&N\

Information Processing Letters 25 (1987) 111-117 6 May 1987
North-Holland

PARALLEL ALGORITHMS FOR FINDING HAMILTON CYCLES IN RANDOM GRAPHS

AM. FRIEZE

Department of Computer Science and Statistics, Queen Mary College, University of London, Mile End Road, London EIl 4NS,
United Kingdom

Communicated by P. Henderson
Received 6 March 1986
Revised 24 July 1986 and 30 September 1986

Keywords: Hamilton cycle, parallel algorithm, random graph

The past few years have seen significant progress in the study of hamilton cycles in random graphs from
constructive and nonconstructive viewpoints. In this article we consider the use of parallelism on the
problem.

The model of random graph that we use is G, = G, , where p is constant, i.e.,, V(G,) = (1, 2,...,n} and
each of the N = (3) possible edges are included or excluded with probability p.

Bollobas, Fenner and Frieze [1] give an algorithm which always determines whether or not G, is
hamiltonian and has polynomial expected running time for p > 3. Gurevich and Shelah [3] and Thomason
[4] give algorithms with O(n) expected running time—they ignore the time to input G, as we do.

We can use [3,4] to define algorithms A,, Ay, Ag,. Ay is the second algorithm of [4] and A, is the
O(n) space dynamic programming algorithm of [3]. Algorithm A is then given as follows.

Algorithm A,
begin
apply Ag, to G;
if successful then output the hamilton cycle
else apply Ag, to G,
end;

The properties that we need are stated in Lemma 1 below and are taken from [1,3,4]. For algorithm A
and graph G, T(A, G) is the running time of A on G. c,, c,,... will be used to denote unspecified positive
‘constants’ (which depend on p). Also, our ‘big O’ notation will hide further constants which depend on
the exact value of p.

1. Lemma
T(Ag, Go) < 0. (1a)
Pr(A g, fails to determine whether or not G, is hamiltonian) = O(3™"). (1b)
A g, always succeeds in determining whether or not G, is hamiltonian. (1c)
T(A gz, Gp) = O(m*2"). (1d)
Pr(G,, is not hamiltonian) < n*(1 — p)"~ . (le)

0020-0190,/87/3$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland) 111

Volume 25, Number 2 INFORMATION PROCESSING LETTERS 6 May 1987

We can now describe Algorithm A; which runs on an EREW P-RAM [2] and uses O(n log n)
processors. (Throughout this paper, log n = log,n.)
Let

a=max{1-p,3}, B=4/log(l/a) and A=[B logn]

and let p=|n/\].

Let $;,={1,2,...,\}, S, ={N+1,...,2X},...§, partition V(G,) so that |S;|=Nor N+1 for i=
1, 2,...,n. Let H; = G[S;] be the subgraph of G, induced by S;.

In the description of the algorithm we shall assume, for simplicity, that |S;|=\,i=1,2,..., p. The
algorithm can easily be modified to allow for subsets of size N\ + 1 as well.

Algorithm A,
The ‘output’ of our algorithm is an array h(1), h(2),...,h(n) defining a hamilton cycle with edges
(i, h(i),i=1,2,...,p.

begin
fori=1 to p pardo
begin
A: apply algorithm A, to try to construct a hamilton cycle C; in H;;
{this cycle is represented by h((i — 1)\ + 1),...h(i\)}
if no cycle is found then goto B
end;
for i=1 to p — 1 pardo patch(i, outcome);
{try to make a patch between C; and C;,,—see Fig. 1}
if outcome = success for all i then terminate.
B: apply Algorithm A, to G,; terminate.
end;

Procedure patch(i, outcome);

begin
forj:==|N\/2]+1 to A\ — 1 pardo
for k =2 to |\ /2| pardo
begin
e;=({A—DN+j, h(ix +K));
&= (h((i — DN\ +j), i\ +Kk);
if e,, e; € E(G,) then X(j, k) :=1 else X(j, k):==0

end;

T:={(, kK :X(G, k)=1}; { = set of ‘patches’}

if T =4 then outcome := failure

else begin
outcome := success;
parselect(j, k) € T; {choose a member of T}
h((i —1)\ +j) © h(i\ + k) {interchange them}

end

end.

