Opl Res. Q.. Pergamon Press 1977. Vol. 28, 2 i, pp. 339 to 346. Printed in Great Britgin

Minimum Paths in Directed Graphs

A. FRIEZE

Department of Computer Science and Statistics, Queen Mary College,
University of London

This paper considers the problem of finding paths from a fixed node to all other
nodes of a directed graph which minimise a function defined on the paths. Under
certain assumptions a characterisation of optimal paths is derived. Two algorithms
which are generalisations of standard shortest path methods are then given.

INTRODUCTION

THE SHORTEST route problem is of considerable importance in operational
research. This paper considers a generalisation of this problem where path
length is defined as a real valued function defined on paths and satisfying
certain conditions.

The Dijkstra® shortest route algorithm for graphs with non-negative arc
lengths has already been generalised in Hu.? The methods described here
are generalisations of methods applicable to graphs without negative circuits.

The plan of the paper is as follows: we first give a precise description
of the problem. A less precise description might be that given a distinguished
starting node we try to find routes to all other nodes of a directed graph
which minimise some measure of length. This measure is assumed to be
such that the ‘length’ of a path depends only on the length up to the penulti-
mate node and the last arc. This length increases with that to the penultimate
node and to make the problem meaningful we must assume that traversing
a cycle cannot reduce the length of a path.

We show that minimum paths have the characteristic that ‘a minimum
path has the property that the path up to its penultimate node can be
assumed to be minimum also’.

We then use this characterisation to prove the validity of his algorithms.
The first is a generalisation of an algorithm due to Pollatschek and Avi-
Itzhak? and the second generalises an algorithm due to Moore* and Murch-
land.’

A MINIMUM PATH PROBLEM

Let G be a finite directed graph with nodes N and arcs A. Let ¢ be
a real valued function defined on the paths of G and s be a distinguished
‘source’ node of G. The problem we discuss is that of finding for each node
j# s a path from s to j which minimises ¢ over all paths from s to j.

- 339

Operational Research Quarterly Vol. 28 No. 2, i

Where arc length is defined and for path P, ¢(P) = the sum of the lengths
of the arcs of P, we have a normal shortest path problem.

For an arbitrary function ¢ there is clearly not much to say and so we
next deal with the assumptions made in the paper.

(1) We denote by A the value of ¢((s)) where (s) denotes the trivial path
consisting of s alone.

(2) For each arc (i,j) there is a real function y;; such that for a path P
consisting of a path Q terminating at i followed by arc (i,j) we have

B(P) = ¥ {(Q)

i.e. the ¢ value of P depends only on the ¢ value of @ and not on its
node sequence.
(3) ¢;; is a monotonic increasing function for each arc (i, j).

To simplify expressions we shall write the function value y;{x) in the form
x *(i,j) (* is now a real valued binary operation defined on R x A). This
allows us to write for path P = (i),i,,...i,) the expression

¢(P) =Ax (il?iz)*(iZ’ii’-)*' . '(ip—l,ip)

where the order of evaluation of the expression is only meaningful from
left to right.

This next assumption reduces in the shortest path case to the non-existence
of negative cycles.
(4) For arbitrary real x and cycle (iy,i5,. . .i,i;) in G we assume that

x x (iy,ip)%. . #(ipiy) = x.
Examples

(1) Shortest paths: xx(i,j) = x + ¢;; where ¢;; is the lengths of arc (i,j)

(i) Minimax paths: x*(i,j) = max(x,c;;)

(iii) Time dependent arc lengths: x*(i,j) = x + ¢;{x) where c;{x) is the
length of arc (i,j) if a traveller arrives at node i at time x.

(iv) This approach deals satisfactorily with the case when there is more
than one arc joining node i to node j and ¥;(x) = mli‘n(lij,‘(x)) where 4;;
corresponds to the k™ arc from i to j e.g. in the context of (iii) having arrived
at node i at time x a traveller selects the currently shortest arc for going
from i to j.

