this idea. Suppose then that Ié,l < n/6(log n)°. For each ve E, choose any one path
P,e P, with v=end(P,). Consider {P,: ve f?,}. If P,=(x=x0,%1,...,Xm=0), let
PL=(Xo, X1,y X{ms2)) and  Py=(X{m2j+15---5%m). We may assume m=
n—4n/loglog n, by Lemma 2.1(c). Let I', = N*(IQ“,) and (see Figure 4),

®,={fe V(H): 3ge T, and ve E, such that (v, g) € E(H)
and (f, g) is an arc of P,}.
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Let
I''={gel,:ge P,and(v,g)ec E(H) forsome ve E,}

and I'! =T,-T. We define @; and @/ by replacing I', in the definition of &, by
I, and I'} respectively. We now show that

|®|=6(log n)*|E,]. (2.8)
To prove this, fix ve l:?, and note that (2.6) implies P, contains vertices from at
most 1A +O((log n)*/loglog n) distinct S;. Hence (2.3) implies that |I'j|<
12(log n)’|E,|. But (2.2) implies that |I|=19(logn)’|E,| and hence |I|=
7(log n)?|E,|. Furthermore, letting

A={(v,g): ve E,,ge P,nV(H)and f¢ V(H) or (f, g)¢& c,

where f precedes g on P,},
|®|=|Ii|~|4]=7(log n)’|E,| - O((log n)*/log log n)|E,],

using (2.6) and the observation immediately following it, which implies (2.8).
An analogous argument now yields

|E,\| = 6(log n)?|P)). (2.9)

Indeed, for each fe @}, choose a unique v(f) such that f lies on P, and such
that if z is the successor of f on P, then (v(f), z)€ E(H). Then f has at most
12(log n)? out-neighbours in Pj,. Since @, has at least 19(log n)*|®;| out-neigh-
bours altogether, we have

|W|=17(log n)*| @],

where
W={we V(H):3fe ®D|,(f,w)e E(H) and we Py)}.
But
Bl =W =14
where
A'={(f,w): fe D, we V(H) AP}, and ug V(H) or (u, w)2 C,,
where u precedes w on P, )}
Since

|4’| = O((log n)*/log log n)| ®}|)

we have (2.9).

If |®!|> | n/(log n)*] we choose a subset of @] of this size in its place, since the
statement of Lemma 2.4 requires this minor technicality. Now, obviously, (2.8) and
(2.9) yield (2.7).
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Thus failure of DHAM under these circumstances implies that there exists r< T
such that |E,|=6n/log n. But then

Pr(L,,>35(log n)*/n for all ve E,)<(1-p)¢"/ioen< p=120

and the lemma follows. 0O

We are now in a position to complete the proof of Theorem 1.1. Lemmas 2.1 to
2.6 clearly show that the Algorithm 2.1 succeeds with probability 1—o0(1/n%). We
have only to establish the remaining claims of Theorem 1.1.

Size of error in tour length. We compute an upper bound to the cost of arcs added
to the AP solution. With the required probability, Step 2 adds arcs of total length
at most 32s(log n)*/n=0((log n)*/n) and Step 3 adds arcs of total length at most
70sT(log n)*/n=0((log n)*/(n log log n)). This proves (1.3b) and (1.3a) follows
immediately.

Running time. Steps 1 and 2 can easily be executed in O(n?) time. We will show
that (with high probability) each execution of DHAM requires O(n****") time and
this clearly suffices. A calculation using (2.1), as in Lemma 2.4, shows that with
probability 1—0(1/n?) each ve V, is incident with at most 36(log n)? arcs (v, w)
for which L, ,, <35(log n)?/ n. It follows in this case that in any execution of DHAM,
| Po| <36(log n)?, and |P,.,|<1296(log n)*|P,| for 0=< =< T. Hence a simple calcula-
tion shows that at most n'**""’ paths are produced. Since we can create a copy of
ROTATEC(P, i, j) in O(n) time for any P, i and j, this completes the proof of Theorem
1.1. (If we destroy P it only takes O(1) time to execute ROTATE, assuming that P
is kept as a doubly-linked list. The derivation of the sets P,, P,, ..., defines, in a
natural way, a ‘tree of paths’ and if we explore this tree depth-first, rather than
breadth-first as intimated, we could reduce the running time of Step 3 to O(n'*°")
time.) O

3. Proof of Theorem 1.2

While, at first sight, this may look more difficult to prove than Theorem 1.1 (owing
to the non-independence of the arc lengths L), it is in fact a simply corollary of a
result of Frieze and Grimmeitt [4].