112

™~

Volume 25, Number 2 INFORMATION PROCESSING LETTERS

6 May 1987
U= N+j
hit-1) X +3)
Fig. 1.
2. Theorem
E(T(A,, G,)) = O((log n)z). (2)

Proof. The execution time of A is O((log n)?) by (1a) of Lemma 1 and the probability that there is an i
such that A, fails to find a hamilton cycle in H; is O(pNa*) = O(log n/n’).

(Pr(A, fails to construct a cycle in H;)
< Pr(H; is nonhamiltonian) + Pr(H; is hamiltonian and A, fails to find a cycle)
=0(N(1-p)")+0(3™") by (1b) and (le) of Lemma 1.)
We show next that the probability that there is an execution of Procedure patch for which T=# is
O(p(l _ pz)?\’/IG) _ O(Hnazlog(l—pz) log n/l6) = O(n~l8 ™).

To see this, colour alternate edges of each cycle C,,...,C, black and white and consider patches which
delete two black edges. The success or otherwise of two distinct such patch attempts are independent
events since the existence or otherwise of an edge in G, contributes to the success or failure of at most one
‘black’ patch. An execution of patch contains approximately 15A\? black patch attempts. Each attempt
succeeds independently with probability p2.

Patch can be executed in O(log \) = O(log log n) time using O(\) processors, hence A, requires
O(pN\?) = O(n log n) processors.

We have therefore shown that the probability that B is executed is O(log n/n’). Now, by the above,

E(T(A,, G,)) = O((log n)z) + E(time spent executing B)

113

Volume 25, Number 2 INFORMATION PROCESSING LETTERS 6 May 1987

and
E(time spent executing B)
< ¢,n*Pr(B is executed) + c,n*2"Pr(B is executed and A, fails on G,)
< ¢,n’Pr(B is executed) + c,n*2"Pr(A, fails on G,)
=o0(l). O

We now describe an algorithm which runs in O((log log n)?) expected time on a more powerful model.
In a P-RAM the execution starts with one active processor and O(log m) time is required to activate m
processors. (We implicitly assumed that A, spent O(log n) time activating its processors.) We assume from
now on that all processors are active at the start. Although the computations are complete in O((log log n)?)
expected time, without simultaneous writes the machine cannot signal completion within this time bound.
We thus allow simultaneous writes to a given location, provided each processor writes the same value—for
the want of a better word, call this a Q-RAM.

The main idea is to replace the execution of Algorithm A in A, by the execution of an algorithm with
O((log n)?) running time. It would be nice to simply apply A, itself! However, the way we have defined it,
the probability that algorithm A, successfully terminates on an H; in O((log log n)?) steps is only
1 — O((log log n)%(1 — p)'°e**& "), from (1e) of Lemma 1. This is not enough. However, we shall construct
an Algorithm A ; which runs in O((log n)?) time on a P-RAM, uses O(n log n) processors and finds a
hamilton cycle in G, with probability 1 — O(2~#"),

Informal description of A ; (a more formal description is postponed to Appendix A). Let A =[B log n] and
p=|n/\] as before. The idea of Aj istorun A, on Sy, S,,...,S, as before, but if A, fails on S;, we leave
each j € §; to be inserted into the large cycle we are likely to have found later on. At a general stage we
have m cycles C,, C,,...,C,, plus a set ASIDE of vertices which have been put aside for later insertion. We
group these cycles into consecutive blocks of size X or X + 1, e.g., C,, C,,...,C, is always a block unless
m <\ in which case we have one block. We then try to create [m/\| larger cycles by patching together
adjacent cycles in each block, as was done in Algorithm A, for (the block) C,, C,,...,C,. If we fail to
patch together two adjacent cycles in a block, then all of the vertices in the block are placed in ASIDE. We
now have fewer, larger cycles and we continue until we only have one cycle.

