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Abstract: We describe a new integer programming formulation for the permutation flowshop problem in
which the objective is to minimise the makespan. This formulation can have an exponential number of

" constraints, but its linear programming relaxation can be solved by a novel (row generation) algorithm in

polynomial time. We present some computational experience.
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1. Introduction

In this paper, we discuss a new integer pro-
gramming formulation for the problem of mini-
mising makespan in a permutation flowshop.

The usual assumptions about the permutation
flowshop problem will be adopted. Thus, assume
that we have n jobs J;,J/,,..., J, which have to be
processed on m machines M,, M,,..., M_ in this
order, and we let p;; be the processing time for J;
on M;. At any time, each machine can process at
most one job and each job can be processed on at
most one machine. Once the processing of a job
on a machine has started, it must be completed
without interruption. A feasible schedule can be
represented by a permutation o of {1, 2,...,n}.
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This means that each machine processes the jobs
in the order J,y,J,2)s -5 Jo(n)-

We let F(o) denote the elapsed time between
the start of J,;, on M, and the completion of
Jomyon M, This is referred to as the makespan or
the flow-time of sequence ¢. Then the problem is
to

minimise F(o), (1)
cES,

where S, = {0:0 is a permutation of {1, 2,...,
n}}.

For m =2, the optimal schedule can be ob-
tained in O(n log n) steps by Johnson’s algorithm
[16]). However, for m = 3, the problem is known to
be NP-Hard—see Garey and Johnson [9], Garey,
Johnson and Sethi [10], or Lenstra, Rinnooy Kan
and Brucker [21]—and it has an extensive litera-
ture. For a review on the flowshop problem, we
refer the reader to Baker [1,2], Bellman, Esogbue
and Nabeshima [3], Bestwick and Hastings [4],
Brown and Lomnicki [5], Campbell, Dudek and
Smith [6], Conway, Maxwell and Miller [7],
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Graham et al. [13], Ignall and Schrage [15],
Lageweg, Lenstra and Rinnooy Kan [18], Lenstra
{20}, Lomnicki [22]), McMahon and Burton [23],
Potts [24], Rinnooy Kan [25], and Szwarc [27].

In Section 2, we describe our integer program-
ming formulation for the makespan problem and
in Section 3, we present an algorithm for solving
the linear programming relaxation of the integer
program, giving a lower bound. This bound is
then compared with known bounds. Finally, com-
putational experience is reported in Section 4

Section 5.

2. An integer programming formulation for the
makespan problem

It is well known that for a given o, we can
compute F(o) as the length of the longest path in
a certain acyclic digraph G, = (N, A)—see Figure
1—where the set of nodes N is given by

N={s, fYU{lk,1]:k=1,2,...,n,

which is followed by some concluding remarks in 1=1,2,...,m},
s
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Figure 1. G, = (N, A)
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and
A= {(s,[1,1]), ([n, m], f)}
U{([&, 1], [k+1,1]):k=1,2,...,n—1,
1=1,2,...,m}
U{([k, 1], [k, 1+1]): k=1,2,...,n,
1=1,2,...,m—-1}.

Note that N and A4 are independent of 6. How-
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ever, each arc u has a length /(u) associated with
it. That is,

I(s,[1,1])=0

and

I(u) =p,;,, if arc u has tail [i, /]
foralli=1,...,n

and j=1,..., m.
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Then, as shown in reference [3, pp. 141-145], we
have

F( o) = the length of the longest path

from s to f in G,.

Now let T be the set of paths from s to f in G,.
We can represent a path 1€ T by a sequence of
integers 1<r,<r< +-+ <r,,_, <n—see Figure
2—indicating the positions of the ‘horizontal’ sec-
tions of . Thus 7 is the set of arcs

A,={(s,[1,1])}
O U {{(Ui k1 [+ 1, KD ricy <)

U{([re, k], [rer k+1D)}},

where r,=1, r,,=n and [r,,, m + 1] denotes f.
We let

I'(7, o) = the length of the path 7 in G,.
Then Problem (1) becomes:

minimise maximumI'(7, o). 2)
oES, reT

We now introduce an n X n permutation matrix
X? = | x7;|| for each 6 € S,, where
x5’4={1 if i =0(j),

Y 0 otherwise.

