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Abstract

Albert, M.H. and A.M. Frieze, Occupancy problems and random algebras, Discrete
Mathematics 87 (1991) 1-8.

For k randomly chosen subsets of [#]={1,2,...,n} we consider the probability that the
Boolean algebra, distributive lattice, and meet semilattice which they generate are respectively
free, or all of 21", In each case we describe a threshold function for the occurrence of these
events. The threshold functions for freeness are close to their theoretical maximum values.

1. Introduction

In this paper we consider various algebras generated by k randomly chosen
subsets of [n]={1,2,...,n}. As in the study of random graphs (Erd6s and
Rényi [2], Bollobés [1]) we focus on the threshold for the occurrence of various
events.

To be specific consider %, =2!"! to be a probability space in which each subset
of [n] has the same probability 27". Now select A,, A,, ..., A, independently
and randomly from @, (with replacement). Let A®) denote A, A,, .. ., A,.

We consider

(i) B(AY) = the Boolean subalgebra of ®, generated by A®,

(i) D(A™) = the distributive sublattice of %, generated by A%,

(i) #(A%®) = the meet sub-semi-lattice of %, generated by A%®).

In each case we determine the asymptotic probability that the algebras generated
are (a) freely generated by A®, or, (b) the whole of 2,.

For example, to say that A® freely generates B(A®’) means that for any two

Boolean polynomials p and g in variables x,, x,, . . ., x if

p(Alr A2) sy Ak) = q(Al' AZ: ey Ak)
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then p(x;, Xa, ..., %) =q(x1, X2, ..., %) is an identity true in all Boolean
algebras. Since there is in fact a normal form for Boolean polynomials it is
equivalent to demand that polynomials in k variables with distinct normal forms
evaluate at A,, A,, ..., A to distinct subsets of [n#]. Similar criteria apply to
2(A®) and u(4®).

We prove the following.

Theorem. (a) Let £¢>0 be fixed and let x =log, n —log,log. n +log, log. 2.
Then

lim P(B(A®) is freely generated by A®)=1 fork<k—c¢,
lim P(B(A®) is freely generated by A®)=0 fork=x+e¢.

(b) Let k=2log, n +a,. Then

10 a,—> —
lim P(B(A®) is all of P,)=3 e 7" a,—a,
n—sxo 1

a,—> +o,
©
lim P(2(AW) is freely generated by A®)
= lim P(B(A®) is freely generated by A™)
(d) Under the assumptions on k, a, of part (b),
lim P(2(4®) = 2,) = lim P(B(APV) = 2,).

(e) Let k =log, n —log,(log. log; n + b,). Then

0 b,— —x
lim P(u(A®) is freely generated by A®) =4 e~ b,—b,
e 1 b,— +oo,

(f) We deviate from our probabilistic model by assuming the k sets are chosen
without replacement. Let now k =2"(1 — c,/n) where c, =0. Then

0 Cp—>®,
lim P(u(4®)=P,)=1¢e"° c,—c,
S 1 c,—0.

2. Preliminaries

For S c [k] we define
As=MNA;N (';A;, where A; = [n]\A;
it

ieS
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and note that the sets Ag, S < [k] partition [2]. Thus, in particular:
Ag= m A,- and Alkl= m Ai-

ielk) ielk]

It is useful to consider the k xn 0-1 matrix X =||x;|| where x;=1(0)
whenever j € A; (j ¢ A;). Our probability assumption is equivalent to

X1, X125 - - - » Xz, fOrm a sequence of independent Bernoulli
random variables where for all i, j P(x; =0) = P(x; =1)=1. 2.1)
Now let §; = {i e [k]: j € A;}. It follows from (2.1) that:
P(S;=S)=27% forall S c[k]. 2.2)
The random variables S5, S,, . . . , S, are independent. (2.3)
Now we can view the construction of A,, A,, ..., A; as the construction of

S1, 82, . .., S,. Then, since j € As, we have the following situation.

We have m =2* boxes each labelled by a distinct subset of [k]. We have
distinct balls labelled 1, 2, .. .,n which are independently placed randomly into
boxes. (We keep m = 2* throughout the paper.)

