Random Graphs 87)
Edited by M. Karoiski, J. Jaworski and A. Rucidski
© 1990 John Wiley & Sons Ltd

t

PARALLEL COLOURING OF RANDOM GRAPHS

Alan M. FRIEZE

Department of Mathematics, Carnegie—Mellon University,
Pistsburgh, USA

and

Ludek KUCERA

Charles University,
Prague, Czechoslovakia

The paper describes a parallel imﬁlemntaﬁon of the greedy colouring algorithm
which colours almost all graphs with n vertices by at most

1 n
(ioaoion)
log; log,log,n/ logyn
colours (the probability that a random graph with » vertices is coloured by morc

colours is

for each fixed k). The algorithm runs in O(log3 nlog, log, n) worst case parallel time on
PRIORITY concurrent-read concurrent-write parallel RAM with O(n?log; > n) processors
and consequently in O(log3n log, log,n) worst case parallel time on exclusively-read
exclusively-write parallel RAM. The expected number of colours used by the algorithm
is roughly the same as the number of colours used by the sequential greedy algorithm
and approximately twice the expected value of the chromatic number of the graph.

1. Introduction

Colouring of graphs is known to be NPcomplete [Ka], [GJ] and
therefore no algorithm is known to find the optimal colouring of graphs in
polynomial worst-case time. Moreover, it has been proved that the
existence of a polynomial time algorithm colouring any graph G by at most
1.99 x(G) colours would imply P=NP. However, there are fast graph

41

42 AM. Frieze and L. Kudera

colouring algorithms with a good average performance. Perhaps the
simplest one among them is the greedy colouring. It was proved that the
average value of the ratio 4(G)/x(G), where A(G) denotes the number of
colours used by the algorithm, is 2+0(1) (for the upper bound see
[GMcD]). This means that, in spite of its simplicity and speed, the greedy
colouring is a relatively good algorithm. Moreover, no polynomial time
algorithm is known to have substantially better average behaviour on the
class of all graphs.

The aim of the present paper is to study a possibility to implement the
greedy colouring algorithm in poly-log parallel time. A colouring can be
viewed as a covering of the vertex set by disjoint stable sets, because
monochromatic sets of vertices are stable. Since the expected size of the
largest stable set of almost all graphs with n vertices is (2+ o(1)) log, n, it is
easy to implement the greedy algorithm for finding large stable sets in
poly-log parallel time. However, the greedy colouring algorithm seems to be
inherently sequential, because the condition of dxs;omtn&ss implies that
stable sets can not be looked for simultaneously.

Our algorithm is based on the idea to cover the vertex set by stable sets
which are not necessarily disjoint, colour each stable set by one colour (of
course, some vertices are coloured by more than one colour) and finally to
choose arbitrarily one of the assigned colours for each vertex. The quality of
such an algorithm depends strongly on the amount of vertices which are
coloured by more than one colour.

The basic result of the paper, Lemma 1, shows that, roughly speaking, if
we construct independently and greedily about n/log?n maximal stable sets
in a suitable way then their overlapping is almost surely sufficiently small
and the number of covered vertices is of order n/log n. Now, it is not difficult
to see that poly-log number of iterations of this procedure gives a good
colouring of all vertices of the input graph.

Throughout the paper, 0<p<1 is a constant and logn means log,n,
where b=(1—p)~?, V, denotes the set {1,...,n}.

As a model of random graphs we use the probability space G, of all
labelled graphs with the vertex set V,, where

PI’Ob(G"'péG)=pm(l _p)('z')-m

for each graph G with the vertex set ¥, and m edges. In other words, the
probability that two vertices are connected is p and those probabilities are
independent for different pairs of vertices.

Paraliel colouring of random graphs 43

As a model of computing we use a concurrent-read concurrent-write
parallel random access machine with PRIORITY rule of writing conflict
resolution [Ku] and unit cost of operations. More precisely, we suppose
that each cell of memory of parallel RAM can contain a natural number of
size O(n), where n is the number of vertices of the input graph, the cost of
any arithmetic operation is constant, the number of processors is bounded
by a polynomial in n, any number of processors can read simultaneously
from the same memory cell and, moreover, processors are linearly ordered
as P,,.., P, and if several processors try to write into the same memory cell
then the processor with the smallest order number succeeds.

