
Discrete Applied Mathematics 26 (1990) 159-173

North-Holland

159

ON AN OPTIMIZATION PROBLEM WITH NESTED
CONSTRAINTS

M.E. DYER

Department of Computer Studies, University of Leeds, Leeds LS2 9JT, UK

A.M. FRIEZE

Department of Mathematics, Carnegie-Mellon University, Pittsburgh PA 15213-3890, USA; and

Department of Computer Science and Statistics, Queen Mary College, London El 4NS, UK

Received 20 June 1987

Revised 25 May 1988

We describe algorithms for solving the integer programming problem

maximise C &(x1),
j=l

subject to c x,<b,, i= l,...,m,
1E.Y

x,ro, j=l,...,n,

where the f, are concave nondecreasing and the Si form a nested collection of sets. For the

general problem, we present an algorithm of time-complexity O(n log’ n log 6), where b is less

than the largest of the b,. We also examine the case in which all f, are identical and give an

algorithm requiring O(n + m log m) time. Both algorithms use only O(n) space.

1. Introduction

Let [n]={l,2,..., n}, and Y= {S;C [n]: in [ml}. Then 9 is said to be a nested
(or laminar) collection if, for 1 5 i < k 5 m,

Sj n Sk f 0 implies Sj c Sk. (1.1)

Without loss of generality below, we assume that S, = [n]. This set can always be

added to 9, if not already present, while retaining (1.1). For such a nested collec-

tion, the inclusion partial order may be represented by a tree. We will use the ter-

minology of [12] with regard to trees. The tree T representing 9’ will have a vertex

for each i E [m] and an edge (i, k) if Sk is the (unique) smallest set properly contain-

ing S;. The vertex m is the root of T. It is not difficult to show that any nested col-

lection 9 has m I 2n - 1. Hence T can be used to represent 9’ by an O(n) size data

structure. Note that, if 9 is represented explicitly as a list of sets, it may require

Q(n2) space. Since our algorithms have running times o(n*), we assume that T is

already given as the representation of 3? Now, let fj (j E [n]) be nondecreasing con-

cave functions defined on the nonnegative integers, and bi (i E [ml) be integers. The

0166-218X/90/$3.50 0 1990, Elsevier Science Publishers B.V. (North-Holland)

160 M. E.D. Dyer, A.M. Frieze

assumptions on the fi have the following significance. Practically, they provide a

model of diminishing marginal returns to scale. Theoretically, they make the prob-

lem computationally tractable. (With no assumption on the fi, the problem is easi-

ly shown to be NP-hard.)

Consider the following mathematical programming problem on 9’:

maximise Z= t fi(Xj),
j=l

subject to jFs XjIb,, ie [ml,
I

Xj 2 0 and integer. (1.2)

Note that we can always ensure [n] E 9 by adding a suitable redundant constraint

to (1.2). Two special cases of (1.2) are of interest. The first (1.2P) is that in which

T is a simple path. The second, (1.2E), is that in which all & are equal, to f say.

The intersection of these problems will be denoted (1.2PE).

Problem (1.2P) has been extensively studied. See, inter alia, Galperin and

Waksman [8], Tamir [111 and Dyer and Walker [.5]. Under an operation count model,

which assumes each fj can be evaluated in O(1) time, an O(n log n log2(b,/n)) time

bound for (1.2P) was obtained in 151, and this was the best to date. The algorithm

of [5] is based on upper bound generation within a divide-and-conquer scheme. Ad-

ditionally, [5] gives a very simple O(n) time algorithm for (1.2PE).

The general problem (1.2) has also been considered by Tamir [lo]. He gave an

O(n2 log 6,) algorithm, generalising and improving that of [111. As Tamir observes,

(1.2P) is applicable, for example, to a simple production planning model, and then

(1.2) generalises this model in a fairly natural way. Closely related problems are also

studied in [l, 41.