Placing j into box S is to be interpreted as putting §; = S.

We refer to this as the Balls-in-Boxes construction and use Pgp to refer to
probabilities defined on this space.

It follows from (2.2) and (2.3) that in this space we determine a matrix X with
the same distribution as in (2.1).

3. Boolean algebras
Let us now consider B(4*’). We have the following simple resuit.

Proposition 3.1. B(A®) is freely generated by A" if and only if As+#@ for all
S c [k].

Proof. If As=9 for some S c [k] then clearly B(4%) is not free. Conversely,
suppose B(A®) is not free. Then there exist S, Tc[k], SNT =9 such that
= iesA:iN meTAi 24s. O

It follows from Section 2 and Proposition 3.1 that

P(B(AW) is freely generated by A®) = Pyg(each box is non-empty).

Now the latter probability has been studied under the guise of the Coupon
Collector Problem (Feller [3]).
Assuming k = k(n) let d(n)=(n—mlog. m)/m. (Recall m=2%) It is well
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known that
0 d(n)— —oo,
lim Pgp(each box is non-empty) =4 e d(n)—d,
" 1 d(n)— +.

Thus if -z satisfies n = 2%z log. 2 and £ >0 is fixed then
k<z—&g > P(B(AY)is freely generated by A¥)— 1,
kzz+e > P(B(AY) is freely generated by AX)— 0.

Since z = (log. n — log. log. n + log. log. 2)/log. 2 + 0(1) we have part (a) of
the Theorem.
Another simple remark.

Proposition 3.2. B(AY) is all of P, if and only if |As| <1 for all S < [k).

Proof. B(A™) is all of P, if and only if there exist S;, T;,j=1,2,..., n such
that {j} =1 ies, A NN, A,. This implies the proposition. [
Thus
P(B(A®) is all of $,) = Pgg(each box contains at most one ball).

We now prove part (b) of the Theorem.

Let z, = the number of boxes containing exactly ¢ balls. Let k =2log, n +a, so
that m = 2%n?,

Case 1: a,,— o,

n LAY S S
pul§ ) <n (L) s

=2 m

Case 2: a,—a.
Observe first that

E (i z) sm(n)(l)3 =0(n™")
BB = t 3/\m
and so Pzp(X/-3z,>0) = 0(1). Thus we only have to show that

lim Pgg(z;=0)=e~* where A =2"6*",

Let r =0 be a fixed integer. We show
'!Tl Epp((2z2),) =A".

It follows (see e.g. Bollobds [1, Theorem 1.20]) that z, is asymptotically Poisson
with mean A. This will complete this case.
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Now

Ena)=m (1) 2L (2) (1- 1)~

m

and we are done.

Case 3: a,— —x.

This follows from Case 2 by a simple monotonicity argument. (Ultimately we
are throwing n balls into more boxes than the case of any fixed a.)

4. Distributive lattices

Let us now consider 2(4*’). We have the following:

Proposition 4.1. D(A®) is freely generated by A™ if and only if As#9 for
B+S < k]

Proof. Assume 9(A™) is freely generated by A%’ and §# S < [n]. Now the two

sets

ies jeS
must be distinct. That is, there exists an element belonging to (s A; but not to
any A;, for j ¢ S. Put another way, As#0.

Conversely, given any two distributive lattice polynomials in k variables which
have different disjunctive normal forms, then their symmetric difference (as a
Boolean polynomial) contains a term with at least one positive instance of a
variable. Thus if As#@ for S+#@, the sets obtained by evaluating these
polynomials are distinct and hence @(4"®) is freely generated by A®. O

It follows from Section 2 and Proposition 4.1 that
P(2(AY) is freely generated by AY¥?) = Pyg(box S is non-empty, VS + 6)
= Pgp(box S is non-empty, VS) + Pgg(box @ is the only empty box).