Note that the mapping 0 — X° is 1-1.
We now express I'(1, o) in terms of X°.

Now for 7= (ry, r3,..., Fy—1), W€ can see from
the definition of A4, that

n Tk
I'(r,0)= 2 Z Pk (3)
k=1 j=r._,
m Tk n
= Z Z zpa(i)kx:(i)j
k=1 j=r_, i=1
m T n
= Z Z zpikxioj (4)
k=1 j=r_, i=1
n m Tk
= Z E Z pikx:"j
i=1 k=1 j=r_,
n n
=X X P
i=1j=1
where

pi= X Pus B j=1,2,...,n (5)

ki <j<n,

Thus, if P™ is the nXn matrix || pi;ll, then
Problem (2) can be written as the following in-
teger program:

minimise £

subject to
£-P'X20, 7€T, (6a)
Yx;=1, j=1,2,...,n, (6b)

i=1



94 A.M. Frieze and J. Yadegar / A new integer programming formulation for the flowshop problem

Y x,=1, i=1,2,...,n, (6¢)
j=1
x;=0o0r1, i j=1,2,...,n, (6d)

where P"X =%_ X1 ,p/;x;; for r€T.
Note that as

n+m—2)
m-1 )

7=

this formulation can have an exponential number
of constraints.

It is worth noting that a path 7 € T can also be
represented by an (n—1)-tuple 1</ <y < -+
< r)_, <m of integers—see Figure 3—if we con-
sider individual jobs on various machines rather
than considering various jobs on individual
machines. In this case, the expression for I'(r, o)
becomes,

’
n

n
F(Ts 0)= Z Pogiyks r(),=1’ r,,'=m

L
=r_

noon
=‘Z Z Z pu(i)kx:(i)j

-
I

-

>

n n 7
= Z E 2 pik'x;,j

where

;
mi= ¥ pu b =12, (7)
ke

k 1

It is not difficult to see that the expression
given for 77 in (7) is the same as that given for pj;
in (5), and thus one obtains the same integer
programming formulation as that of (6).

We next show how to solve the usual linear
programming relaxation of the integer program
(6). This, generally, yields a good lower bound on
the optimal value of the makespan problem.

3. Lower bounds

Let LP denote the linear programming relaxa-
tion of (6)—i.e. replace (6d) by x;, > 0. Because of

the large number of constraints, it is clear that the
only feasible approach to solving LP is by some
row generation scheme. One possibility is de-
scribed next. For T* € T let LP(T *) denote the
linear program obtained from LP by replacing
(6a) by

£E-P'X=20, 7€T*, (8)

Given T* we solve the LP relaxation LP(T *),
obtaining £*, X*. We then check to see if £*,
X * is feasible for LP. If it is we are done, other-
wise we add a violated constraint and throw away
slack constraints, and repeat. Formally:

3.1. Algorithm BOUND

begin
choose an initial set of paths T* C T;
bub = co— best (smallest) upper bound on the
optimal value of LP computed so
far;
blb ;= — co — best (largest) lower bound on the
optimal value of LP computed so
far;
repeat
A: let £*, X* be an optimal solution to
LI(T*);
B: let p=P7 X*=max, ., P'X*;
bub := min (bub, p);
if £* > bub then terminate
{remark: £*, X* is optimal}
else if £* =blb then T*:=T*U {7*)}
else {remark: £* > blb)

begin
blb = §*;
C: T*=(T*U{1*))
—{reT*: ¢*>P'X*)}
end
until termination

end

Note that the sequence of minima £*’s obtained
by relaxation in Statement A is monotone non-de-
creasing,

Now, it is well known—see Lasdon [19]—that
Algorithm BOUND will solve the linear program-
ming problem LP.