2. A Parallel Greedy Colouring Algorithm

In this section we describe our parallel greedy colouring algorithm.
Our algorithm proceeds in rounds. In the first round L= [logn7 2
and m= | n/L] and we have m (groups of) processors P,,.., P, which
independently and greedily choose stable sets S, S,...., S,, where processor
P, starts its construction at k;=(i— 1)L+ 1 and examines vertices in order
ki, ki1, ki+2,...m, 1, k— 1.

We colour veS=S§,u..US,, with colour ¢, where t, is an arbitrary
element of {i |ve S;}, and repeat the process on G[V,—S]. The main task is
to show that the size of S is approximately mlogn with high probability. It
then follows easily that G, , can usually be coloured with approximately
n/logn colours in O(logn) rounds.

The algorithm is now given more formally.

Parallel Greedy Colouring Algorithm (PGC)

begin

Va:=V, {=set of uncoloured vertices};
Co:=0;

for j:=1 to n pardo c(j):=0;

{c(j) is to become the colour of vertex j}

while |V¢|> do

begin
L:= [log|Vg|1 %
m:= | |Ve|/L];

VXN N NN

4 AM. Frieze and L. Kulera

10. for i:=1 to m pardo GREEDY (c,,i);

11. S:={v|c@)>co}; Va: —I'}, —8; coi=Co+m;
12. end;

13. {assume V,={v,.9;...0,}}

14. for s:=1 to r pardo c(v,):=cy+s;

15. end;

where procedure GREEDY(c,i), which chooses greedily a stable set
contained in V;={v,,0,,...v,} starting at vertex (i— 1) L+ 1 and colours its
elements by c+i is defined as follows:

procedure GREEDY (c,i);

1. begin
2 ki=(-1)L+5 X:={n};
3. while(X isnota maxxmal stable set in G[VR]) and (|X]<3logn) do

4, begin
S 1:= min{k|v,, 4 g mod,€X and {0, 4 zmea, JUX is stable};
6. X :=XU{0g, 4+ 1moa 1
7 C(Ok,+1mod,) i=C+1i;
8 end;
9. end;

Note that several processors (corresponding to simultaneously executed
calls of GREEDY (c,i) for different i) might try to write simultaneously into
the same variable (j.e. to colour the same vertex) in line 7 of GREEDY; this
is of course allowed on PRIORITY concurrent-read concurrent-write
parallel RAM. Note that RANDOM write conflict resolution rule (a
randomly chosen processor succeeds if several of them try to write into the
same memory cell) would be sufficient to implement colouring in line 7 of
GREEDY, but the PRIORITY rule is very convenient to implement line
5 of GREEDY, as we shall see later.

3. Analysis of Parallel Greedy Colouring

The following lemma is the key to the analysis. Its proof is deferred until
‘we have explored its consequences.

Parallel colouring of random graphs 45
Lemma 1. Let m,S refer to the first execution of the while loop 7-12. Then

1 _ ~f(oglogn)®
Prob(|s|<(1 —loglogn)mlog n)-O(——logn .

Armed with Lemma 1 we can prove
Theorem 1. If PGC is applied to G, , then

1 i colours]
logloglogn / logn

(a) Prob[PGC uses more than (1+

1 loglogn
=o0(n"3 logloglogn)

(b) Prob[the number of iteration of while loop 7-12 is at least
3logloglogn
(Toglogn lognloglogn]

1 loglogs
=o(n"3 logloglogn) ,

Proof. We rely on the fact that an iteration of while loop 7-12 does not
condition the edges contained in V. This is a well known property of the
greedy algorithm for constructing a stable set.

Let n, denote | V| at the start of the £'th iteration of the while loop. Thus
n,=n and

n
>
"2 jognloglogn

if the loop is executed at least ¢ times.
Let 0,=1if

n,—n,.;<(1)m, logn, ,

—log logn,

where m,= | n,/L,|] and L,= [logn,]? otherwise 5,=0. Suppose
that the while loop is executed T times. Then the number of colours K
used satisfies o

n

T n T T
<Y @1- ' S
K<Y <X 5:)m:+"1'§6‘+lognloglogn

= lm‘+lognloglogn =1

46 AM. Frieze and L. Kufera

But since
n -nt'l'l)(l 6‘)(_loglogn) t gn‘
>(l—(§,)(l—loglog n)m,logu for t<Tand n large,
we have
):(1 syme<(1+——)-2— for nlarge. @
¢ loglogn/logn

Now if n is large then §,=0 implies

1—-
”:+1\(1 —i;g‘:f") n,.