Our results are then as follows. In Section 2 we prove various optimality condi-

tions for (1.2). We use these in Section 3 to present a new method for these problems

which uses both upper and lower bounds within divide-and-conquer. This not only

results in a conceptually simpler algorithm for (1.2P) than that of [5], but also im-

proves the time bound to O(n log n log(b,/n)). The general algorithm for (1.2)

then runs in time O(n log2 n log 6), where 6, which satisfies b,/n 5 6< b, , is defin-

ed in Section 3. Finally, in Section 4 we present an O(n + m log m) time algorithm

for (1.2E) which generalises the O(n) time algorithm of [5] for (1.2PE).

Apart from the equal functions case, we do not address the potentially interesting

issue of strong polynomial complexity of algorithms for this problem. A major dif-

ficulty in trying to do this in the general case results from the fact that we choose

to regard the f; computations as being provided by an “oracle”. This difficulty dis-

appears in the equal functions case, since the exact form off becomes irrelevant,

and so, in a sense, we can “see inside” the oracle. If we were to make appropriate

assumptions about the form of the fi in the general case, it would seem we could

obtain strongly polynomial algorithms, but we do not discuss this further here.

On an optimization problem with nested constraints 161

2. Optimality conditions

For notational simplicity, we will assume all singletons are in 9. First note that

there is no loss in assuming that for each iE [ml

maXbjibi5 C bj, (2.1)
jcG jcG

where Ci is the set of children of i. This obviously implies that b, is the largest bi.

Conditions (2.1) can be imposed in O(n) time by a simple “bottom-up” preprocess-

ing of T. We will use the following notation. For kE [ml, T(k) will be the subtree

of T with root k and P(k) the path from the root m to k. (By abuse of notation,

we will make no distinction between trees and paths and their vertex sets.) We write

p(k) for the parent of k. Also let

dj(Xj)'fj(Xj)-fj(Xj- l), Xj> 0,

=oO, Xj=O.

We assume fj(xi) can be determined in O(1) time, and hence so can dj(Xj).

Now consider the Lagrangian problem for (1.2):

maximise (2.2)

This can be rewritten

maximise L = i fj(Xj) -Xj C /f, .
j=l f ieP(j) I

(2.3)

From the theory of Lagrangian duality 161, it follows that a sufficient condition for

a solution x;” (Jo [n]) to be optimal in (1.2) is that there exist ,u: (i.e [ml) satisfying

,Llui*LO, iE [ml, (2.4a)

pT>O implies C xj*=b;, iEIm1, (2.4b)
j6Sj

dj(Xj*)r C ,/_4~2Llj(Xj*+l)~ jE[tI],
iEP(J)

and that x,? is feasible, i.e.,

x+0, .ie bl,

jFs xj*ibj, ie [ml.
,

(2.4~)

(2.5a)

(2.5b)

Suppose we write & = CiE-P(kr P; for k E [ml. By convention lpcrnj = 0. Then (2.4)
is equivalent to the existence of At satisfying

G+&), ke [ml, (2.6a)

G ’ A;(,, implies c x,T= b,, kE [ml,
desk

(2.6b)

L3j(Xj*)~Izj*>dj(Xj*+ l), je [nl. (2.6~)

162 M.E. D. Dyer, A.M. Frieze

Unfortunately, it does not follow from Lagrangian duality that we can find an

integer solution &* such that A*, proving optimality, exists.

We will prove this by exhibiting an algorithm which constructs the appropriate

x*, A*. To avoid trivialities, we assume bi >0 (ie [ml). If bi<O for any i, the pro-

blem is infeasible, and, if bi = 0 for any i, then Si can be removed, setting x,*= 0

(je Si>-

1

2

3

4

5
6
7

8 i := vertex on P(r) nearest root m such that si = 0;

9 A,$:=6 (/CE T’(i)); XT :=xj (jeL’n T’(i));
10 T’ := T’- T’(i)
11 end

12 end

TREEGREEDY

T’ := T; Xi :=O (je [n]); si :=b, (ie [ml); 6 := CQ.
while T’+0 do

begin

L’:={jE[n]; j is a leaf of T’};
6 :=d,(X,+l)=maXj,~,dj(Xj+l)