Lemma 3.1 [4]. Pr(3i,je V,: L,=(13log n)/n)=0(n"2). O

Algorithm 3.1.
Step 1.
Solve AP {with L in place of L};
let C,, C,,..., C, be the cycles of D,«.
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Step 2.
C=c;
fori=2to s do
begin
patch C; into ¢ by deleting any arc (x, y) of é, any arc (u, v) of C; and adding
arcs (x, v), (4, y).
end
end of Algorithm 3.1

To prove Theorem 1.2 we note that Lemma 2.1 still holds, since for any permutation
matrix P, L and PL have the same distribution. Thus, with probability 1—o(n"?),
there are only. O(log n) cycles. Now Lemma 3.1 shows that all edges, in particular
the patching edges, will be ‘short’. Finally note that E(A(f))?l since A(f)?
Yiomin{L;:j#i}. O

4. Proof of Theorem 1.3

Our approach takes the following lines. We solve AP, and transform the solution
to a tour of V,, as in Section 2. Next, we delete n from the tour and break the path
obtained into k paths of roughly equal length. We then make ‘small’ changes to
these paths, using ‘few’ rotations, so that we can join n to the endpoints of each
path by short arcs.

Algorithm 4.1.
Step 1.
Solve AP, ;
let C,,Cs,...,C, be the cycles in the solution, where |C,|=max{|C;:
i=1,2,...,1}4
Step 2.
él =Cy;
fori=2to ! do
patch C; into éi_, as in Step 3 of Algorithm 2.1, using arcs of length at most
B. = a, +200(log n)’/n. (If C; and CA‘,-_. intersect (in n) then delete the 2 arcs
(y, n) and (n, z) of C; incident with n to make the initial path.)
{We now have a cycle C‘,-= (n, iy, is,...,0,-1,n) through V,.}
Step 3.
Let P be the path (i, is,...,{,—);
partition P into k consecutive sub-paths P, P,, ..., P, each with length in the
range L(P)/k+p,. {This is (almost) always possible because arcs in P have
length at most 8,.}
Step 4.
{ We give only an outline of the remainder of the procedure.}
fori=1to k do
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begin
let path P, have endpoints x, and x,; keeping x, fixed carry out rotations as
in DHAM, using arcs of length at most u = 5000k(log n)°/n, until a path B is
constructed, with endpoints x, and y, and for which L, , < u. {Report failure
if t exceeds T in the main loop.}
Now keeping n as a fixed endpoint, carry out rotations as in DHAM, starting
with the path (ﬁ,-, n), until a path P, created with endpoints z and n for which
L, . < p. {In these rotations we must use the in-neighbours of the path endpoints
in place of out-neighbours, etc.}
The ith cycle output is (n, B, n).

end

end of Algorithm 4.1

Analysis

We first consider the cycle structure of the solution to AP,.

Lemma 4.1. (a) Each feasible solution to AP, is equally likely to be optimal.
(b) Pr(I=61log, n)=o0(1/n?.
(c) Pr(A(L)<1-¢)=0(1/n?) for any fixed £ > 0.

Proof. Define an (n+k—1)x(n+k—1) matrix L as follows: Let L~,-,-= Ly, L~i_,,+,=
Lin, Lysij=Ly and Ly, e, =, for 1<ij<n and 0<t<k Each permutation o
of V,.r_, in which

o(n+1)<n forO0st<k (4.1)

gives rise to a feasible solution f(o) of AP, on replacing the arcs of D, of the form
(i, n+1) or (n+1t,j) by (i, n) and (n, j) respectively. Each solution of AP, comes
from (k!)? such permutations and the mapping preserves solution cost if L is used
for o and L is used for f(o).

(a) Each o€V, ., gives rise to a permutation matrix P, in the usual way. If
oy, o, satisfy (4.1) then P, = PP,,Q for permutation matrices P and Q where P
permutes the rows 1,2,..., n among themselves and therows n,n+1,..., n+k—1
among themselves. Q satisfies an analogous restriction with respect to columns.
Since PEQ has the same distribution as f., we deduce (a) as in Lemma 2.1(a).

(b) The number of permutations satisfying (4.1) is (n—=1)(n—2)---(n—k)x
(n—1)! and so it follows that

Pr(o € S,.x_, satisfies (4.1))=1-0(1).

We then proceed as in Lemma 2.1(b) and observe that f(o) has at most (k—1)
more cycles than o.

