A Parallel Algorithm for

All Pairs Shortest Paths
in a Random Graph

Alan TFrieze !

Larry Rudolph 2

Graph theory has proved to be a useful tool and there is much need for fast algorithms
to solve graph problems. We consider here the problem: of finding the shortest distance
between all pairs of vertices of a random graph whose edge lengths are independent iden-
tically distributed nonnegative random variables. Fach edge length has a disiribution
function F' with I’(0) = 0 and that F' is differentiable at zero.

We show that with this model of randomness all shortest distances can be computed in
O(loglogn) expected parallel time using n® parallel processors. This compares with O (log®
n) worst-case time, with n® processors ([Dekel]). We can, in fact, assume that the edge
distances are uniformly distributed in [0,1]. The extension to the general case follows as
in Frieze and Grimmett ([Frieze]). Reif and Spirakis ([Reif]) also consider the problem of
computing the all pairs shortest paths of a random graph, however, they require that the
edge weights satisfy a triangle inequality and thus their results do not apply to the general
case. Morcover, we require only n® processors whereas they require at least n? processors.

In our model of computation, we assume that comparisons, arithmetic operations and
the generation of random integers all take constant time. In addition, we assume that all
the processors share common memory and can read or write to any cell in a single cycle.
More precisely, we assume a concurrent-read, concurrent-write (CRCW) model of parallel
computation; if multiple processors may attempt to store into the same cell at the same
time an arbitrary one succeeds

Of notable interest is the part of our algorithm that chooses the minimum of n:{}a]-
ues quickly. Parallel CRCW algorithms for choosing the minimum with n processors
in O(loglogn) time ([Valiant]), with 1 < p < n processors in O(n/p + loglogp) time
([Shiloach]), and with n?® processors in constant time have been well known. Probabilistic
decision tree algorithms using only n processors and constant time are also known ([Reis-
chuk| and [Meggido]). We present a CRCW parallel algorithm, i.e. we account for the
processor allocation time, for this problem using n processors and show that with high
probability, only three constant time steps are needed.

LGSIA, Carncgie-Mellon University and Departiment of Computer Science, Queen Mary College, London.

?Department of Computer Science, Carnegie-Mellon University

1

Matrix Product Algorithm (MPA)

Input: A matrix D, where d;; is the length of edge (2, 7).
Output: Matrix D*, where d; ; is the shortest distance from ¢ to j.

Begin
DW .=p
Repeat
(1) DG+ .= D) 4 (k)
'~ Until D*+) = D) -
D* := D*
End

Figure 1: All Pairs Shortest Path Algorithm

1. The Matrix Product Algorithm

Let D be the original matrix for a graph G, = (V, E), where d;; is the length of edge
(2, 7) or oo if there is no such edge and let N = {1,2,...,n},n =]Vl It is well known
that the followmg ‘matrix’ algorithm (Figure 1) computes the all pairs shortest distances.

The * operation in line (1) denotes a special type of matrix operation defined as follows:
d¢*) = min{{d + d¥pe NyUD;} i,jeN
The validity of MPA follows from the ea.sily demonstrated

d(k) is the minimum length of a path from < to j using 2 edges or less.

Let -
m(D) =min{ p| for all 2,5 € N there exists a shortest path (9
from < to 7 using p edges or lesg}. (2)

Clearly line (1) of MPA is executed at.most [log,m(D)] times. The following two
Lemmas derive a bound on m(D) and show-how to execute line (1) in constant parallel
time with high probability. To avoid confusion, we shall say that every edge has a weight
(instead of saying length), a path has length = to mean that there are z edges in the path;
and that a shortest path is one that has the smallest total weight, i.e. the sum of the
weights on each edge of the path.

Lemma 1. Pr{m(D) > 37log®n} = o(n;'l)

Proof We usc the following result from [Frieze] which says that if the edge weights are
uniformly distributed in the range (0,1) thén, with high probability, there are no very

2

heavy shortest paths between nodes:

Pr(there exists 2,5 € N such that) 3
di; > 12logn/n) = o(n1) (3)

Let X = {(i,j) € N x N|¢ # j and d;; < 1/(3n)} and consider the graph H = (V, X).
Note that this is a random digraph where independently each (,5) € N x N is an edge of
H with probability p = 1/(3n) and not an edge of H with probability 1 — p.