£*, X* in Statement A can be found using the
simplex algorithm as we can expect |T*| to be
relatively small (|T* | <n?—-2n+2 if we only
keep the minimum number of tight constraints
needed to define £*, X*).
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We now have to explain how to execute State-
ment B efficiently. If X* were an integer matrix,
i.e. X* = X° for some o € S,, then we simply find
the longest path in G,. For X * non-integer we can
do the same, i.e. define a digraph G . and find its
longest path.

Now, G. has the same nodes N and arcs A as
before. Arc lengths are as defined below.

From (4) we have

m % n
P?X*=Z Z Zpikxi';

k=1 j=r,_, i=1

m Iy
=X X ph (9)
k=1 j=r,_,

where

n
pj’l:: Zpi/\’xi’; forj=l,2,...,n,
i=1 k=1,2,...,

Comparing (9) and (3), we see that P"X* is
indeed the length of the path 7 if arcs having tail
[J, k] have length pj} for all j, k. Using this
definition of arc length, we see that the maximis-
ation problem in Statement B is a longest path
problem and is solvable in O(mn) time. (In the
terminology of Grotschel, Lovasz and Schrijver
[14], the separation problem for the polyhedral
feasible region of the linear programming problem
LP is solvable in polynomial time. Hence, LP is
solvable in polynomial time using their variant of
Khachian’s algorithm [17].)

We note, using [28], that

> J\:P*)x (10)

T€T*

subject to (6b), (6c) and (6d),

where A* is the optimum dual solution to LP(7'*).
The solution to the assignment problem (10) was
used to provide heuristic solutions to the flowshop
problem.

£* = minimum(

3.2. Comparison with other lower bounds

It is easy to see that

LB = max minI'(7, o) (11a)
1€T oS
<t* < min maxI'(7, 6) = £, (11b)
oS r€eT

where £ and £* are the optimal values to the
integer program (6) and its linear relaxation LP
respectively.

It is worth noting that for a fixed path 1€ T,
the problem min,.g I'(7, 6) (=miny., P'X,
where A is the set of 0-1 X'’s, satisfying con-
straints (6b), (6¢), (6d)) is an assignment problem.
One can actually give an interpretation for this
assignment problem: namely, shuffle the rows
(Jobs) in the digraph G, such that the length of
path 7 is minimised.

We will now show that there exists a subset
Twp= {7 Ts..., T, } of T which in place of T in
(11a) reduces the lower bound LB to the
machine-based bound obtained by Brown and
Lomnicki [5] and Ignall and Schrage [15]). For this
purpose, let us first define the elements of Tp by
using the (m — 1)-tuple representation of a path.
That is,

T,=(,....,1, n,...,n) fori=1,....m—1
and
T,=(1,1,...,1),

where the first n in 7; occurs in the /-th place.
Therefore, the /-th path of Ty, in G, of Figure
1 is the horizontal path from node [1, 1] to node
{1, 1], then vertically down from node [1, /] to
node [n, /], followed by the horizontal path from
node [n, /] to node [(n, m].
We next define:

LB,= minI'(7,0) for/=1,...,m
0ES

and

LB= max LB,.
1gi<m
Now, using (3), it is easy to see that
-1 n

LB, = min {(1 —8) X Poyk + 2 Poij
eES k=1 j=1

+(1_8mI) Z po(n)k}

k=I+1
-1

n
=3, Pyt min (1-8,) X Poays
j=1 1<gao(l),0(n)<n k=1
o(l)+o(n)

+(1 —8ml) E po(n)k}’

k=1+1

where §,, is the Kronecker delta.
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It is now clear that LB is indeed the machine-
based lower bound produced by Brown and
Lomnicki [5] and also by Ignall and Schrage [15].
Furthermore, since LB< LB, it follows that the
bounds of [5] and [15] are weaker than the bound
obtained by Algorithm BOUND.

The bound of Bestwick and Hastings [4], the
job-based bound introduced by McMahon and
Burton [23], and the two-machine bound proposed
by Lageweg et al. [18] and Potts [24] are incom-
parable with our bound.