The effect of these assumptions is to eliminate path problems where sub-
paths of minimum paths cannot be assumed minimal e.g. the travelling sales-
man problem.

It follows from (4) that we can restrict our attention to elementary paths
and further from (3) that these paths can always be selected so that they
make up the structure of a directed tree rooted at s. Such a tree can be
defined uniquely by a predecessor function #:N — N such that n(s) = s and

340

A. Frieze—Minimum Paths in Directed Graphs

wl(j)
s 72(/)

FiG. 1.

such that for each j# s there exists t > 0 such that n'(j) = s [See fig. 1].

Given such a tree or equivalently a function = we define y; to be the
¢ value of the unique tree path from s to j, We have y, = A and a simple
inductive argument on the number of arcs in a path shows that

i = Yup*(®())) forj # s.)

Theorem 1. The predecessor function n defines a set of optimal paths if
and only if

yj = min(yl' * (l,])'(l,])GA) (6)

Proof. If: assume that (6) holds and that z’ is any other predecessor function
and yj are its associated path values. Then we have

Vi Ve * () (M
and
¥i < Yo * ('()),J) by (6) (8).

It follows from (3) that y,.; < yu;3 — ¥; < ¥} Since y, = y, = A a simple
inductive argument on the number of arcs in paths defined by =’ will give
the result. Only if: suppose next that (6) does not hold. Define the function
7' by n'(s) = s and

Yary * (().4) = min(y; = (i,)|(i, /)e A))

and n(j) # 7'(j) only if n(j) does not give the minimum on the RHS of (9).

We show first that n” defines a directed tree. This is equivalent to showing
that the graph H with nodes N and arcs (n'(j),j) does not contain a circuit.
Suppose that to the contrary it does contain a circuit C which without loss
of generality we denote by (1,2,...p,1). Since n does not define a circuit
there must exist a node j of C such that n(j) # #'(j) and for simplicity assume
j = 1. This implies that

Y1 > ypx(p,l) (10)
we also have that by definition of =’ that
Vizyi-1*(j— 1)) forj=2 (1)

Successively substituting (11) into (10) and using (3) gives
Y1 >y #(1,2)%(2,3)%. . .x(p,1)
341

Operational Research Quarterly Vol. 28 No. 2, i

which contradicts (4). Thus =’ defines a tree. Let y; be the associated path
values for paths in this tree. Now the yj satisfy (7) and the y; satisfy (8)
with the inequality sign reversed. The argument following (8) can then be
adapted to show that y; < y; for je N. By assumption there is a k such that
n'(k) # n(k) and so

Vi > Vary * (W' (), k)
2 Yro * (W'(K), k)
= V-

This shows that 7 is not optimal and completes the proof of the theorem.

AN ALGORITHM

The second part of theorem 1 suggests the following algorithm for solving
our problem.

Step 1
Select an arbitrary predecessor function 7.

Step 2

Calculate the values y; associated with . This can be achieved by using
the following procedure until all y; have been determined: choose j for which
y; is not known and compute =(j), n%(j),... until one reaches a node i for
which y; is known. Note that y, = A always. One then calculates the y value
for each node on the path i to t using (5). Failure to find such a node
i after a number of tries one less than the number of nodes with unknown
y value indicates the existence of a circuit and implies that (4) is not satisfied.

Step 3

Test = for optimality by calculating n' as in (9). If # = n’ we terminate,
otherwise replace n by n" and go to step 2.

This algorithm must converge after a finite number of iterations because
there are only a finite number of predecessor functions n and the algorithm
only repeats a function immediately prior to termination.

Example

To illustrate the method we consider the network of Fig. 2 and take
x#*(i,j) = a;;x + b;; where a;; > 0. The values a;;, b;; are indicated on the
arcs (A = 0).

To start the algorithm we construct a tree using the adaptation of the
Dijkstra algorithm suggested in Hu. The important point in this case is that
we cannot be sure that this solution is optimal.

