J. Opl Res. Soc., Pergamon Press, 1978. Vol. 29, 4, pp. 383 to 388, Printed in Great Britain

A Partitioned Inverse in Linear
Programming

A. M. FRIEZE
Queen Mary College, London

This note deals with linear programs in which a subset of the constraints have a special structure.
This structure allows linear cquations involving these constraints only to be solved particularly
easily, e.g. GUB rows. A method is described for restricting the gaussian elimination in LU
decomposition to the non-special rows.

INTRODUCTION

GIVEN a large linear or integer linear programming problem one of the determinants
of the problem’s difficulty is the number of constraints. A large number of constraints
will imply that the inverse basis matrix is of a large order. Sparsity will keep the actual
amount of information needed to use the revised simplex method down to a fraction of
what it could be.

A further reduction can be obtained if some of the constraints have a special structure.
At the very least one would expect there to be a number of GUB rows, which can be
handled within our framework.

For some problems, e.g. those associated with a particular integer programming
formulation of plant location problems a technique similar to ours is essential if an
integer programming solution is to be attempted at all.

This paper is concerned with linear programming problems of the form

minimize ¢"x
subject to
Ax=b,
Axx = b,,

where ¢, x are n-dimensional column vectors, b; is an m;-dimensional column vector for
i=1,2 and 4; is an m; x n matrix of full row rank for i =1,2.

The constraints have been partitioned to allow that A, is a matrix of a special structure
which can be exploited in the revised simplex method. By a special structure we mean
that for each non-singular m, x m, submatrix D of A4, that equations of the form

Dx=d or D'x=d 2

Y

can be solved relatively easily.

Examples

(a) Generalized upper bounds (see ref. 1). Here each variable x; appears in at most one
row of 4, of the form

Z a;x; = by,
jeS:

where S,,5,... are disjoint subsets of {1,2,...,n}. Any non-singular submatrix D is
diagonal and so (2) is trivial to solve.

(b) Variable upper bounds (see ref. 2). A variable upper bound VUB is defined by
Schrage to be a constraint of the form

i S Xk 3

ORQ. 29/4—n

Journal of the Operational Research Society Vol. 29, No. 4

and it is assumed that a variable can appear ecither once as the LHS of a VUB or
several times as the RHS of a VUB but not both. Such constraints appear in a wide
variety of problems.>~® Adding a slack variable s; and collecting these constraints to
form A, we see that a non-singular submatrix D has the form

I

P
D= D,
D, |,
where I, is the p x p identity matrix and each D; can be arranged in the form
1 -1
1 -1
1

It is clear that (2) is easy to solve in this case.
A very easy and natural generalization of this example considers constraints of the form
Zajxj-é.\’k f:]_"_.’”k

JeSix

k=0 i

where Sy NSy = ¢ if (i, k) # (j,]).

(c) Distribution problems. We assume that equations 4,x = b, are of the network flow
variety and the constraints 4,x = b, represent some extra conditions.

It is shown by Dantzig® that a non-singular submatrix of 4, can be represented by
a spanning forest in the associated network and graph theoretic methods can be used
to solve (2).

Many modern LP algorithms are based on the LU decomposition of Bartels and
Golub”—see refs. 8§ and 9 for improvements on their basic algorithm. Given the special
structure assumed for 4, it would seem advantageous to ignore the rows of 4; when
creating an LU decomposition in order to keep the special structure. This will generally
lead to less “fill-in” and faster iterations possibly. We have not been able to test this
hypothesis as yet although methods specifically designed for (a) and (b) above and
different from our own, particularly (a), are accepted as being useful.

A SPECIALLY PARTITIONED INVERSE

Suppose that at some stage of applying the revised simplex algorithm an inversion is
to be performed and that the basis matrix B has been partitioned

s By By |jmy
By, By |)im,

Sl Nt
n,y Ny

so that B, is non-singular. This partitioning is produced by the elimination procedure

implied below.
Im;
= i
—BZIBH Im:

Let
TE = [B“ Bia]
B

384

then we have

A. M. Frieze—A Partitioned Inverse in Linear Programming

where B = B,, — B,,B[;'B,,. Next let
[4
L= -
L

L-'B=P00 =",
where P, 0 are permutation matrices and U is upper triangular. The calculation of L
is standard.!®

Of the entities defined above one only needs to explicitly store the matrices L=, P,
0 and V plus a knowledge of which columns are in B, and which are in B,,.

At a general stage between inversions we will have a similar decomposition 1nvolv1ng
new matrices L, V, P, Q and B and the original T such that

L 'TB = &‘B?.
1

be such that

To avoid confusion in the next section between the B,,, etc. in T and in B we will *
the former.

