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Given n points randomly selected from a uniform distribution on the unit square, we describe linear-time partitioning
heuristics which will construct a matching or a tour of these points. We show that the heuristics closely approximate the
optimum values as n — c0. Hence we show that the asymptotic values of the maximum matching and tour are ahout 0-3826n

and twice this value respectively.

heuristics * partitioning

1. Introduction

Let N={1,2,...,n), and E? be the plane R’
equipped with the usual Euclidean metric d(-, -).
Then, given a set X={x,€ E%: i€ N} with n=
2m even, the geometric maximum matching prob-
lem is to divide N into a set of m disjoint pairs M
(i.e. a matching) such that the sum of pairwise
distances

L(M)= T d(x,x) (1.1)

(i.j)EM

is maximized. Similarly, the geometric maximum
tour (or Hamiltonian circuit) problem is to de-
termine a permutation T of N (a tour) such that
the sum of successive distances

n—-1
L(T)= Z d(xT(i)’ xn;n;) +d(xT(n)’ xm))

i=1
(1.2)

is maximized. (Here we do not assume » is even.)

The best (known) exact solution algorithms for
these problems run in the potentially large times
O(n*) [3] and O(n?2") [6] respectively. It has been
shown [9] that the geometric minimum tour prob-
lem (the Travelling Salesman Problem) is NP-hard,
but no similar result appears to exist for the maxi-
mum tour problem although this is probably also
NP-hard.

Here we examine faster heuristic methods when
X is randomly sampled from a uniform distribu-
tion on the unit square [0, 1]2. (Actually, our re-
sults have somewhat wider applicability. This is
discussed in Section 5.) The minimization versions
of these two problems have been well studied in
this setting [2,5,8,10,11,12]. In particular it is
known that there exist heuristics which run in
almost linear time and produce solutions arbi-
trarily close to the optimum with probability close
to 1 as n = co. The maximization versions do not
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appear to have received as much attention. This is
quite natural, since the minimizing versions are
probably ol more practical importance. However,
it is interesting to investigate what results are
available in the maximizing case. We will show
that more satisfactory answers can be given, from
the theoretical point of view, than in the minimiz-
ing case. We present /inear-time partitioning heur-
istics which closely approximate the optimum with
probability close to 1 as n — oc. We show that the
asymptotic values of a maximum matching and
tour are respectively about 0-3826x and twice this
value. In the minimizing case the values are only
known to be cu/n and bv‘fn , for some constants a, b
and it is an open question whether b= 2a. The
partitioning methods we present are not entirely
new, see for example [2.5.8]. However, their appli-
cation to maximization versions of geometric prob-
lems does not appear to have been considered
previously.

2. Maximum matching

We will assume we have a set of n = 2m points
X|s X3,...,X, in the unit square [0, 1)>. Observe
that if points are selected randomly from any
probability density on [0, 1]?, the event that any
point has a co-ordinate equal to 1 has probability
0. Let &(n) be any even-integer valued function of
n such that k - o0 as n — o and k= 0(n") for
some a < 3. Let K= (1, 2,...,k}. For notational
convenience, we will let i denote (k+1—1{) for
any i € K.

Matching Heuristic
Step A: Divide [0, 1)? into k* equal-area sub-
squares S(i.j) for i, j € K. each of side &k '. Thus

S(i,j)={(x.y): kx| +1=i, |ky] +1=/}.

Sort the n points into these subsquares. Let X(i, j)
be the set of points in S(7, /). Note that S(i’, ;) is
the subsquare obtained by reflecting S(/, ) in the
point (3, 3), the centre of [0, 1)%. Letm « 0.
Step B: fori=1,2,....3k do
forj=1,2,....k do
while X (/. j) and X(i’, /') are non-
empty do
Choose any x, € (i, /),
%, EX(, ")
Add (p, q) to M.
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Remove x, from X(i. j). x, from
X )

Step C: Let X' =U, ;o X(i,j) be the remain-
ing points. Find a matching M’ of X’ using any
linear-time heuristic (e.g. arbitrary matching). Add
M’ to M.

This heuristic clearly runs in O(n) time, assum-
ing we have the floor function |-| available to do
the sorting in Step A. In Step C we could, of
course, improve on arbitrary matching by, for
example using steps A and B a further constant
number of times, halving the value of & at each
repetition, before resorting to arbitrary matching.

3. Analysis of the matching heuristic

Let €,=&"(i—'4;7= %) be thercentresof
S(i,j). We show first that any matching may be
reasonably approximated by assuming that all
points of X(i. j) are at ¢;,. Now given a point x in
[0, 1) let x" be the centre ¢;; of the square con-
taining x. Note that d(x, x )<k '/V2. Also,
given a matching M containing m pairs, let M’ be
the corresponding matching of the set of points
obtained by moving each point x to x’. Then, by
the triangle inequality, we have

[L(M)—L(M)|< \/2;71/{_'=}1k"'/\/2. (3.1)

We now examine the behavior of an optimal
matching when there is exactly one point at each
¢;;- Let this have value k?w(k). We note that the
points ¢, are centrally symmetric with respect to
the point (3, 1). since we may verify ¢, — (3. 3)
= (3, 3)—¢,;. We need the following

Lemma 3.1. Let C be any finite set which is centrally
symmetric with respect to the origin (i.e. if c€ C
then —c € C). Then a maximum matching of C is
given by matching ¢ with —c¢ for all c € C.