4. Computational experience

In each iteration of Algorithm BOUND, we also
compute an upper bound on £, that is, on the
value of an optimal permutation schedule for the
flowshop problem in (6). This is done as follows:

Let A* be an optimal multiplier vector (dual
solution) associated with constraints (8) in the
linear program LP(T *), which is readily available
from the optimal vector of shadow prices for
LP(T *). Now, from Geoffrion [11], the vector A*
is also optimal for the dual problem

max p(A)
AL crA,=land A,>0

Thus A* can be used in (10) to achieve (hopefully)
a good permutation schedule X° satisfying (6b),
(6c) and (6d). We then use Statement B in Al-
gorithm BOUND (i.e. compute the longest path in
G,) to find a feasible solution for (6).

No special method was employed to solve the
linear program LP(T *). We had a program avail-
able, based on the simplex algorithm for solving a
general linear program with bounded variables,
and so we used it. A primal-dual algorithm based
on that of Ford and Fulkerson [8) was used to
solve the weighted assignment problem (10).

We have carried out some computational ex-
periments to try to evaluate the strength of the
proposed bound. The results of these experiments
are given in Table 1. The algorithm was coded in
FORTRAN IV and run on an ICL 2980 computer.

Explanation of Table 1

P = Source of problems: Problem 1 is from
Ignall and Schrage [15]. Problems 2-3 are
from Brown and Lomnicki [5]. Problems
4-9 are from Giglio and Wagner [12].
Problem 10 is from Smith and Dudek
[26]. Problems 11-15 are randomly gener-
ated. The processing times are integers
selected from the interval [10, 40] for

where problems 11-12, and from the interval
[0, 10] for problems 13-15.
@(A) = min ( Y Afpf) X. n = Number of jobs.
XeA\ et m = Number of machines
Table 1
P n m T*® [¢*] ub ! MB JB TMB bv
1 10 3 15 61 66 6.55 59 61 65 66 °
2 6 3 6 99 114 0.70 99 107 107 109
3 6 5 20 85 97 4,79 75 90 90 97°%
4 6 3 4 55 59 0.63 53 54 54 57°%
5 6 3 1 64 64 0.54 64 61 64 64"
6 6 3 5 69 80 0.77 69 69 69 69°
7 6 3 1 63 63 0.57 63 49 63 63°
8 6 3 8 65 70 1.03 63 68 68 68°
9 6 3 8 69 81 1.04 67 75 75 76°
10 5 3 2 1051 1086 0.62 1051 1011 1051 1078 ®
11 5 3 7 179 202 0.73 161 202 202 202°
12 7 3 7 221 241 1.14 214 240 240 241
13 7 4 2 35 38 0.63 34 2 35 38
14 10 3 8 66 68 1.78 65 65 66 68
15 10 4 10 48 62 1.15 47 44 48 62

# The computer program used did not implement Statement C in Algorithm BouND. Thus, the true number of paths needed to solve

LP will be less than or equal those indicated in Table 1.
® Indicates that this is known to be optimal.
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T* =Number of paths used before reaching
the optimal solution of LP.
§* =The optimal value of LP. Since the

processing times are integers, it follows
that [£*] is a valid lower bound.

ub = The best solution value computed.
t = The CPU time in seconds on an ICL 2980
computer.

MB = The bound obtained using the machine-
based bound.

JB = The bound obtained using the job-based
bound.

TMB = The bound obtained using the two-ma-
chine bound.

bv = The value of the best known solution to
these problems.

5. Concluding remarks

We have constructed a new integer program-
ming formulation of the flowshop problem. The
lower bounds computed are either independent or
superior to the well-known bounds. The most
interesting aspect seems to us to be the way we
have extended the use of the acyclic digraph G, to
deal with fractional solutions.

The computational results are not sensational
but there is hope that the bound can be useful as
an addition to the two machine bound, which has
tended to dominate our bound in the tests. The
computation time for the bound does not seem to
be a problem, given that we did not use a very
efficient version of the simplex algorithm in our
tests. Note also that the number of tight con-
straints needed to define a basic solution is at
most n? — 2n + 2, where n is the number of jobs
and so is independent of the number of machines.
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