Since the new cycles are N times the size of the old ones, this process can be repeated at most
log n/log log n times. Furthermore, each iteration can be done in O(log n) parallel time. (Those readers
who would like more details on how we propose to do all this can consult Appendix A.)

If C is the one cycle produced by the above and a = | ASIDE |, then we partition C into disjoint paths of
approximately |C|/a edges and then, in parallel, we try to insert each v € ASIDE into an edge of its
associated path. By “insert v into edge (x, y)” we mean “replace (X, y) by (x, v), (v, y) if both edges exist”.

Probability of failure. We have organised things so that each pair x, y € V(G,) is checked at most once for
an edge; this makes the analysis easy.

We now study the growth of AsIDE. Consider first the initial executions of Ay, on S,, S,,..-,S,. The
probability that A, fails to find a cycle through any given S; is at most c;Na™ < ¢sN>n~%. Thus, if k =
[Vn /log n], then

Pr(Aq, fails on at least [V /log n] S;’s)
cspeNia | n
< (enw)' < (S) < (e og)™
= o(n~3Wi/leg n) = o(273A),

114

Volume 25, Number 2 INFORMATION PROCESSING LETTERS 6 May 1987

Now, after t > 0 iterations of our cycle patching we have m < n/N'*! cycles, each of size in the range
[N+ (N +1)'*1]. We try fewer than m patches and each patch failure results in no more than (\ + 1)'*2
vertices being added to AsIDE. The probability that any particular execution of Procedure patch fails is at
most q""*/16, where q = 1 — p*. We deduce that

q , where q p°. We deduce tha

Pr(there are more than /= [32\/17 /(N**2(log(1/q)))| patch failures in the (t + 1)st itcration)

+1
< (ln/‘m l) (N2 /16)(4+ 1) < (nqxzuz/w)hl
41

< 2(32/8 /[N 21og(1/@]) (N 2/16)log q+log) — 9 ~(2=oADWA

Thus, with probability 1 — o(27¥") the number of vertices that need to be inserted at the end is no more
than

[log n/log log n|

?\[\/H/log n] + Yy (N+ 1)”2(32\/5/()\2'+210g(1/q)))

=0
< (B+33/log(1/q))Vn for n large

(the terms in the sum decrease by a factor of (XA + 1)A~2 and so the sum is (1 + o(1)) times its first term.)
If there are a vertices to be inserted at the end, then the probability we fail is no more than y = aq®®~/2
and if a < (B + 33/log(1/qQ))Vn and n is large, then y 2~ (18(1/@/(B+34/log(1 /M
We summarise the preceding discussion by the following lemma.

3. Lemma. Algorithm A, runs in O((log n)?) time on a P-RAM and has failure probability O "), where
c, = log(1/9)/(B + 34/log(1/q)).

We obtain Algorithm A, from A, by (i) replacing the calls to A, at line A by calls to A5, and (ii) using
16((log n)/c,)* as the value for \.

4. Theorem

(a) E(A,, G,) = O((log log n)*).
(b) A, uses O(n(log n)?) processors.

Proof. Line A now executes in O((log \)?) = O((log log n)?) time. The probability that there is an i for
which A, fails to find a hamilton cycle is O(p2~ ™) = O((log n)~2n~3). The proof now follows the lines
of Theorem 2. O

In conclusion, it appears that if we have enough edges, then we can usually solve hamilton cycle
problems rather quickly. It would be somewhat more challenging to ‘parallelise’ the extension-rotation
algorithm of [1).

Appendix A

Let A=[B log n] and p=|n/\|.