SOLVING EQUATIONS USING THE DECOMPOSITION

(a) Updating the column to enter the basis

Let
Lo
ak =
a

be the column to enter the basis at a particular iteration then the updated column
l:)ﬁ
Y2 |

[E
B Y1] _ u]

Y2 [2,

L”UP’=UWFﬂéF1
Y2 Ay d,
d,
d,

is straightforward but involves computing
a a
T[u]=[u .]
a a, — B%BYy 'ay,

The calculation of Bfj 'a,, is done by solving B¥,x = a,, using the special structure.
One is left with solving

is found by solving

which is equivalent to

Now the computation of

By1y: + Byay, =d,; (3)
Vyz B dz. (4)
385

Journal of the Operational Research Society Vol. 29, No. 4

Equation (4) can be solved for y, by back-substitution and then y, computed using
the special structure of By,.

(b) Calculating the reduced costs

Suppose that a, is to replace the pth column of B. Then letting cp denote the vector
of basic costs and e, denote the pth row of I, .+,, we must compute cgB™! or e,B~L
The latter vector can be used in a simple update of the simplex multipliers'! and is
needed in the steepest edge algorithms of Greenberg and Kaplan!? or Goldfarb and
Reid.!3

Some computation can be solved in our method of updating the inverse representa-
tion if u = (u;,u,) =¢,B~" is computed. We must therefore solve uB =e,. If we put
v = (v,v)) =uT 'L and e, = (f;, f;) then the equations for v are

viBy; =1, (&)
VB, + v, V=1, (6)
whose solution is similar to (3) and (4). The vector u = vL™ ' T can then be computed.

(The post-multiplication by T will involve the solution of equations with coefficient
matrix B¥,)

UPDATING THE INVERSE REPRESENTATION

Remark: let y = (y,...,¥m) be a column vector and z = (zl, ,Za) be a row vector
then the effect of pre-multiplying a matrlx Mby I,—yzis to subtract y; times the
vector zM from row i of M for i = 1,.

Now let p, m;, m, be as before.

Case a—p > m,.

Using primes to indicate the various quantities after a change of basis, we see that

L"TB’=[B” B'“]
S b

where S is a (row and column permuted) spiked matrix (see refs. 7-9). S may be
transformed to a (row and column permuted) upper triangular matrix V' as in the above
references. It should be noted that the spike is the column vector d, obtained while
updating the pivot column.

Case b—p < m;.

We shall describe two methods for carrying out an update here.

The first method cannot always be expected to work with the Forrest-Tomlin update
as it generally involves some fill-in in V before a spiked matrix is obtained. However,
it should be borne in mind that a similar problem is faced in implementing the standard
GUB procedure and Tomlin!# states that it is not inefficient to re-invert instead whenever
such fill-in is likely to occur.

For clarity assume now that P = Q = I,,, then we may express the product

B,, B
L-'TB = [. ‘f] Aq, Q)]
C 0

when C is a matrix with one non-zero column. This being the vector d, as in case a.

Method 1

Let v, be as in (5) then it follows that v, B 1‘\='M', where 2 may be zero. Now
define z = (v,, 0)—a row vector with m, + m, components the last m, being zero. Next

386

(L X

A. M. Frieze—A Partitioned Inverse in Linear Programming

let g =(gys---»9m,) = V1 By, and consider the two possibilities:

(@) g=0
This implies 2 # O else the new basis is singular and we define y to be a column

vector with m, + m, components. The first m; are zero and the last m, components
are equal to A7 'd,.
(i) g#0

Define 1 by g, + 0 and g, = 0 for s < t and let w be the tth column of U. Now define
y with its first m; components zero and last m, components equal to g, 'w.

Consider now the effect of pre-multiplying H in (7) by I — yz. In (i) above this simply
eliminates d, from C and the update can be considered complete. In (ii) above this
simply eliminates column ¢ from U and alters the non-zero column of C if 1 # 0. If we
now interchange columns p, m; + ¢t of B’ we are in effect faced with case a above and
can complete accordingly.

It should be noted that the storage requirements for I — yz are simply the non-zeros
of y, z and calculating with I — yz is no more time consuming than with an ordinary
eta vector of maximum length m; + m,.

Method 2

We now consider how to avoid the drawback of producing the fill-in which the
Forrest-Tomlin method was designed to avoid.

Let g be defined as above and if g =0 we can proceed as in method 1. If g+#0
let t be defined as before. Let e, be the tth row of I,,, and let w= e ~! which can
be calculated by forward substitution. Now define y to be the m,; + m, component
column vector whose first m; components are zero, whose next t — | components are
the first t — 1 components of column t of U and whose last m, —t + 1 components
are zero. Next let z be the m; + m, component row vector whose first m; components
are zero and whose last m, components are those of w.