Thus, by Proposition 3.1, in order to prove (c) we need only show that

lim Pgg(box @ is the only empty box) =0 for all k£ =0.

n—oc

But
1 n
Pgg(box @ is the only empty box) = (1 - —m) Pyp(box S is non-empty VS

#@ | box @ is empty). 4.1)
Moreover, since there are m boxes, by symmetry we obtain:
1
Pgg(box @ is the only empty box) =—
Therefore

1" 1
Pyp(box @ is the only empty box) < max((l - ;) ’ ;)
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Fix £>0, If n > 1/&* then either

n_1 1
—>-, or m>-.
m & [3

In the first case 1/m > 1/en and hence

(l—l) <(1—i) <eVece
m &n

while in the second case 1/m < ¢. Hence, regardless of the values of k&,

lim Pgg(box @ is the only empty box) = 0.

n—so

This completes the proof of (c). Now to part (d) of the theorem.
Proposition 4.2. D(4A%) =P, if and only if Ay=0 and |Ag| <1 for all S #0.

Proof. Clearly 2(4®) = 2, if and only if
{i}=MN A; foralljeln],
jeA;

or equivalently
Vieln] {i}=Aqjeay and {izjeA;}+#4.
As the sets Ag partition [n] this condition is realised if and only if

Ag=0 and |Ag|<1 for S+0. ]

Hence
P(@(/_l(’") =P,) = Pap(Ag=9 and |Ag| <1 for S #0)
= Pyp(lAs| <1, VS) — Pep(|AsI <1, for S #8 | |Ag| = 1)P(|Ag| = 1).

(4.2)

Now P(|Ag| =1) = (n/m)(1 — 1/m)"~" and this tends to zero if n/m— 0 or «. But
if n/m— c >0 then the conditional probability in (4.2) goes to zero in view of

(b). This completes the proof of (d).

5. Semi-lattices

A semi-lattice is simply a set together with a single idempotent, associative, and
commutative operation. In %, we take this operation to be intersection, hence
u(A®) is simply the smallest subset of ?, containing A®’ and closed under

intersection.
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We now consider u(4*’). We have the following:

Proposition 5.1. u(4“)) is freely generated by A® if and only if A,y_(;, #9 for
all j € [n].

Proof. The covering pairs in a free semilattice generated by x,, x5, ..., x; are
exactly those pairs

Axi>(Axi) Ax; B#lIclk], jel

iel
So the semilattice u(4“) is freely generated by A’ if and only if for 8 # I c [K],
jel

NA ¢ A,

iel

For this to be true, it is necessary and sufficient that
(\ Ai¢A; forjelk]

ielk]—{j}

which is equivalent to the statement in the proposition. O

Thus
P(u(A™) is freely generated by A®) = Pap(Ap)— ¢y # 0 for j € [K]).
(5.1)
Now for T c [k], |T| =t we have
t n
P(A[k]_(j) = 0 forje T) = (1 —';) . (52)

Recall that k = log, n — log,(log, log, n + b,).
Case 1: b,,— +°.
(5.1) and (5.2) imply

l n
P(u(4®) is not free) < k(l - ;) <ke™m

s k e "/log, n =o0(1).
Case 2: b,—>b.
Let Z = the number of boxes [k] — {j} which are empty, and let T=e~? and let
r =1 be a fixed integer. Proceeding as in Case 2 of (b) we prove

lim Egp((Z),)=17"
and we are done. Now
Ess((2),) = (k),(l - ;n’-) ~ K" ™™™ = k"(log, n)~" e~

completing the proof of this case.
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Case 3: b,— —,
Use a monotonicity argument as in Case 3 of (b).

An element x of a semilattice (S, A) is called meet-irreducible if x=y A z
implies x =y or x =z.
Proposition 5.2. u(A%) = @, if and only if
{[n]} U {[n]—{j}:je[n]} s {Anie[k]}.

Proof. The sets [n] and [#] — {j}, j € [k], are the meet-irreducibles of %,, which
must be contained in any set which generates %, as a meet-semilattice. O

Suppose now that we choose k =2"(1—c,/n) sets without replacement. Let
N = 2" It follows from Proposition 5.2 that

pucar=o0=(2 1/ ()=(E)" wemotm

and the results follows. O (Theorem)

References

[1] B. Bollobds, Random Graphs (Academic Press, London, 1985).

[2] P. Erdés and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci.
5 (1960) 17-61.

[3) W. Feller, An Introduction to Probability Theory and its Applications (Wiley, New York, 1966).