(c) The solution to AP, contains an arc leaving each i€ V,,. The cost of this arc
is at least {; =min{L;: je V,}. Define random variables

z;=min{(n/(2log n){;, 1} fori=1,2,...,n
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Clearly z€[0,1] and a straightforward computation gives E(z)=
1/(2log n)+o0(1/n). Now (2.1) gives a superpolynomially small probability for the
event {(2logn)/n)Y;_,z<1—¢} and (c) follows, as ¢ dominates
((2log n)/n)z;. O

We now give a high probability upper bound on the length of arcs in the optimum
solution to AP,.

Lemma 4.2. With probability 1 —o0(1/n?) all arcs used in the optimum solution to AP,
are of length at most 15(log n)*/n.

Proof. Following [7], we show that, if an optimal solution were to contain any arc
which is ‘too long’, then there are almost always sufficiently many useful short arcs
that the solution can be improved by constructing a suitable alternating path. Thus,
let D be the bipartite graph (R, C, E ) where R and C are disjoint copies of V.,
and

E={(i,j)e RxC: L;<(5log n)/n},

where L is defined as in the proof of Lemma 4.1. For SC R and t=1, 2, let
N(S)={jeC:[{ieS: (i,j)e E}|= 1}

and define N,(S) similarly for Sc C. For o€ S,+;-, and SS R let
N,(S)={je C:Jie S such that (i, j) € E and j # o(i)}

and define N,(S) similarly for Sc C.
We wish to show that

Pr(3ce€S,.k.s andScRorScC:1<|S|<in
and |N,(S)|<2|S|)=0(1/n?), (4.2a)

Pr(3 o€ S,.x_1and Sc Ror Sc C:in=<|S|and |N,(S)|<3n)=o0(1/n?).
(4.2b)

By noting that, for all o,
| No(S)] = max{|N,(S)| - |SI, INx(S)]},
we can demonstrate (4.2) by showing
Pr(3 Sc RorSc C:1=<|S|<inand|N,(S)|<3|S|)=0(1/n?), (4.3a)

Pr(3Sc RorSc C:in<|S|and |Ny(S)|<3n)=0(1/n?). (4.3b)
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Proof of (4.3a). Forve R let d (v) be its degree in D. Then, letting p = (5 log n)/n,
when n is large

Pr(3ve R: d(v)<1llogn)

|logn/2) +k_l
<(n+k—-1) % (" t

=0

) pl(l _p)n+k—l—l

n+k-1 ’
s2n< ) llogn/2l(y _ pyn+k-1-Lllogn/2)
lilogn]/) P P

<3n(enp/|ilog n])t'"8" A n=5=o(n72).

This clearly disposes of the case |S|<glog n in (4.3a).
For SS R, |S|=s=¢log n we have

Pr(INy(S)|=<3s)= (3’;) (1 _p)(s—k)(n—ss)_

Hence

Pr(3 S violating the condition in (4.3a))

< l"é“ (")(n)(l—p)"‘"‘"""”+o(1/n2)

s=[(ogny/61 \S/ \3s
4 s 3s
< lnél (E) (E) e—5(s—k)logn(l—3s/n)+0(1/n2) =0(1/n2).
s=f(logn)/6] \ § 3s

(The sum is readily proved negligible by splitting its range at, say, s =n/log n.)

Proof of (4.3b). Let R, and C, denote the disjoint copies of V,_, contained in
R and C respectively. If S R and |S|=3n then S~ R,|= in for large n. Thus, if
veC,,

Pr(ve No(S))<(1-p)"™*1+[4n] p(1-p) ™1 < (2 log n)/n.

Hence

Pr(INz(S)I$%n)<( ) ((21og n)/n)!"/*

n
[an]
and so
Pr(3 S violating the condition in (4.3b))
n
[an]
Thus we have proved that the two events of (4.2) have small enough probability

that we may assume they do not occur. Suppose now that the optimum solution to
AP, contains an arc of length exceeding 15(log n)?/n. Equivalently the optimum

s2n+k—| ( ) ((2 log n)/n)r"/” =0(e—(nlosn)/5).