342

A. Frieze—Minimum Paths in Directed Graphs

I 03,20 a
o o)
¥ S,
o% o 2 o <o
s g] <))
/
‘0
@ .Lo.‘p
2 05,00 3
FiG. 2.
Step 1
j | 2 3 4 5
) s s 2 1 3
Step 2
J 1 2 3 4 5
Vi 20 1.0 05 26 20
Step 3

j | 2 3 4 5
T(j) s s 2 | 3

and so optimality of the ‘Dijkstra’ start is proven.

COMPARISON WITH DYNAMIC PROGRAMMING

The structure of this problem is such that dynamic programming could be
used. If we define f/(j) = the minimum ¢ value of a path from s to j using
r arcs or less then as in Bellman’s shortest path algorithm we can write

Jr10) = min(£() * (L), e A).

The above equation is used iteratively until f,,, = f,. One can show with-
out difficulty that if at some stage of the above algorithm we have a predeces-
sor function = such that its associated values y; satisfy y; = f(j) for some
r then the y; after the next iteration satisfy y; < f,.,(j). This is a direct
consequence of the fact that

Yi £ Y * (@0
in the notation of the second part of the above theorem.
Thus if in step |1 we take n(j) = s for all j with Ax(s,j) = oo for (s,j) ¢ A—
then the algorithm will terminate after no more than n — 1 iterations.
The experience of Pollatschek and Avi-Itzhak in the shortest path case

suggests that convergence is actually more rapid than the dynamic program-
ming method.

343

Operational Research Quarterly Vol. 28 No. 2, i
AN ALTERNATIVE ALGORITHM

At each stage of this algorithm we have a tree and we select a candidate
node with which we try to find a better path to its neighbours.

Step 1

C = {s} = initial set of candidate nodes.
ys=Aand y; = oo for j # s.
n(j) = s for all j.

Step 2

If C = ¢ the problem is solved, otherwise choose je C and remove j from
C.

Step 3

Process node j ie. for each node k such that (j,k)e A compute y;x(j,k).
If this quantity is less than the current value of y, put y, = y;*(j,k) and
n(k) = j and add k to C if it is not already there.

Go to step 2.

In the theorem below we assume that when choosing a candidate from
C we may use the rule first in—first out.

Theorem 2

If assumptions (1)-(4) hold then the algorithm converges after a finite
number of iterations and the paths defined by the algorithm are optimal.
If the maximum number of arcs in a path defined by the algorithm is r
then there can have been no more than 1 + #(n — (r + 1)/2) implementations
of step 3.

Proof
We note first that throughout the algorithm the following inequality holds

yj = yn(j) * (n(f)’j) (12)

This holds initially and assume inductively that it holds prior to processing
some node k and that (k,t)eA. If y, < y, * (k,t) then step 3 leaves (12) unaltered
and if y, > y,*(k,t) then step 3 makes (12) an equation. Thus (12) holds
after processing k and hence throughout.

We now show that throughout the algorithm = defines a tree. This is
true initially and so assume inductively that it holds prior to processing
node k and this property is lost when for (k,t)e4 we put n(t) = k. Assume
that a circuit C is created and as in theorem 1 (only if part) we assume
C =(1,2,...p,1) where p =k and 1 = ¢. Then (10) holds else we would not
have changed =(t) and (11) holds because of (12). Thus C is a negative circuit
which is a contradiction. Thus n defines a tree throughout. Once a tree

344

A. Frieze—Minimum Paths in Directed Graphs

is changed in step 3 it cannot re-appear as the y values never increase. We
cannot keep the same tree for an infinite number of iterations since if there
is no change the number of candidates is reduced by one and the process
must stop eventually.

Suppose next that after termination there is a node k and a path
P = (ig,iy,. . .ip) from s to k such that y, > ¢(P) let i, be the first node of
P such that y; > ¢(ip,iy,...i,). However after i,_, was last processed we
must have

Yie S)i, * (- 10d) = Plig,iy,. . .1y)

which is a contradiction. A similar independent argument shows that i,_,
must be processed.