(in case of ties choose smallest such r);

x,:=x,+ 1;

sk := Sk - 1 (k E P(r));

if Sk = 0 for any k E P(r) then

begin

Since all the fj are concave, the value of 6 generated at line 3 of TREEGREEDY is

nonincreasing. It is then not difficult to verify that the values assigned in line 9

satisfy conditions (2.5), (2.6). (z* is feasible since CjES,Xj<bi throughout. (2.6a)

follows from the fact that 6 decreases, A,*>A,*,,, means that k was the root of a

tree T’ removed in line 9 and so (2.6b) follows from sk = 0 here. Line 4 implies that

6 2 “j(Xj + 1) for j E L’ which implies A: 2 "j(Xj* + 1). Finally if AT > “j(Xj*), then

x,* > 0 and so at some stage j E L’ and 6 = d ((xJF - 1) + 1). But 6 cannot then increase

to AT.) In fact, with the rule for resolving ties in line 4, TREEGREEDY produces the

lexicographically largest optimal solution. A fairly obvious implementation of

TREEGREEDY will run in O(nb,) time. Less obviously, by storing the AJ(xJ+ 1)

(j E L’) values in a priority queue, and using the data structure of Sleator and Tarjan

[9], [12] for manipulating trees, it can be implemented in O(b, log n) time. For

6, = O(n), this will have time bound O(n log n), which is better than the bound for

our algorithm CONQUERTREE below. Thus we will assume that b,,,/n + 03 with n

below. Although TREEGREEDY has some computational value, we will use it chiefly

to establish properties of the optimal solution which we can then use to develop a

more refined algorithm. In what follows, when we use the term “optimal solution”,

we will always mean the optimal solution produced by TREEGREEDY.

On an optimization problem with nested constraints 163

The fact that a “greedy” algorithm solves (1.2) also follows from the general

theory of polymatroids. See, for example, the articles by Lovasz and Schrijver in

the book [2]. However, it is more convenient here to give a self-contained develop-

ment .

For a given i E [ml, let Z7(i) be the problem which contains only the constraints

and variables in T(i), i.e.,

maximise jFs f,(x,),
i

subject to jgxxjSb,, ke T(i),

Xj20.

Thus n(m) is (1.2). Let xj” be the values of the variables in the optimal solution

to II(i).

Lemma 2.1. xy’ Ixji) for all j E Sj .

Proof. The progress of TREEGREEDY in solving n(m) and ZZ(i) is identical (in T(i))

at least up to the point where T(i) is removed, possibly as part of a larger tree in

line 10 when solving n(m). In n(m) all variables in T(i) are now fixed, whereas in

Z7(i) they may possibly be increased further. q

(This lemma can be strengthened somewhat, and a strengthening may have com-

putational significance, as noted by a referee, but we will not pursue this here.)

Lemma 2.1 shows that, by solving problems on subtrees, we can impose upper

bounds on variables. More importantly:

Lemma 2.2. The upper bounds XjlX”’ J (j E S;) imply the constraints Cj E sk xj I bk
(k E T(i)).

Thus we can replace subtree constraints by simple upper bounds after solving

n(i). This merely generalises a result of IS]. The following idea, however, is new.

For i E [ml, let R(i) be the problem obtained in T- T(i) by assuming CjEs,xj= b,,
i.e., where S, = Sk - Sj (k E P(i)),

maximise js fi(Xj),
,,I

subject to jgk~l~b,-bi, kEP(i),

c x,sbk, kr$ T(i)UP(i),
J E Sk

xjro.

Let z;” be the optimal solution to n(i).

164 M.E.D. Dyer, A.M. Frieze

Lemma 2.3. ~j(~)?_$‘) for all j E [n] - S;.

Before proving Lemma 2.3 we require a preliminary result. Let n denote (1.2)

with optimal solution ~j, and I7’ be the problem obtained by increasing all bk
(k~P(i)) to b;=b,+ 1. Then:

Lemma 2.4. The optimal solution <’ to III’ satisfies t;j’Z <j (j E [n]).