The effect of pre-multiplying H by I — yz is to delete the first t — 1 components of
column ¢ of U and perhaps alter the non-zero column of C. The tth diagonal element
of U is then eliminated as in case b(ii). This may create some fill-in in row ¢t of U
but it is not disastrous. After interchanging columns p and m, +t of B’ we can still
apply the F — T algorithm because the fill-in in row ¢ is then eliminated by the method.

A feature of the F — T method is that the update of U goes on as the simplex
multipliers are being updated and only one pass through U is needed. It seems that
the update described here can also be done in one pass through U as the simplex
multipliers are being updated.

PARTITIONING AND THE PRODUCT FORM OF INVERSE

We outline how one can proceed if one wishes to use a decomposition

B,, B
L"TB=|:“ ﬂ ®8)

We can use this expression-to calculate reduced costs and update the pivot column,
much as before. It is only really necessary to describe how to update this expression.

Case 1 p>m,

The main effect on the right-hand side of (8) is that a column in I is replaced by an
arbitrary column. The identity can be restored by premultiplying (8) by the corresponding
eta vector.

Case2 p<sm,
The main effect is to place an arbitrary vector d in the last m, rows of column p.

387

Journal of the Operational Research Society Vol. 29, No. 4

We will as in the previous section be in possession of a vector u such that
uB,, = A, and we define as before g = uB,,.

Case2a g=0
Proceed as in method 1(i) of the previous section.

Case2b g+0

Choose any index t such that g, # 0 and then define z = (u,0) (an m, + m,-vector)
and y = g, 'e}, +,. Pre-multiplying (8) by I — yz replaces the tth row of the unit matrix
below By, by —g; ' (g15--,0,...,9m,) Where 0 is in column t. We then use ordinary
eta vectors to remove the non-zeros in this row, then interchange columns p and
m; + t, which puts us back into case 1.

A NEW UPDATE FOR THE REVISED SIMPLEX ALGORITHM

A matrix I — yz can be constructed to return a spiked matrix S to upper triangularity
without fill-in as follows: let U be upper triangular and suppose column p of U is
replaced by d to create a spiked matrix S. Let U be m x m and let e, be the pth row
of I. Define z = e,U"" and let 1 = 2d and define y by

y;j=0 j=1...p—1
=21"14; j=p+L...m
=0 j=pandd, #0
=—1 j=pandd,=0.

Then pre-multiplying S by I — yz removes spike components from below the diagonal
and puts a 1 on the pth diagonal element if d, = 0 thus maintaining non-singularity.
Note that A 0 else z S =0.

REFERENCES

! G. B. DaNTZIG and R. M. VAN SLYKE (1968) Generalised upper bounding techniques. J. Comp. System Sci.
1, 213-226.

2L. SCHRAGE (1975) Implicit representation of variable upper bounds in linear programming. Math. Prog.
Study No. 4, 118-132.

3M. A. ErroymsoN and T. L. RAY (1966) Branch-bound algorithm for plant location. Ops Res. 14, 361-368.

*F. GLOVER and A. WOOLSEY (1974) Converting the 0-1 polynomial programming problem to a 0-1 linear
program. Ops Res. 22, 180-182.

SH. M. WAGNER and T. M. WHITIN (1958) Dynamic version of the economic lot size model. Mgmt Sci. 5,
89-96.

$G. B. DANTZIG (1963) Linear Programming and Extensions. Princeton University Press, Princeton.

"R. H. BarTeLs and G. H. GoLUB (1969) The simplex method of linear programming using LU decomposition.
Commun. Ass. Comput. Machinery 12, 266-268, 275-278.

8]. J. H. Forrest and J. A. ToMLIN (1972) Updating triangular factors of the basis to maintain sparsity in
the product form simplex method. Math. Prog. 2, 263-278.

?J. K. REID (1975) A sparsity exploiting variant of the Bartels-Golub decomposition for linear programming
bases. A.E.R.E. Harwell Rep. .

10]. A. ToMLIN (1972) Pivoting for size and sparsity in linear programming inversion routines. J. IMA 10,
289-295.

'1J, A. TOMLIN (1974) On pricing and backward transformation in linear programming. Math. Prog. 6, 42-47.

'2H. J. GREENBERG and J. E. KALAN (1975) An exact update for Harris’s TREAD. Math. Prog. Study No. 4, 26-29.

'3D. GoLorarB and J. K. REID (1975) A practicable steepest-edge simplex algorithm. A.E.R.E. Harwell Rep.

14J. A. ToMLIN (1974) Generalised upper bounds and triangular decomposition in the simplex method. Ops
Res. 22, 664-668.

388

R R

