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We describe an algorithm which, given n = 2m points in the unit square, finds a matching of these points. We prove that,
under the assumption that the points are uniformly distributed in the square, the algorithm has a fast expected running time,
and it gives a matching with value close to the optimum with probability one as n tends to infinity.
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1. Introduction

The Euclidean matching problem can be de-
scribed as follows: We are given n = 2m points X,
X5,...,X, in the unit square [0, 1)%. The distance
d;; between X; and X; is the usual Euclidean
metric. We wish to pair the points into m pairs so
that the sum of the lengths of the lines joining up
the pairs is as small as possible.

This is, of course, a special case of the weighted
matching problem which was so elegantly solved

by Edmonds [3,4]. However, Edmonds’ algorithm -

can run in £(n®) time, which in some situations
can be excessive. Therefore, there has been interest
recently in heuristics which have faster running
time, but which do not necessarily produce an
optimal solution (see [1,2,7-12]).

We shall assume that the n points are chosen
independently and uniformly at random from the
unit square, and we describe a class of partitioning
algorithms which have the following properties.
Let w(n) be an o(n) function of n which tends to
infinity with n. We describe an algorithm A,
which produces a matching M,, of length L in

time T, where the random variables L, T,, have
the following properties:

Pr{_ lim L,/Li=1)=1, (1.1)
n—o0

where L¥ is the length of the minimum matching
M*,

Pr(T, > cnw?(1 +en))=0(n%’:) (1.2)

for any ¢, > 0. Here cn® is any upper bound on the
running time of an algorithm to solve the match-
ing problem exactly.

Our algorithm is almost identical to that given
in [12]. In that paper the authors concentrated on
a worst-case analysis, while here we do a prob-
abilistic analysis in the spirit of Karp [6] and, more
closely, Halton and Terada [5].

2. The algorithm

For any function w of n, as defined above, let
k = (n/w)'/2. Note that k is a function of n such
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that k =o(n'/?) and k — o0 as n — 0. For sim-
plicity we will assume that k is integral, though
this is not essential.

Algorithm A . Divide the unit square into k2

subsquares, each of side k~!. Number these squares

S, S,,..., S,z going alternately up and down col-

umns (see Fig. 1).

Step A: Use Edmonds’ algorithm to optimally
match points in §;, j=1, 2,...,k%

Step B: If there are unmatched points in any S;

. (i.e., S; contains an odd number of points
and hence exactly one unmatched point),
then use the ‘strip heuristic’ [12] to match
the remaining points.

3. Error analysis of A,

We shall show that
L,—L*<18k™', (3.1)

This will imply (1.1), since Papadimitriou [7] and
Steele [10] have shown that there exists a constant
B such that
Pr( lim L3/n'/2=B)=1.

n—oo
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Let L, denote the length of the matching pro-
duced in Step A. We show first that

L,<L*+(8+6V2)k'. (3.2)

To do this, we start with M* and construct from it
a matching M of length L which satisfies
(a) every matching edge joins points
in the same subsquare,

(b) each subsquare contains at most 3.3)

one unmatched point,

() L<L*+@8+6/2)k
By construction, L, < L and (3.2) follows.

We now describe the construction of M from
M*,

(i) First we eliminate ‘long’ edges, i.e., those
that join points in non-adjacent squares in M*.
Suppose some points of S; are so matched in M*.
Let the charge for any point be half the length of
its matching edge, so that the cost of the matching
is the total charge. Divide these ‘bad’ points of S;
into four groups according to which of the four
subsquares S{V, S, S®, §® they fall into, as
shown in Fig. 2. _

Match all points in S{” together in an arbitrary
fashion for r =1, 2, 3, 4. There will be at most one
point in each subsquare left over. Now in M* each
point of this type must be charged at least k™!,
but in the revised matching each such point is
charged at most 1k~ '/v2. Thus the revised
matching has total cost less than M*. However,
there will be up to four points in S; which will now
become unmatched.These will be dealt with later.

(ii) We now deal with the remaining points and
edges of M*. For a given j, the points in S; are

s(1) s(2)
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matched either with points of S; or an adjacent
square. We must deal with the latter edges, which
we denote by C;. Consider those edges which go
from S; to S,,. There are two possibilities as shown
in Fig. 3.

Now the optimal matching edges do no cross
(otherwise uncrossing any such pair would lead to
a contradiction). Hence the edges of C; can be
ordered around the boundary of S; such that there
will be a portion of the boundary for each succes-
sive pair of edges in the ordering (see Fig. 3).
Moreover, the ordering is consistent with that for
S,. Suppose then that P, P,,.. ., P of §; are
matched with Q,, Q,,...,Q, of S; in this order
and that X,, X,,...,X, are where these edges cross
the boundary of the two squares (see Fig. 4). We
rematch P,,_, with P, Q,_; with Q, fori=1,

-

Fig. 4.
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2,..., |4t]. At most one point in each of S; and S,
becomes unmatched in this way. By the triangle
inequality, we have

PP, +Q,Q,—PQ, —P,Q,<b; +b,

(see Fig. 5).

The analogous inequality will, of course, hold
for all P, Q, and we deduce that the increase in
the cost for rematching points of S; and S, in this
way is at most half the sum of their boundaries if
they meet at a corner and one quarter if they meet
along an edge. Attributing one half of this increase
to each square of the pair, we find that the in-
crease in cost per square is no more than twice the
perimeter of a square. Thus the total increase in
length from this rematching is bounded by

k? x 8k™! =8k.

We may leave at most eight points in each §;
unmatched as a result of this, one for each of its
adjacent subsquares.

(iii) As a result of (i) and (ii) there can be up to
12 unmatched points in S;. Reduce this to at most
one by matching arbitrarily in pairs. This can add
at most 6k ~'y2 to the length of the matching.

The matching M produced by (i), (ii) and (iii)
clearly satisfies (3.3) and so we have proved (3.2).

Now the cost of the matching edges chosen in
Step B is no more than k~'v2 [12). It follows from
(3.2) that

L,<L,+k W2Z<L:+(8+72)k,
which implies (3.1).
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4. Time analysis of A,

The number of points n; in subsquare S; is a
binomial random variable with parameters n, p
where p = w/n. It is a routine calculation to show
that

exp{n‘}} <wi+3w2+w,

Thus the expectation of the running time T, of
Step A is O(nw?). Further calculation shows that
the variance of T, is O(nw?). Inequality (1.2) then
follows from the Chebychev inequality. (The run-
ning time of Step B is O((n/w) log(n/w)) and
therefore small by comparison.)

Note that we assume here that the ‘floor’ func-
tion |-| is available at unit cost for real numbers,
so that the n points can be sorted into the k2
subsquares in O(n) time. If this assumption is not
made, there will be an additional O(n log(n/w))
term in the running time, which becomes im-
portant if w grows very slowly with n (ie, w=

o((log n)'/2)).
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