We next show that, with high probability, H does not contain paths with many edges.
Pr(H contains a path with w = [log,n] edges) = o(n™"1). o (4)
Indeed the expected number of paths in H with w edges is’ |

< (o7 1)+ DU <nd) =0t~ ()

and (4) follows.

Suppose now that neither of the events descnbe’d in (3) or (4) occurs. It is left to show
that m(D) < 37log?n, i.e. any path with more than 37log?n edges is not a shortest path.
Let P be any path in G, with ¢ > 37log’n edges. By (4) there are no paths in H longer
than w edges and so P contains at least ¢/(w + 1) edges not in X. By construction of H,
each edge of P not in X has weight greater than 1/ (3n) and so when 7 is large,

),

12logn

weight of P in G, >()(> (n

and hence P is not a shortest path. 3

Lemma 2. Line (1) in MPA can be executed in constant expected parallel time using
nd processors. ’

Proof. As there are n® processors, n processors can be allocated to the calculation of
d(f 1) for each 4,5 € N in parallel. We show there are enough processors so that line (1)
of MPA can be executed in constant expected parallel time. Line (1) consists of two steps;
first n? sets of new shortest distances are computed and second the minimum value in each
of these sets is chosen. Note that each set contains at most n elements.

Let us fix ¢,7,k and write up, = d(k) + d(k) Clearly uy,us,...,u, can be computed
in parallel in constant time with n processors for each p; processor PE, computes u, for-
p = 1,2,...,n. All that needs to be shown is that the minimum of n numbers can be:
computed in expected constant time with n processors. This is proved in the following
section. g

2. Computing the Minimum in Constant Time

In this section we present a parallel algorithm for computing the minimum of n num-
bers, which we refer to as clements to avoid confusion, in constant expected time. Note
that we present an algorithm and not just a decision tree method.

3

Select Minimum

Input: Set of z;,z,,...,%,, elements
Output: minval

Begin
. /* Initialize Data Structures */
(0<i<m) R[¢] «— ”Nobody is smaller”

" [* Perform All Pairwise Comparisons */ .
(0<4,5<m) if z; <z; then
, R[z] «— ”Somebody is Bigger”
o /* Find element that is smallest */
(0<i<m) if R[:] = "Nobody is smaller” then
minval — z;

End

Figure 2: Minimum of m elements with m? processors

We first review the well known method to compute the minimum of m elements with
m? processor in constant time. Let z;,%2,...,Zm be the m elements. The m? processors
are used to perform all pairwise comparisons in parallel. A vector of size m is used to
record all the z; for which there is at least one element smaller than it. There will be one
z; for which the corresponding array element has not been set. The algorithm in the figure
2 makes this precise.

The improvement in which the minimum of n elements can be found in constant time
with n processors is based on a lovely idea independently discovered by Reischuk and
Meggido. The idea is to randomly choose square root of n of the elements and compute
their minimum in constant time with the n processors according to the above description.
With very high probability, there should remain only about {/n elements that are smaller
than this minimum. A second and possible a third iteration will almost surely find the
real minimum of the whole set. Reischuk examined the more general case of choosing the
k" largest and presents an upper bound on the expected number of phases of comparison
steps (i.e. a decision.tree model). Meggido also assumes a decision. treec model and shows
that the minimum can be found in constant time “almost surely”.

We are concerned with a parallel algorithm and not a decision tree result, and so, we
must consider the processor allocation problem. Moreover, we precisely compute exactly
the expected number of iterations required to compute the minimum.

Let m = | y/n| with the n clements denoted u;,ua,...,u,. The first step of the decision
trec method poses no problem for processor allocation; the first m processors randomly

4

Improved Minimum Selection

Input: n numbers u;,us,...,u, and n PE’s,
Output: the minimum value, minval.