Proof. A sufficient condition for a matching to be
maximal (see [3]) is that there exists a set of real
numbers {u(¢): ¢ € C} such that

(i) for all ¢, ¢, € C, u(e,)+u(ey)=d(ey. ¢;)
and

(i) if (¢y, ¢,) is a matching edge, then u(c,)+
u(ce,)=d(cy, c;). Let u(e)=d(0,¢), then (i) is
simply the triangle inequality d(¢,. 0)+ d(0, ¢;) =
d(e¢), ¢;), and (i) is the equality d(c, 0)+
d(0, —c)=d(c, —c).
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Now Lemma 3.1 and inequality (3.1) justify the
approach used in the matching heuristic. Before
proceeding with the analysis, we consider briefly
the asymplmic behaviour of w(k). For any point
x [0, 1)%, let r(x) denote its distance form the
point (1, 1). Then from Lemma 3.1 we have

w(k)=k 22 r(c;). (3.2)

i)

Letting & — 0 we see that

) = —ff x,y)dxd y. (3.3)
0

A straightforward computation vields
w* = (V2 + log (1 +v2)),/6 = 0.3826.

Further fairly straightforward analysis also gives
the bounds

O<w*—wk)<k'/V2. (3.4)

We now show that the optimal and heuristic
matchings have the same asymptotic behaviour
with high probability.

Let N, =|X(i, j|. Then the random variable N,
has the bmomml distribution with parameters n
and k7. Let A, be the event that
N,; = [(1 -k Ynk~ ]—p forall i, ;.

The the Chernoff bounds (see, for example, [1])
yield
1-Pr(A,)<k?exp(—3nk *)=o0(n"?) (3.5)

for any constant s.

Now let M, be an optimal matching, and M,, be
the matching produced by our heuristic. Assume
that the event A, occurs. Then, by (3.1),

L(M,)=pk*w(k)—=1pk*(V2 k")
and it follows using (3.4) that
L(M,)>nw*—2nk" !

To deal with M,, let Y be a subset of X with
[Y N S(i, jl=p for all i, j. Let M, be the set of
pairs in M, which are contained in Y. Then, by
(3.1),

L(My) < pkPw(k)+ 1pk*(V2k ")
and

L(MN\M,)<(n—pk>WV2.
It follows, using (3.4), that

L(M,) <nw*+2nk™".
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Thus, we have shown that if 4, occurs then

nw* —2nk ' < L(M,) < L(M,) <nw* +2nk™".

(3.6)

The inequalities (3.5) and (3.6) tie down the be-
haviour of L(M,;) and L(M,) rather tightly. In
particular, if we were to pick the random points
X, X5,... sequentially in the natural way, then the
Borel-Cantelli lemmas yield

Theorem 3.2. As n — oo, almost surely
L(M,)/L(M,)—1and L{M;)/n— w* =0.3826.

Note that we could convert our heuristic into a
linear expected time heuristic with guaranteed per-
formance bounds as in (3.6) if, whenever the event
A, fails to occur, we call a polynomial optimizing
algorithm to determine the matching.

By way of comparison, consider matching the
points of X randomly in pairs to give a random
matching M,. We can comput» the expected value
of L(M,) to be

p,=np=n(2+V2+5log,.(1+v2))/30
= (.2607n. (3.7)

It follows by Hoelfding’s extension of the Cher-
noff bounds (Theorem 1 of [7]) that as n — 0,
almost surely

L(My)/n—p=0.2607
and
L(My)/L(M,)— p/w*

Thus, asymptotically, a random matching will have
value around 68% ol the optimal.

=0.6814.

4. Maximum tour

We can construct a partition heuristic for the
maximum tour problem which closely parallels the
matching heuristic of Section 2. We will merely
outline the method. Step A is identical with the
matching heuristic. In Step B, when x4, € X(i. /)
we set, whenever possible, x,,,,, € X(i". /") (i.e.
we ‘move’ successively between S(i, j) and S(i’, j")
until either X(i, /) or X(i'.j') is exhausted). In
Step C the partial tours formed in Step B are
joined together and the remaining points ‘patched
in’, in arbitrary fashion, to form a complete tour.
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Again the heuristic can be implemented in O(n)
time. Let T}, denote our heuristic tour and T; an
optimal tour, and note that L(T;) < 2L(M,). Now,
much as in the last section, if the event 4, defined
there occurs then

2nw* —4nk~' < L(T”)< L(T,) <2nw* + dnk™'.

(4.1)

Thus we have

Theorem 4.1. As n — oo, almost surely
L(T,)/L(Ty)— 1 and L(Ty)/n — 2w* = 0.7652.

We may also see by arguing as in the last
section that a random tour will have about 68% of
the length of a maximum tour.

5. Conclusions and comments

We have shown that partitioning heuristics are
capable of closely approximating the solutions of
the maximum matching and tour problems, assum-
ing the points are uniformly distributed in the unit
square. Moreover the approach yields the asymp-
totic behaviour of the optimal values.

Our results have many easy generalizations, for
example to problems in higher numbers of dimen-
sions. They readily generalize to any distribution
centrally symmetric about some point, provided it
tends rapidly enough to zero at large distances. (A
uniform distribution on the unit square is clearly a
special case.) They also generalize to any distance
metric resulting from a norm. Also, we believe
these, or similar, methods are applicable to other
related problems.

Finally, observe that our results indicate that, in
a certain theoretical sense, the maximization prob-
lems seem to be ‘easier’ than the corresponding
minimization problems in this situation. This is
not the first time that this type of behaviour has
been observed. For example, in [4], Fisher,
Nembhauser and Wolsey show that a similar phe-
nomenon occurs in the worst-case analysis of heur-
istics for the maximum and minimum tour prob-
lems in (complete) weighted graphs without trian-
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gle inequality. It is not entirely clear why this
difference exists, but it arises at least in part from
using a ratio measure to assess the performance of
heuristics.
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