Proof. Primed quantities refer to Z7’. Consider TREEGREEDY'S progress in 17 and

17’. They proceed identically either to termination, in which case the solutions are

identical, or until s,=O for some t eP(i) in 17. We take t as the nearest such vertex

to m. At this point si= 1 and si> 1 for k nearer to m on P(i). Now T(t) will be

removed in fl. The two algorithms again proceed identically either to termination

or until we increase some x, (r E S,) in line 5 in 17’. At this point [: := r, + 1 and T(t)
is removed in I7’. The algorithm then proceeds identically in 17, fl’ to termination.

Thus <,!, tj are equal, except possibly r: = [,+ 1 for some r. This conclusion is

stronger than the lemma. 0

It should be observed that Lemma 2.4 is false if not all bk on P(i) are increased.

Proof of Lemma 2.3. Suppose T(i) is deleted, when solving n(m) by TREEGREEDY,

when Si= (x. It follows that the optimal values x:‘“’ (j $ Si) are given by solving the

problem 17” obtained by replacing bk by bi = bk - b; + cr (k E P(i)) and deleting T(i).
But n” is the problem obtained from n(i) by increasing all right-hand sides

6k = bk- bi by a for kEP(i). The conclusion now follows by applying Lemma 2.4

(x times. 0

Thus, using Lemma 2.3, we can impose lower bounds on variables by solving

if(i). We also have:

Lemma 2.5. The lower bounds Xj~y(” together with CJ=, Xj’b,,, imply the con-
straints CjESkXj<bk (kEP(i)).

Proof. First note that we may assume CS=i xj’“‘= b,, since T’=0 on termination

of TREEGREEDY and we are only concerned with optimal solutions that might be

constructed by this method.

We may also assume CjEs, ,(i) = b, - bi, since n(i) satisfies the right-hand in-

equality of (2.1). Now, for kEP(i), we have

C
desk

xj'j~kxj+jlls xj'i,cs,~~i)+j,cSk~xj~~~))+l~s xj
, t

I(b,-bi)+ C
jcS,

(Xj-Zy')+ C X,

jcs,

On an optimization problem with nested constraints 165

=(bk-bi)+ i Xj-(b,-b;)=bk+ i xj-bm

j=l j=l

56,. 0

Thus, using Lemmas 2.1 and 2.3 to construct upper and lower bounds, we can,

by Lemma 2.5, reduce the problem to a one-constraint problem. This is the essence

of our algorithm in Section 3.

3. Algorithm for the general problem

We now describe the algorithm for (1.2). We assume here that T is a data struc-

ture having the values b, and n;, the number of leaves in T(i), for each in T. Note

that all ni can be determined in O(n) total time by a simple “bottom-up” algorithm.

For each leaf j E T we also have a function fj and an output value Xj. Since the pro-

cedure is recursive, it is necessary to specify at times to which tree certain values

belong. We show this by appending the tree in brackets. Thus bj(T’) refers to bj
values in tree T’. Where no tree is specified, it will always be T.

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

CONQUERTREE (T)
r := root of T; s := n,;
if s= 1 then x, := 6,;
else

begin

L := (leaves of T};
i :=r;
while i has a child k with nk > +n, do i := k;
K := {k $ P(i): p(k) E P(i)};
for ke K do T’ := T(k); CONQUERTREE (T’);

for each leaf jc T’ do bj :=Xj(T’)
T’ := P(i);
for kE T’ do b,(T’) :=bk-b;; n,(T’) :=nk-ni
for keK, p(k)#i do

for each leaf Jo T(k) do T’ := TU {(j, p(k))}
bj(T’) :=bj; nj(T’) :=l.

CONQUERTREE (T’)
for jeL do Uj :=bj
if je T(i) then $:=0 else lj :=Xj(T’)
SINGLE(L, 1, _u, br,y*); (see below)

for jeL do Xj :-yj*
end

return

166 M.E. D. Dyer, A.M. Frieze

The procedure SINGLE (L, r, _u, b,,y*) solves the problem

maximise C f,(yj),
j6L

subject to C YjIb,,
jcL

Ij'Yj'Uj, jEL,

by the algorithm of Frederickson and Johnson [7], to give optimal values yy

(je L). Since, in the algorithm IL1 =n,, this takes time O(n,log(b,/n,)).