Hence if T'=YT_ (1—4,) then we have

2
— P <n 11 —Tgism r’sm_ T"(1.- 2/log log n)flog »_
lognloglogn logn

For large n this implies

T’<lognloglogn(1+%gl°g”) .

loglogn @)

Now 4,,0,,..;,07 is a sequence of independent Bernoulli trials where

a(loglogn)®
=l)g——=2="
Prob(5;=1)< " 2

for some constant a>0. (Note that logn,~logn is used here.)
Now (3) implies that if

3logloglogn
- Sloglogiogn
T>T,= |-logn!081°8"(l+ loglogn)-I

Parallel colouring of random graphs 47

that 5,=1 at least lognloglogn>>t,= [y18%55 | times in the first
T, trials. The probability of ¢, successes in T, trials is at most

(75) (a(log logn)®)“’ < (7630008108 ")3)”=o(n-%lo‘?%m%).

ty logn tologn
This proves (a) and then (b) follows from (1), (2) and the above. O

The following lemma establishes some (possibly well known) facts about
the (ordinary) greedy algorithm.

Lemma 2. Let >0 be arbitrary.
Prob(|S,| <(1—¢)logn)<ne="1tos» (3a)
Prob(|S,|>(1 +¢)logn)<n~*/q, where g=1—p, (3b)
E(S,)=(1+86,)logn, where |0,|=O(oglogn/logn), (3¢)
Prob(kesl)sf’-l-"g;i" for 2<k<n, (3d)

where a>0 is a constant.
Proof. (a) Let E; denote the event

{i,i+1,...,i+u—1_—;','m— 1 are not adjacent to S,n{1,2,...,i—1}
and [S;n{1,2,..,i—1}|<(1—¢)logn}
for l<i<n°=n+l—m .
Now the event
Bo
{|S,|<(1—¢)logn} = Y E,
i=1
and
Prob(E;|S;n{1,2,..i— 1})<(1 —(1— pyt = s ") T=oTess

8
=(1—n~"1-9)T=olos < =" /1087,

Now (a) follows on removing the conditioning and multiplying by n..

48 AM. Frieze and L. Ku&era

(b) Let F, denote the event
{i is not adjacent to §,{1,2,...,i—1}
and |S;n{1,2,,i—1}|> L(1+¢)logn] —1}.
Then
Prob(|S,|>(1+8)log n)sProb('C}lF‘)s n(l—p)ttolesr=—1_p=t/g

(c) Put

_log,2+1og,log, n+log,log,n
- log,n)

Then n*=2(log, n)(log,n) and so

Prob(S,|<(1—é,)log n)si .
Hence
E(S,)=>(1—n"")(1—g,)logn. @

Now put £=¢,=log,log,n/log,n in (b) so that n*=log,n. Then
E(S,) <(1+¢&,)logn+3logn Prob((1+&,)logn<|S,|<3logn)
+n Prob(|S|>3logn) ®)]
<(1+g)logn+3/g+n~/q,
as (b) implies Prob(S,|>3logn)<n~2/g. () follows from (4) and (5).

(d) Let n,=Prob(keS,) for 1<k<n. Then

E(S,)=m,+ 7 +...+=,. (6)
Furthermore
m=2n,, forl<k<n)]

since

Prob (k+1eS,)=Prob(k+1 isnotadjacent to S, n{1,2,....k})<

Parallel colouring of random graphs 49

<Prob(k+1 is not adjacent to §,n{1,2,....k—1})
=Prob(keS,) .

(6) and (c) yield
Ty + Ty + e+ Ty < (1 —Oryz0)log [n/27,
Ty + 7y + .+ 7, <(1+6,)logn
and hence
n
w21+ 1 Twi21+ 2 +"-+7‘u<logm+ 8,logn+6,,,log[n/2]
<Aloglogn

for some A>0. (7) now implies

Aloglogn
<= 2 2
TS T2

and (d) follows.
We can now turn to the

Proof of Lemma 1. We use the fact that

m-—1

ISiI=Yisl-X X [sins) ®)
i=1 =1 j=i+1

It follows from (3a) with e=(logn)~ 1/ that
Prob(Y |S;|<(1—(logn)~*})mlogn)
i=1
<mnexp{—n~Usm™'? flogn} =o(n~'%"). ©)
Next let R(i,j)=1if jeS;, R(i.j)=0 otherwise, for 1<i<m, 1<j<n. Then

m—1 m n
Y Y |sinS|=X W (10)
i=1 j=i+t k=1

50 AM. Frieze and L Kulera -

where

m—-1

W=3 T RGORGY.

i=1

Let y(k)=(k—max{k,|k,<k}) mod n+ 1. We show later that

_ofCoglogn)® (oglogn)’
B =of 1 GE LoEOETT), ay
This implies that
L _ ~f nlloglogn)* (oglogn)®\ & 1
E(.;;'W*"‘O((logn)?)*0(logn)2 e
=O{m(loglogn)®) ,

since 38, 1/(k)=O (mloglogn). Hence, the Markov inequality im-
plies that

5 mlogn (loglogn)®
>——2__ J=of T2),
Prob (ggll K “2loglogn) o (logn (12)

(8), (9), (10) and (12) together imply the lemma. We must now prove (11).