~»
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solution o* to AP using L contains an edge(r, c), re R, ce C, with f,,‘c > 15(log n)*/ n.
We define a sequence X, X,,...,, of subsets of R by X,={r} and X, =
a*7'(N,+(X;)) for i=0 and a sequence of subsets Yo, Y;,..., of C by Y,={c}
and Y., =0*(N,-(Y;)). The existence of i,j such that N,.(X;)n Y; # 0 implies
that D has an alternating cycle with at most 2(i+j+1) edges and containing (r, c).
Now (4.2a) implies that | X;.,| = 2| X|| so long as | X;| < §. Together with (4.2b) this
implies that if io= [log, n]—1 then | X;|=3n. Similarly | Y;|=3n and so N+ (X)) n
Y, # 0. But now, if we add and delete edges on the implied alternating path, the
solution value drops by at least 15(log n)*/n—(101log, nlog n)/n>0, a contra-

diction. O

Corollary 4.3. With probability of error o(n~?), we may assume that the lengths of
arcs not in the optimum solution to AP, are dominated by independent uniform random
variables in the range [a,, 1] where a,, = 15(log n)*/n.

Proof. With probability 1 —o(n~?), we can construct the optimal solution by ignoring
all arcs of length exceeding a,. Thus, in this case, the lengths of arcs not in the
optimal solution are either at most a, or are only known to be uniform (and
independent) in [a,, 1]. In either case, the lengths are clearly dominated by indepen-
dent uniform [a,, 1] random variables. O

The rest of the analysis is very similar to that of Theorem 1.1. The conclusions
to Lemmas 2.4 and 2.5 continue to hold. We can assume that m = |C‘;| =n/(6log, n)
throughout, in which case 200(log n)*/n =20(log m)*/ m and the analysis of Lemma
2.6 is valid for this case. So with probability 1 —o(1/n?) we arrive at the end of Step
2 with a cycle ¢ through V, with length at most y, =6T log, n, more than the
optimal solution to AP,.

At this stage all arcs of C are of length at most B, and so Step 4 succeeds in the
construction of the paths P, P, ..., P.. We deduce also, from Lemma 4.1(c), that
in this case

P, has at least n,=0.9/(B,k)= cen/(logn)® arcs fori=1,2,...,k (4.4)

The analysis of Step 4 is in a similar vein to the proof of Lemma 2.6. We give only
a bare outline. We choose p as the upper bound for arc lengths, since u=
20(log no)?/ ne and each sequence of rotations starting with a P; or 13, is in a digraph
which contains a random digraph with the same arc density as that used in the
proof of Lemmas 2.4-2.6. Therefore, conditional on events with probability 1—
o(1/n?), we can be sure that the cardinality of the set of ‘free’ path-endpoints grows,
at least, by a factor proportional to (log n)*. Thus eventually, with sufficiently high
probability, a short connection to or from n can be made.

An examination of the algorithm reveals that the dominant factor in the total
increase in cost over that for AP, will be, from Step 4,

O(kTur)=0((log n)°/(n log log n)),
and Theorem 1.3 follows. O



378 M.E. Dyer, A.M. Frieze | Patching algorithms for travelling salesman problems

References

[1] D. Angluin and L.G. Valient, *“Fast probabilistic algorithms for hamilton circuits and matchings,”
Journal of Computer and System Sciences 18 (1979) 155-193.

[2] E. Balas and P. Toth, “Branch and bound methods,” in: E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy
Kan and D.B. Shmoys, eds., The Travelling Salesman Problem (Wiley, Chichester, UK, 1984)
pp. 361-401.

[3] G.N. Frederickson, M.S. Hecht and C.E. Kim, “Approximation algorithms for some routing
problems,” SIAM Journal on Computing 7 (1978) 178-193.

[4] A.M. Frieze and G.R. Grimmett, *“The shortest path problem for graphs with random arc-lengths,”
Discrete Applied Mathematics 10 (1985) 57-77.

[5] W. Hoeffding, “‘Probability inequalities for sums of bounded random variables,” Journal of the
American Statistical Association 58 (1963) 13-30.

[6] R.M. Karp, “A patching algorithm for the non-symmetric travelling salesman problem,” SIAM
Journal on Computing 8 (1979) 561-573.

[7] R.M. Karp and J.M. Steele, “Probabilistic analysis of heuristics,” in: E.L. Lawler, J.K. Lenstra,
A H.G. Rinnooy Kan and D.B. Shmoys, eds., The Travelling Salesman Problem (Wiley, Chichester,
UK, 1984) pp. 181-205.

[8] E.L. Lawler, Combinatorial Optimisation: Networks and Matroids (Holt, Rinehart and Winston,
New York, 1976).

[9] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, eds., The Travelling Sales Problem
(Wiley, Chichester, UK, 1984).

[10] C.H. Papidimitrious and K. Steiglitz, Combinatorial Optimisation: Algorithms and Complexity (Pren-
tice-Hall, Englewood Cliffs, NJ, 1982).