The rationale of CONQUERTREE is as follows. Line 2 provides the obvious solution

to a one-variable problem. Otherwise line 4 constructs a path P(i) which decom-

poses T into subtrees, none of which has more than +n, leaves. Then we recursively

apply the algorithm on each of these subtrees to provide upper bounds as in Lemmas

2.1, 2.2. We use these upper bounds to simplify T- T(i) in lines 8-l 1. Then the

algorithm is called recursively to provide lower bounds, as in Lemmas 2.3, 2.5.

Finally, we solve a one-constraint problem, with the bounds generated, to give the

optimal values for the overall problem. The validity of this procedure follows directly

from the results of Section 2.

It remains to determine the time-complexity of CONQUERTREE. We do this in two

stages. Let us say a tree T is a cactus if every vertex of T has at most one interior

child. (Thus a cactus is a simple path plus single-edge “spikes”.) First note that if

CONQUERTREE is invoked with T a cactus, then every recursive call will also involve

a cactus. The restructuring operation in step 11 generates a cactus, and is redundant

if T is already a cactus. The important point, however, is that, if T is a cactus, at

most one of the subtrees T(k), k E K, used in line 6 will have more than one vertex.

Hence all but one of the calls to CONQUERTREE in line 6 will take O(1) time. Thus,

let C(n, 6,) be the time bound for CONQUERTREE applied to a cactus T with n leaves

and root m. Then lines l-l 1 occupy at most C(+n, b;) + O(n) time and line 12 at

most C(+n,bm-bi) time. Lines 13-18 then take time O(n log(b,/n)), assuming

b,/n + 03. Thus we have

C(fZ, b,) I C(+n, bi) + C(+y b, - bj) + An lOg(b, In)

for some constant A.

(3.1)

Lemma 3.1. C(n, b,) = O(n log n log(b, In)).

Proof. Clearly C(l, b,)lA if A is chosen large enough. Assume inductively that

the lemma is true for all (n’, bh) lexicographically smaller than (n, b,). Then, by

(3.1)

C(?I* b,) I (+A)n lOg(~~)lOg(2bi/~) + (+A)n lOg(+n)lOg(2(b, - bj)/n)

+ An log(b, /n)

On an optimization problem with myted constraints 167

r An log($r)log(b, /n> + An log@, /n)

using the concavity of the log function

= An log n log@, /n). 0

This improves the time bound of [5] by a factor log(b, /n). Note that it is at least

as good, even for small 6,, as the bound given by TREEGREEDY. It differs only by

a log II factor from the only known lower bound of Q(n log(b,/n)), provided for

the one-constraint problem in [7]. We now consider the case where T is a general

tree. For such a tree let I be any set of incomparable interior vertices, i.e., if i, k E I,

then Sin& =0. Let 4 be the set of such I, and let

B=max C b;, 6= B/n. (3.2)
IES iGI

B can be determined in O(n) time as follows. Strip the leaves from T. Successively

remove each leaf (of the reduced tree) which is the only child of its parent. Then

Z is the set of leaves of the final tree. The validity of this procedure follows easily

from (2.1). Clearly, if T is a cactus, then B= b, and 6= b,/n. Also, if T contains

disjoint subtrees T(k), k E K, with B-values Bkr then B(T) satisfies

Br c B,. (3.3)
keK

This follows directly from (3.2). The inequalities

b,/nI6~ ~ bj/nIb,
j=l

(3.4)

also follow, from (2.1).

Now let G(n, 6) be the time complexity on a tree T with n leaves and 6 as defined

by (3.2). Then lines l-7 of CONQUERTREE take time

(3.5)

where nkl+n, n= C kEKnk and &=Bk/nk with Bk ZIS in (3.3).