115

Volume 25, Number 2 INFORMATION PROCESSING LETTERS 6 May 1987

Algorithm A,

116

begin

for i:==1 to n pardo begin «(i) :=1i; a(i) == 0 end;

{we construct a permutation « and initially compute our hamiltonian cycle as edges
(w(i), h())

{if a(i) :=1, then vertex i will be added to our cycle in a final phase}

for i:=1 to p pardo

begin

b(i):==0; ({flags finding a cycle in H,}

Apply algorithm A, to try to construct a hamilton cycle in H;;

if a cycle is found then b(i) :=1 else for v € S; pardo a(v) =1

end;
fori:=1 to p pardo
begin

b)) =0; c(i):=1—1)N+1

{c marks the ‘boundaries’ of the cycles in the array and we have assumed \ divides n}

if a cycle is found then b(i) :== 1 else for j = c(i) to c(i + 1) — 1 pardo a(j) =1

end;
m:= p; s:== \; finished := false;
repeat

{the purpose of the next few statements is to}

{‘squeeze out’ the vertices for which a(j) =1 from the = array};

for i:=1 to m pardo x(i) == {j <i:b(j) = 0};

m:=m — x(m);

fori==1to m+1 pardo d(i):=1+L;,;_,4 <i(cG + 1) — c())b();

fori:==1tom+1 pardo y(i):= {j:j — x() <i};

fori:=1 to m pardo

for j:==d(i) to d(i + 1) — 1 pardo
(7(), h()) = (m(c(y(D) +j — d(D))), h(c(y() +j — d@D)));

fori:=1 to m+ 1 pardo c(i) := d(i);

{at this stage we have constructed cycles C,, C,,...,C,, of length >s and they are
packed into the start of m. We now try to patch together C,, C,,...,C, into one
cycle, Cy 4y, Cyi2s--.,Cyy into another cycle and so on. If m > \, we group into sets
of size X or A +1 and if m <\ we use just one group}

if m > \ then

. begin

fori:=1 to [m/\] pardo

begin
b(i)==1; for j:=N\({i—1)+1 to Ni — 1 pardo patchl(j, outcome)
{for simplicity we assume N divides m. patchl is essentially patch with account

taken of the use of =}
if 3j such that outcome = failure then
begin
b(i) == 0; for k :== c(\(i — 1) + 1) to ¢(Ai) — 1 pardo a(w(k)):=1

end

end;

2

Volume 25, Number 2 INFORMATION PROCESSING LETTERS 6 May 1987

m:=|m/\]; s:=s*\;
fori:=1 to m+ 1 pardo d(i):=c((i — 1)\ + 1);
for i:=1 to m + 1 pardo c(i) := d(i)
end
else {m<\}
begin
for i:=1 to m — 1 pardo patchl(i, outcome);
if 3i such that outcome = failure then terminate unsuccessfully
else finished := true
end
until finished;
{at this stage we should have constructed a cycle C of size n — O(/n) made up of edges
(m(k), h(k)), k=1,2,...,¢(2) — 1}
m:=c(2)—1; p=n—m;
{the p vertices such that a(v) =1 are now stored in b(1), b(2),...,b(p)}
fori:=1 to n pardo x(i) == |{j <i:a() =1} |;
for i:=1 to n pardo if a(i) =1 then b(x(i)) :=i;
{we now attempt to insert these p vertices into C}
for i:=1 to p pardo
begin
T, = (i — DIm/p] < k <ilm/p]: ((k), b(D)), (b(i), h(k)) € E(G,)};
if T, = then terminate unsuccessfully
else begin parselect k € T;; m(m + i) :== b(i); h(m + i) := h(k); h(k) := b(i) end
end;
{at this stage, (m(i), h(i)), i=1, 2,...,n, defines a hamilton cycle}
for i:==1 to n pardo h(n(i)) == h(i)
end.
{not all pardo statements are O(1) time but they will all be O(log n) time}.

References

[1] B. Bollobas, T.1. Fenner and A.M. Frieze, An algorithm for [3] Y. Gurevich and S. Shelah, Expected computation time for
finding hamilton cycles in random graphs, Proc. 17th Ann. hamilton path problems, SIAM J. Comput., to appear.
ACM Symp. on Theory of Computing (1985) 430-439. [4] A. Thomason, A simple linear expected time algorithm for

[2] S. Fortune and J. Wyllie, Parallelism in random access the hamilton cycle problem, to appear.

machines, Proc. 11th Ann. ACM Symp. on Theory of
Computing (1978) 114-118.

117