Consider the sequence of vertices k;, k;+1,...,n,1,...,k,— 1 looked at by
processor P;. Let «(j, k) denote the position of k in this sequence so that
(i, k))=1 etc. Now, .

E(R(, k) R(j, k))=Prob(keS,) Prob (keS| keS)). (13)
Assume that a(i, k)> a(j, k). Then, by (3d),

aloglogn

Prob(kes l) < w

(14

and ‘
Prob(keS,|keS))
<Prob(k is not adjacent to S;~{k, k,+1,...k,—1})<

Parallel colouring of random graphs 51

aloglogn aloglogn
<P —a(, B ~(—)modm)L’ (15)

We can assume w.Lo.g. that k)k_ and then (li)-(lS) imply

"= & (aloglogn?
B(W< X 2 GlG-9L

m=2 mcl (aloglogn)* = "c!(aloglogn)?

- 12:1 j=i+1 (m—f)U—i)LzT i=1 (m—ILY (k)

aloglogn)’(- 1)2 (aloglogn)> =21 1
<(2oE0en)y 2) EOEDEN Ty
(L ,g',t Lyk) <1t

and (11) follows, as does the lemma. (]

4. Time Analysis of the Algorithm
The analysis of time complexity of the algorithm PGC is based on

Lemma 3. The procedure GREEDY can be performed in O(logn) time on
PRIORITY concurrent-read concurrent-write parallel RAM with O(|Vg))
Processors.

Proof. Lines 2 and 7 of GREEDY can be computed sequentially in con-

stant time. One execution of line 5 needs gonstant time on PRIORITY

concurrent-read concurrent-write parallel RAM if* processors P,,..P,

proceed as follows '
if {0k, +xmod JUX is stable then I:=k;

A possible way how to test whether {v}uX is stable is to use an
array Stbl(1),.., Stbl(r) of boolean variables which are set to true when
GREEDY is called and to add the next statement to line 6 of GREEDY

for j:=1 to r pardo
if (j =k,+1modr) or (v, is connected with vy, moa,)
then Stbi(j):=1alse;
Now, Stbl(j) is true iff v,¢X and Xu{p)} is stable. O

An immediate consequence of Lemma 3 is

52 AM. Frieze and L. Ku&era

Theorem 2. The algorithm PGC runs in O(log?n log log n) worst case parallel
time on PRIORITY concurrent-read concurrent-write parallel RAM with
O(n?logn™2n) processors.

5. Conclusions

We have shown that most graphs could be coloured by O(nlog™1n)
colours in poly-log worst case parallel time.

The number m of different stable sets which are looked for simulta-
neously in line 10 of the algorithm is a trade-off between the amount of
parallelism (the larger is m the greater is the number of stable sets
found in one execution of the loop 7-12) and the amount of overlapping of
these sets (the larger is m the greater number of vertices is covered by more
than one stable set). The optimal value of m s clearly between | V| log™ A
and |Vg|log™!| V], but it is unknown to the authors.

It would also be interesting to investigate a parallel colouring of sparse
random graphs which have large stable subsets, because in such a case our
procedure GREEDY does not give maximal stable sets (or, if we remove the
test |X|<3logn from line 3 of GREEDY, it would be too slow).

References

[G] Goldschlager, A unified approach to models of synchronous parallel machihes,

. J. ACM 29,4 (1978), 1073-1086.

[GT] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, San Francisco, 1979.

[GMcD] G.R. Grimmett, CJ.H. McDiarmid, On colouring random graphs, Math. Proc.
Cambridge Phil. Soc., T7 (1975), 313-324. :

[Ka] RM. Karp, Reducibility among combinatorial problems, [in] Complexity of
Computer Computations, RE. Miller and J.W. Thatcher, eds, Plenum Press,
New York, 1972, 85-104.

[Ku] L. Kulera, Parallel computation and conflicts in memory access, Information
Processing Letters 14,2 (1982), 93-96.