Now lines 8-13 construct a cactus T’ and apply CONQUERTREE to this. Thus they

take time at most

C(+n, b, - bi) = O(n log n log(b,/n)) = O(n log n log 6). (3.6)

Finally, lines 14-18 take time O(n log(b,/n)) which is dominated by (3.6). Thus

from (3.9, (3.6)

G(n, 6) 5 c G(nk, 5,‘) + O(n log n IO&‘ 6). (3.7)
kcK

Lemma 3.2. G(n, 6) = O(n log2 n log 6).

168 M.E.D. Dyer, A.M. Frieze

Proof. Let A be the implied constant in (3.7), clearly G(l,@<A for large enough

A. Then, as in Lemma 3.1,

G(n, 6) 5 c Ank log2 nk log & + An log n log 6
kcK

IA log2(+n) c nk log 5k + An log n log 6
keK

since all nk 5 +n

IA log2(+n)nlog c B /n +Anlognlog6
(kc, k >

using the concavity of log

5 An log2(+n)log 6 + An log n log 6

using (3.3)

IAn log2 n log 5. 0

We can replace 6 by simpler estimates using (3.4). We speculate that the bound

in Lemma 3.2 is probably improvable to O(n log n log 6). This is prompted by the

following considerations. This bound is correct for a cactus, by Lemma 3.1. At the

other extreme, if Tis “balanced” (i.e., if 3a>O such that if TE T, then for any child

k of r, T(k) has at least cm, leaves where T(r) has n, leaves), then we can again

prove a bound O(n log n log 6). This follows since the path P(i) in CONQUERTREE

then has length O(1). Since this bound is correct at both extremes, we conjecture

it is true in the general case. Note that our complexity bounds do not take account

of tree structure in any direct way, and the key to improving them may be to do this.

4. Algorithm for equal functions

When all fj are equal to f, there is a considerable simplification. Now all the

dj = d, a nondecreasing function. In place of (2.6), it becomes sufficient to deter-

mine real values yz such that

_$%$(k,v kc [ml,

$<$(k) implies c XJF= bk, ke [ml,

(4.la)

(4.lb)

.ie bl. (4.lc)

For, if we have such values, ~3z=d(LyzJ + l), ke [ml, satisfies (2.6). Since (4.1)

does not involve f, the algorithm only requires the constraints as input. Of course,

we cannot immediately assert that values y; exist satisfying (4.1), and again our

proof will be algorithmic.

On an optimization problem with nested constraints 169

If we were to solve this problem by CONQUERTREE, the one-constraint problem

maximise JL f(Xj)* (4.2)

subject to jFL Xi< b,,

Ij'Xj'Uj, jEL,

solved in line 15, can now be done in O(n) time. The algorithm involves successively

eliminating bounds and variables from (4.2), using a linear-time median find algo-

rithm [3]. We will omit details, however, since they are a little complicated, and the

resulting complexity of CONQUERTREE is only O(n log2 n). Instead we will exhibit a

somewhat simpler algorithm which runs in time O(n + m log m) on (1.2E). Note that

here we will not require that B contains all (or indeed any) singletons, and thus

m = o(n) is possible. We do however retain the assumption [n] E 9’ since this has no

influence on the complexity of the algorithm. We assume that for each iE [m] we
are given as data the list

L,={jESi: j$Sk for any SkCSi}.

Note that EYE, IL, I= n. Observe that if j E L;, then (4. lc) should now read

xj”=Lyi*J or ry:l.

We will call these conditions (4.1)‘.

We will present the algorithm in two phases. The first, YCALC, calculates the y$

so that they would satisfy (4.1)’ if the integrality contraints on the Xj were relaxed

and (4.1~)’ is replaced by

xj* = y*. (4. lc)”

We will call these conditions (4. l)“, and the x7-values satisfying them will be denoted

by ~j. The second phase then rounds the Xj up or down.

For each ie [m] we have the list Lj and Ii= ILil. In addition we store the follow-

ing information, requiring O(m) space.

(i) di= C k,D, lk, where Dj, which is not stored, is a subtree of T(i). Di is either

empty or has root i, and is such that, if jE L,, k ED;, then Xj=Yi. The values .~j

defined in this way are changed in value during the algorithm by the nonexecutable

statements as given between *‘s in line 12 of YCALC. They are not actually com-

puted here. If Dj is nonempty, then constraint i is satisfied with equality (i.e., is

“binding”). The progress of these sets Dj is recorded by commands between *‘s

below. Again they are not executed by the algorithm.