Loop
/* Initialize Data Structures */
(0 <7< m) Test[i] := nil

IsMin[i] := "Nobody is smaller”

(i=1) Done:= true
minval := oo

/* Choose m Elements */

(0<i<n) if u; < minval then
TP = Random Index between 1 and m
Test|r;] := u;

S

/* Compare all pairs and record results */
(0 <25 <m) if Test[i] < Test[j] then
IsMin[j] et ”Somebody is smaller | ESEE el
. R i : NN
! /¥ Pick minimum */ . i 7% I S
(0 <2< m) if IsMin[i] = "Nobody is sm‘xller then
minval := Test][i]

/* Are we done? */
(0<2<n) if u; < minval then done := false
Until Done

Figure 3: Minimum of n elements with n processors

choose elements with the element chosen by PE; assigned to z;. After the first iteration,
however, there may be many candidate elements remaining although in no apparent order.
It is not clear how to assign at most m of the remaining elements to the array z. We
propose the following method (see Figure 3):

Instead of choosing a candidate element, u; to assign to z;, we invert the procedure and
have each candidate element u; choose a z;. That is, for each element, u;, that is smaller
than the current minimum processor j randomly chooses an index ¢ and assigns u; to z;.
If more than one element chooses the same index then we assume that an arbitrary one
of the assignments succeed. Since about 1/e of the indices will be nonempty, the iteration

can procced choosing a new minimum.

More precisely, we present a parallel program outline, called APSPA and then derive
its expected running time.

Ov " ~We now progeed to prove that with high probability (i.e.l — o(ng)) only a small
number (th‘n%ou:) of iterations are required to find the minimum. (Note that due to

our method of assigning elements to the array Test we cannot use the proofs of Meggido
or Reischuk.)

Let T} denote the set of elements successfully stored in Test during the kth iteration
and let C) denote the set of candidates, that is Cy = {u; < minval,_,}, where minval,_;
is the value of minval after the k — 1 iteration. We examine the probable sizes of these
sets and prove: . ’

Theorem 1: The following five statements about the sets Test and Candidates are all

/ true. (We precede each statement with an informal, intuitive description in parentheses.)

(a) (With high probability, during the first iteration, all of Test gets filled.)

4 = Pr(|Ty| < m) =8t o(n"*)

(With high probability, the minimum chosen at the end of the first iteration is no

larger than imlog n of the elements.)MMW@\

4 -
NI = Pr(|C.| > ®mlogn given that |T}| = m) = ofd™ oln 3)

(c) (With high probability, during the second iteration, 1/4 of Test gets filled or, if C;
is small then Test gets at least 1/4 of C;.)

Y |
I = Pr(|Ty| < .25min(m, |C,]) given that\|Cy| < §mlogn) = of™Y. o(ri>) -

J

(With high probability, the minimum chosen at the end of the second iteration is
no larger than 3%}logzn of the elements.)

- 33
F+1 darolin Ilp = Pr(|Cs| > Blog?n given that
(6 osnPb \- c({g\) |C2| < 2m logn and |T2| > .25min(m, |C2])) =-eo{n<y) of n_g)

¥ (e) (With high probability, during the third iteration all but at most § of the remaining.
candidates are assigned-to Test.)

g =Px(|C; — T3| > 3 given that |C3| < 17log?n) = o(n %)

We deduce then th"‘g‘. xvith high probability after three iterations the set of candidates
is reduced to at most>twg elements and thus the minimum will be found after no more
than feur-iterations. 2 1+ 5§ Jarlew

Proof. of (a): Consider during the first iteration how elements are assigned to the array
Test. The probability that some index of Test is not chosen is:

Pr(Testfij =nil)= (1-1/m)* <e™
and so

HA =Pr(IT1| <m) d
< Pr(Testi] = nil) Sme™ = o(°%) fur amy d>o,

N NE S | °

Proof. of (b): This result follows from the fact that the number of ways to form the array
Test without choosing any of the 2mlogn smallest elements is very small compared to the
number of ways to form it choosing from all n elements. More formally:

Tyisa random m-subset of N and if |Cp| > s = [gfnlogn]

m

then there are only (3°) choices for T;. Thus

Ilp < (n; s)/(;:) <@1- 3)")"' e min < i =3t o(n~*)

B
Proof. of (c): If | C | is big then we expect about 1/e of Test to be filled. We use the
value 1/4 since it is less than 1/e and alsc works for when C is small. -Also-netethat-the

) S U

s—-1
Me <) IL/Pr(|Ce|<s)
k=9

where . - ')
I = Pr(|Ty| < 25min(m, k) given that |Co| = 8) £ (1C, | =k)

Let ky = |k/4], then for k < m,

II, < Pr(there exists a kj-subset S of {1,2,...,m}
such that for each ¢ € C; processor PE; chooses a random integer in S)
< (1) Uey fm)*
< (me/ky)*t (ky/m)*
< (k e1/3/4m)3"/4.

Also k > m implies II;, <II,, and so

n)
Ty < (1 “Zm(k 61/3/4m)3k/4 +1¥mlogn(el/3/4)3m/4 =\e€m;\32 o(r\"’)
¢ ='Pr(lCa < 35 k=% ' | '

1
Proof. of (d): We will use the following shorthand notation:

33
p : [8Nog?n]

Ap : (|G| =k)
B; : (|| =1)
W. : (|Ce| < 2mlogn)

W: (|T2|>min{m,|02|}/4)
7

Using this notation, we rewrite and proceed as follows:
HD = Pl‘(le' 2 D l Wc & Wg)
E2mlogn Pr(|Ca|>p| Ak & By) Pr(A, & By)

Zk
k=p 1=.25min{m,|k|} Pr(We & W)

22:::8” zf:.%min{m,lkl) (ﬁ:;p)/ (’:) .

. R
< TimeEr F ssminmiy (1 — P/K) < £ X e~ Nogn/8

IA

and (d) follows.

Proof. of (e): Imagine that 7;,7 € Cj, elements are chosen sequentially. Then |C; — T|
is the number of times an 7;, just generated, has been chosen before. But the probability
of this happening is never more than p/m regardless of the previous values of the r;’s. As
C3 < p we have :

7

Pe(|(Cs ~T3)| 2 3) < z":((f))(p/m)*(l — p/m)t = O(F%/m)
=

(the terms in the sum reduce by at least a factor of p?/m as k increases.)
The result of this paper can be summed up as follows:
Theorem 2: The expected running time of MPA is O(loglogn).

Proof. From Lemmas 1 and 2, the expected running time is O(log(37log?n) +n~llog®n).
B

=

4) . S n LS 5
B ol 1y T

Bibliography

Dekel, E., D. Nassimi, S. Sahni, “Parallel Matrix and Graph Algorithms,” SIAM
Journal of Computing, Vol. 10, (1981).

Frieze, A. and G. R. Grimmett, “The Shortest Path Problem for Graphs with Random
Arc-Lengths” to appear in Discrete Applied Mathematics. ,

Megiddo, N. “Parallel Algorithms for Finding the Maximum and the Median Almost
Surely in Constant Time,” Preliminary Manuscript, GSIA, Carnegie-Mellon University,
Pittsburgh, PA (1982).

Reif, J. and P. Spirakis, “Expected Parallel Time and Sequential Space Complexity
of Graph and DiGraph Problems,” Technical Report No. 91, New York University, Oct.

1983.

Reischuk, R., “A Fast Probabilistic Parallel Sorting Algorithm,” 22nd Symposium on
Foundations of Computer Science, (1981), 212-219.

Shilaach, Y. and V. Vishkin, “Finding the Maximum, Merging, and Sorting in a Par-
allel Computation Model,” Journal of Algorithms, Vol. 2, (1981), 83-102.

Valiant, L. G., “Parallelism in Comparison Problems,” SIAM Journal of Computing,
Vol. 4, No. 3, (1975) 348-355. '

. .
. St
Y

.

