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Let G, denote a random graph chosen uniformly from the set & of graphs with
vertex set {1,2,...,n} and m edges. G, , is defined to be pancyclic if for all s, 3<s<n,
there is a cycle of size s on the edges of G, .. We show that the edge threshold for the
pancyclic property is the same as that for minimom vertex degree at least 2, which
occurs at m=4nlogn++nloglogn+c,n.

1. Introduction

As usual let G, ,, denote a random graph chosen uniformly from the set
@ of graphs with vertex set I{,={1,...,n§,and m edges. We shall say that
G, m€Pan, or simply G,,, is pancyclic, if for all s, 3<s<n, there is a
cycle of size s on the edges of G, ,,. ;

The threshold for the existence of hamiltonian cycles in G,,, was
established by Komlos & Szemeredi [6], and is the same as the threshold
for minimum vertex degree at least 2. We show that this condition is
sufficient for almost every (a.e.) G,_, to be pancyclic. The question of the
threshold for pancyclic graphs in G, ,, was raised by Korshunov [7].

Let m=4nlogn+4nloglogn+c,n.

Theorem 1.1.
lim P1(G,,,, € Pan)= lim Pr(G, ,, has minimum degree>2)=

L g -] Lind" -]
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(by Erdos & Rényi [3])

0 if ;= —00
= < e ifc,~c
1 if c,—00. a

Throughout the paper, all inequalities are implicitly assumed to be
considered only for large enough n.

2. Notation

If p=m/(3), then G, , has its usual meaning, ie. each possible edge is
independently included with probability p.

If G=G, ,=(V,, E), then G[S]=(S,E,) is the subgraph induced by the
vertex set S< V,. d(v) is the degree of vertex vin G, ,, or G, , as appropriate.

For UcS, N(U,S) is the disjoint neighbour set of U in G(S), i.e.

N(U,S)={weS—U:3ueS and (uw)eEs}
and o
ds(v)=|N({0},V,)n5]|

is the degree of v in S.

3. Cycles of length n/3 or less

W.F. de la Vega's Theorem [2] on lower bounds for the length of longest
paths in random graphs may be stated in the following manner (adapted
from Bollobas [1, pp. 181-185]).

Theorem 3.1. Let 0<0=0(n) < logn—3loglogn and n=0/n.Thena.e.G, .

contains a path at least (1—41?2))1.

O

In what follows let G(n,p,g) denote a blue-green multigraph over the
vertex set ¥, in which the blue and green edges are chosen independently
with probabilities p and q, respectively. '
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Corollary 3.2. Let ep=1loglogn/n, then a.e. blue-green multigraph G(n,ep,

4log2 )
og logn) using only blue

edges. O

(1 —&)p) contains a path of length at least n(l—

We now use the unconditioned green edges of the multigraph to look for
‘triangular’ cycles of length s made from two adjacent green edges
and a section of the blue path of length s—2.

Theorem 3.3. Almost every G, has a cycle of length s, for all 5, 3 <s<n/3.

Proof. As cycle existence is a monotone property, we prove it for a.e.
G(n,ep,(1—¢)p) and note that it extends to G, , and thus G, ,, by virtue
of Lemma Al and

Pr(edge in G(n,ep,(1—¢)p))=1—(1 —ep)(1—-(1—¢)p)
<p=Pr(edge in G,.,)-

Letl=n(1——1082

loglogn

first I vertices on the blue path & in Corollary 3.2 are A= {1,..., l}. For fixed

ie A and fixed cycle size s, partition the vertices i+ 2,..,1 on the path into

l—i—-1

L 2s—4

the first such set is {i+ 2,...,i+2s—3}. On this set we can construct s—2
‘triangular’ cycles

)- Without loss of generality we will assume that the

] sets of size 25—4 running sequentially from vertex i+ 2. Thus

(,i4+2) (+2) B(i+5) (i+5.1)

(Gi+3) (+3)B(i+s+1) (i+5+1,))

G its—1) (i+s—1)B(i+25—3) (i+25—3,))

where (e.g.) (i+2) 2 (i+s) is the section of the blue path between vertices
i+2 and i+s and (i,i+2), (i+s,i) are (potentially) green edges whose
existence we can test for.

An example is shown in the figure below.