(ii) Hi, a meldable heap [12] of vertices k with key values yk. The H; are disjoint

for different i, and thus Cy=“=, IHij sm. Furthermore keHi implies that currently

Dk#O. We assume that a heap of size s can be constructed in O(s) time. Also,

170 M. E.D. Dyer, A.M. Frieze

finding and deletion of the maximum, and merging, take O(log m) time. Hi con-

tains the vertices lying immediately “below” Di in T(i).

(iii) h,=b;- CkEHbk (= CjGLD,~j where LDi= lJrED, L,).
(iv) yi = hi /di.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

YCALC

for i := 1 to m do

dj := fi; binding (i) := true *Di := LT
construct Hi from the children of i;
hi :=bi-C,,, b,;
yi I= hi/di (=sign(hi) X 03 if di=O)
while _Yi < maxkey do

begin p := vertex with maxkey(

delete p from Hi; binding(p) := false

Hi := merge(Hi, H,) (destroying HP);

di :=di-td, *Di :=DiUD,*
hi :=hi+ h,;
yi := hi/di ‘~j :=Yi, jeLDT

end

for i:=m to 1 do

if not binding(i) then yi :=yp(i)

The time complexity of YCALC is O(m log m). First note that steps l-5 and 14,

15 take only O(m) time. For a given “stage” i at line 6, the while-loop will take

O((mi+ 1)log m) time, where mi is the number of merges at stage i. But since no

vertex can play the role of p in more than one merge, Cy!, milm and the bound

follows.

Lemma 4.1. The values yi (in [ml) and Xj=_Yi (Jo Li) satisfy the conditions (2.5),
(4.1)“.

Proof. We show first that

C ~j=bi so long as binding(i) = true.
jcs,

(4.3)

We prove this by induction on i. Note that k E Hi implies binding(k) = true. Also,

throughout the execution of stage i,

C Xjj= C .Z_j+ C C Xj

.i E S jELDi keH; jc&

=diyi+ C b/q
keH,

using the induction hypothesis

= bi.

On an optimization problem with nested constraints 171

We remark next that the values yy computed in line 12 satisfy yi“ld <Y,!‘~~ <yjld.
Hence the 5 values do not increase for j E Lk once i > k. It follows then from (4.3)
that on termination we have

The yj values computed in lines 14, 15 do not decrease as we go from child to
parent because lines 7-12 ensure that, on completion of stage i, yi2yk for all
k E T(i) with binding(k) = true.

We must now show how to round the Xj to integer values x,? so as to comply
with (2.9, (4.1)‘. At the end of YCALC we have values di= IDij for those i with
binding(i) = true. If binding(k) = false, k EDi, we need to compute dk = IDi fl T(k)l.

DCALC

for i := 1 to m do

di :=li;

for each child k of i with binding(k) =false do di :=di+dk

DCALC obviously takes O(m) time and correctly computes the required values.
Our proof will use, but we will not compute, the values

hk=bk- c b,.
TE T(k)flH,

Consider a fixed i such that binding(i) = true. For k E D; define

Note that dk = IS;1 and that Jo Si implies Xj=yi. We determine 0, 1 variables Sj

(j E Sf) such that

6,= 0, if X~=LYi19
/

L 1, if xj*= ryil.

It will be sufficient to choose the Sj to satisfy

C sjIh,-d,LyiJ, LED; (with equality for k=i).
j,Sk

Let A=yi- Lyi J (Jo S;). Then hk- dk Lyij 2 [d&l and so it is sufficient to
determine a solution to

c Sj 5 [d&l, k E Di (with equality for k = i). (4.4)
j,SL

(Note that d;fi is integral.)
The following algorithm constructs a solution to (4.4):

172 M.E.D. Dyer, A.M. Frieze

1

2

ROUND@, 4, f)
if li>q then r, :=q; q:=O else r;:=f;; q :=q-li
for each child k of i with binding(k) = false do

begin

3 W := rdkf 1
4 if q > w then ROUND& w, f); q := q - w

5 else ROUND(k, q, f); q := 0

6 end

7 return

The procedure ROUND(I, d;f,,fi) calculates r, (k E Di) such that if we set r, variables

xj (jELk) to [Yil and the remainder to Lri J, we will obtain a solution to (4.4)
with equality for k = i. We start at the root of D; with “quota” of di~i. We fill as

much as possible from Li in line 1. Otherwise we give each child k of i in Di a quota

not exceeding [d&l in lines 3-6. Since

dj=lj+ C dk, jEDi,
keCD,

where CDj are the children of j in Di, we have

rdjAfil< I/ + ,,%, rdkfil 9 j E Di.
/

Thus the sum of the quotas we allocate to the children can always be sufficient. The

time complexity of ROUND(~, d,f,) is clearly O(ID; I+ IHi I). The IHj 1 term arises only

from the test in line 2. Thus the following routine takes O(m) time in total.

ROUNDTREE

for i := 1 to m do

if binding(i) = true then fi :=yi- L_Yi]; ROUND(&~;~,,~~)

Note that up to this point we only require O(m log m) time in total. We now

calculate the solution in a further O(n) time, giving the claimed time bound of

O(n + m log m).

SOLUTION

for i := 1 to m do

forjELi do

if ri>O then Xj := ry,l; ri :=I-- 1
else x, := Lyi J

The overall algorithm consists of YCALC, DCALC, ROUNDTREE and SOLUTION in

that order.

It may be noted that if T is a path of length m, then the heaps Hi in YCALC never

have more than one element and the overall algorithm has time complexity O(n).

On an optimization problem with nested constraints 173

In fact, the algorithm reduces essentially to that of Dyer and Walker [5] for (1.2PE).

The rounding operation needed in (1.2PE) is also trivial, so the algorithm is con-

siderably simpler than that given here. See [5] for details.

References

[l] R.D. Armstrong, P. Sinha and A.A. Zoltners, The multiple-choice nested knapsack model, Manage-

ment Sci. 28 (1982) 34-43.

[2] A. Bachem, M. Grotschel and B. Korte, eds., Mathematical Programming: The State of the Art

(Springer, Berlin, 1983).

[3] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest and R.E. Tarjan, Time bounds for selection, .I.

Comput. System. Sci. 7 (1973) 448-461.

[4] P. Brucker, Network flows in trees and knapsack problems with nested constraints, in: Proceedings

of the Eighth Conference on Graph-theoretic Concepts in Computer Science, H.J. Schneider and

H. Gottler, eds. (Hanser, Munich, 1982) 25-35.

[5] M.E. Dyer and J. Walker, An algorithm for a separable integer programming problem with

cumulatively bounded variables, Discrete Appl. Math. 16 (1987) 135-149.

[6] M.L. Fisher, The Lagrangean relaxation method for solving integer programming problems,

Management Sci. 27 (1981) 1-18.

[7] G.N. Frederickson and D.B. Johnson, The complexity of selection and ranking in X+ Y and

matrices with sorted columns, J. Comput. System Sci. 24 (1982) 197-208.

[B] A. Galperin and Z. Waksman, A separable integer programming problem equivalent to its continual

version, J. Comput. Appl. Math. 7 (1981) 173-179.

[9] D.D. Sleator and R.E. Tarjan, A data structure for dynamic trees, in: Proceedings 13th Annual

A.C.M. Symposium on Theory of Computing (1981) 114-122.

[lo] A. Tamir, Further remarks on selection problems with nested constraints, Department of Statistics

Report, Tel Aviv University, Tel Aviv (1979).

[ll] A. Tamir, Efficient algorithms for a selection problem with nested constraints and its application

to a production-sales planning model, SIAM J. Control Optim. 18 (1980) 282-287.

[12] R.E. Tarjan, Data structures and network algorithms, in: CBMS-NSF Regional Conference Series

in Applied Mathematics (SIAM, Philadelphia, PA, 1983).