32 C. Cooper and A.M. Frieze

i i+l i+2 2 i+s

Forﬁxedi,eachpairofgreenedgesisonlyusedonoe,andasimnsfrom1
to I—2s+3 no edge is ever reused for fixed s. For fixed s we examine

=243 —i-1 1
— | (s=2)>5(—-29*
X Lz 122302

pairs of green edges and thus, using the independence of the green edges
Pr(3s:3<s<n/3 and G, contains no cycle of length s) ’

<R~ (-9pPHe™
sne'(*("z‘)““)’)’:.o(l). O

4. Cycles of size n/3 or more

The following lemma establishes certain structural properties of a.e.
G, . The proof of these properties is given in the Appendix.
Lemma 4.1. The following hold in a.e. G, 4:
@) @ If X={veV,:dp)<3np}, then |X|>n?*?*
(ii) d,(v)<18, for all veV,
(b) Assume n3<s<n—n??/?
() If X(s)={ve V,:dy ()< s 5p}, where V= {L,...s}, then
'|X(s)|<n"°"% and thus |X(s)| <n—s
(i) dy(®0)< r7§1 , for all vEV,
-317'3 implies |E,|<l‘;151'§
. (d) Let L={veV,: dw)<-fsnip} then
(i) no cycle of length 4 or less contains any velL
(ii) no v'€ L is within distance 4 of velL

© SV, |8|<
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@) If UWEY,, UnWw=49,|U]|, lm>loglogn then

|Egw|={e=@w)eE:ueUweW}|>n
(f) The maximum degree of a vertex is at most 3np
(8) There are at most n®® edges incident with vertices in L. 0

Let #={Ge¥: the conditions of Lemma 4.1 hold}. The following
lemma is an immediate consequence of Lemma 4.1(c).

Lemma 4.2. Let Ge ¥, UsScV,, |U|<n/1500, FSE, and H=(S,F). If
U is such that the degree of u in H is at least np/31 for all ueU then
[N(U.S)|=3|U| in H. (]

In order to prove the pancyclic condition for s>n/3 we examine two
separate cases

Case 1: n—n??23gs<n
Case 2: n/3<s<n—n??/?%

Working under the assumption that G,, has minimum degree 2 we
construct specific sets 4, (where |4,|=s), such that G[4,] is hamiltonian
simultaneously for all s>n/3 with probability tending to 1. In Case 1 we
generate A, by deleting vertices in degree sequence. In Case 2 we generate A,
from the set ¥,={1,..,s} by replacing vertices ve ¥, of low degree in V, by
suitable vertices from V,~¥,.

Assume §(G, ,)=>2 and the conditions of Lemma 4.1 hold. We will use the
following construction for the vertex set A, of our proposed cycle of size s.

Construction
Case 1: n—n??23gs<n |
Let {w;,w,,...w,} be the vertices of G, , ordered in some ascending degree
sequence
{ nA—s+ 1 n-:-lrz" -oW, }
Case 2: n/3<s<n—n?2/?8
V,={1,2,..s}
X(s) ={veV,:dy () <k sp}
Y:=(V,— V) - X(5)
Y’ is a random |X(s)n V| -subset of Y.
A =V,—X(s)vY'



34 C. Cooper and AM. Frieze

As we propose to use the edge colouring argument of Fenner and Frieze
[4] we regard our graph edges in G, , as initially coloured blue, but with
the option of recolouring a set R of the edges red. A propos of this, we say
an edge set R is ‘deletable’ if it satisfies the following definition.

Definition 4.3.
(a) Let E be the edge set of G,,. REE is deletable if
(i) R is a matching
(i) no edge of R is incident with a vertex of degree <fsmp
(i) [R|= [n**]
(b) If G[A,]1=(4,.E,,) is the subgraph induced by A, we refer to
G;[A,]=(A,,E,,—R) as the blue subgraph induced by E, —R.

(c) Np(U, 4,) is the disjoint neighbour set of U in Gg[4,]. 0O

Lemma 44. Let Ge# and let UcA,, |U|< fos, then [UUN(U.4,)
=3|U|.

Proof. Case 1: Let L={ve V,:d(v) <. np} as before.
IfUc A, welet U, =UnLand U;=U—U,. By Lemma4.1(d) weknow that

|U1UN(U1»‘4:)|>3IU1|
and also
(U uNU, A ) ({p}uN({o}, 4,)|<1 for all veU,.

Delete from each ve U, the edge (if any) responsible for this nonempty
intersection with U,UN(U,,4,). We have d,.(v)>{5np —19, where §'=
A,—(U,UN(U,)), because by Lemma 4.1(a)(ii) each ve U, has at most
18 neighbours in X(s) and at most one in U;UN(U,). By Lemma 4.2
there are at least 3|U,| neighbours disjoint from U,UN(U,,4,). The
removal of min {|R|,|U|} deletable edges leaves |[Nx(U, A,)=2Ul.

Case 2: By the construction of A, and Lemma 4.1 (b) (ii),
n
4,0 > - 151 >3-

We then use Lemma 4.2 as before. 0O
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Lemma 4.5, Assuming the conditions of Lemma 4.1 hold, G[ A,] is connected
Jor all s, nf3<s<n.

Proof. If G[4,] is not connected, then by Lemma 4.4 the smallest of
the disconnected components cannot be less than n/1500 . However, by
Lemma 4.1(e), any two sets of vertices of size at least n/loglogn must

be connected by at least /i edges. O

It follows by well known arguments from Lemmas 44, 4.5 and a
theorem of P6sa [8] that

Lemma 4.6. If Ge ), G[ A,] is not hamiltonian and R is deletable, then A,
containsaset Z={z,,z,,...,z;}, 1>n/1500 and subsets Z,,....Z, (not necessarily
disjoint ), depending only on Gy[ A,] with |Z|>n/1500 for i=1,2,.. .1 Such
that we Z, and e=(z,w) implies
(i) e is not an edge of G[A,]
(ii) if e is added to G[A,] then the resulting graph is either hamiltonian, or
the length of a longest path increases by at least one. O

We define the set $(s) to be those Ges# for which the subgraph
G[4,] is not hamlltoman.

Theorem 4.7.

|g| E lf (S)I—O(l)

Proof. Let R be a set of red edges of G, ,, with the property P(R) that
(i) R is deletable (Definition 4.3)

(ii) A(GLA,D)=A(G5[4,])
where A(H) is the length of the longest path in the graph H.

Let € be the set of all red-blue colourings of # (s) which satisfy P(R). How
many specific edges do we have to avoid for a given Ge F(s)?

(i) some longest path length 1<s,

(ii) at most 6= [n®®7 edges which are attached to vertices of degree

<15 np, by Lemma 4.1(g).

As R is a matching we can select it in at least
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~ (—s—0)(m—s—0~24)-m—s~0—2r—1)4)

(m -3s)

(1—o(1))

ways, as 7=|R|= [n%!7, and the maximum vertex degree 4 is at most
3np. Thus

el>I#6l 25 a-om

Consider any fixed blue subgraph. We will, by Lemma 4.6, have to avoid
replacing at least 5 (n/1500)* end point pair edges when adding back the
red edges in order to construct a red-blue colouring satisfying P(R). Thus

|@|<((;)—(m-r)—~i(rzm)’)(. () )
r m—r

and thus

I%)J=o(e-l3%6=+%)=o(n") for any constant y>0

proving the theorem and also Theorem 1.1. 0o

Added in proof: Recently T. Luczak has proved independently a gener-
alization of Theorem 1.1 for a broader range of m=m(n).

Appendix

Several aspects of Lemma 4.1 are standard, and we will refer the reader to
established proofs. In other cases where there are slight differences or we
have had to tighten the probability estimates, we work in G,, where
p=m/(3)and then use the following lemma (e.g. Bollobas [ 1, pp. 33-35]) to
deduce the result in G, .

Lemma A.1. A1
If ae. G, €A and A is a monotone property then ae. G, € A.
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(c) The number of edges occurring in .an induced subgraph S of size s is
a binomial random variable with parameters () and p. By e.g. Bollobas
[1, p. 14] we have for large deviations of ‘binomial random variables

Pr(number of edges> a(;) p<(2) e,

1n
1 —_—— t
Setting a=155 we see tha

nf378

Y, (%) (£)*@P=0(1).

s=1
(d) Bollobas [1, p. 191].

n
(e) Let IUI'|W|>Eg_l-og—n then

Pr@U,W<V, such that |Eyp|</n)

pu .
< X ) ('r')("I')Eo(',‘)P’(l -p)" " =0(3).

r>nfloglogn 8>afloglogn

We now use (A2).

(f) Bollobas [1, p. 191].
(g) Use Lemma 4.1(b) (i) with s=n. 0O
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