To prove the last part let S, = N consist of those nodes j for which the
number of arcs in the path defined by the algorithm is no more than ¢t
We note that once all the nodes in S, have been processed for the last time
a node in S,,; — S, will be processed once more only. Further because of
the order in which nodes are processed these will be finally processed after
at most n — |S,| further implementations of step 2.

Thus the total number of iterations is no more than

ISol + 1 —|Sol + n — [Sy|+...4+ n — S, (13)

Using the fact that |S| > ¢+ 1 for t = 1,...r — 1 in (13) completes the
argument.

Now the dynamic programming algorithm requires r(n — 1) + 1 process-
ings to prove convergence where r’ is the maximum number of arcs in a
path. Now in general r' < r but a small perturbation in *to x=(i,j) + € is
sufficient to ensure that r' = r. Alternatively if in step 3 there is equality
between y, and y;*(j,k) we can relabel if the path via j has fewer arcs.
Thus this algorithm is superior to dynamic programming and it is surprising
therefore that it is not mentioned more in text-books and papers e.g. it is
not mentioned for example in Dreyfus®. Evidence of the quality of this algor-
ithm applied to shortest path problems is given in Pape’.

Though we have as yet no direct computational experience we would think
that the first algorithm was preferable to the second when the number of
arcs in at least one minimum path is large and conversely when there are
relatively few arcs.

A FURTHER GENERALISATION

The above results can be generalised to cases where the function ¢ is not
real valued.

As an example suppose that there are two real valued functions ¢,, ¢, e.g.
¢(P) = path length and ¢,(P) = length of longest arc in P. The problem is to

345

Operational Research Quarterly Vol. 28 No. 2, i

find paths which minimise 1,¢, + 1,¢, where 1,,4, > 0. We can approach
this problem by denoting y; = (y;1,:;) where y;; = the ¢; value of a path
from s to i and taking y; < y; to mean 4,y; + Azyn < Ayyi + A2yia- The
algorithms can then be applied as above.

In general then we assume that ¢: PATHS — X where PATHS denotes
the set of paths of our graph and X is a set together with a binary relation
< which has the following properties.

For x,ye X either x < y or y < x or both. (13)
x < x for all xeX (reflexivity). (14)
x < yand y < z implies x < z (transitivity). (15)

Note that if x < y and y < x we cannot assume x = y and so < is not
necessarily an order relation. We write x < y to mean x < y but y £ x.
(Note that x < y < z— x < 2).

The functions ¥;;: X — X are monotonic in the sense that x < y—
Yifx) < ¢ (y). For a finite subset S = X we write min(xeS) to mean an
element yeS such that y < x for xeS. By (13) the min of a set is well defined.
A path P minimises ¢ over a set of paths if ¢(P) < @(P') for any other
path P’ in the set.

By retracing the proofs in the previous sections and interpreting entities
as in this section we can show that the algorithms described will find paths
from s to all other nodes which minimise ¢.

REFERENCES

' E. W. DUKSTRA (1959) A note on two problems in connection with graphs. Numerische Mathe-
matik 1. 269-271.

2T. C. Hu (1969) Integer programming and network flow. Addison Wesley, New York.

3M. A. PoLLATsCHEK and B. Avi-ITzHAK (1974) An efficient shortest route algorithm. Ange-
wandte Informatik 16, 477-482.

“E. F. MOORE (1957) The shortest path through a maze. Proceedings of the international sym-
posium on switching part 11. The Annals of the Computation Laboratory of Harvard University.
Harvard University Press.

3J. D. MURCHLAND (1967) The “One-Through” method of finding all shortest distances in a
graph from a single origin. Transport Network Theory Unit, London Graduate School of
Business Studies. Report LBS-TNT-56.

6S. E. DREYFUS (1969) An appraisal of some shortest path algorithms. Opns. Res. 17, 395-412.

7U. PAPE (1974) Implementation and Efficiency of Moore Algorithms for the Shortest Route
Problem. Math. Prog. 7. 212-222.

346

‘e

J. Op! Res. Soc. Pergamon Press 1978. Vol. 29, 1, p. 95. Printed in Great Britain

Addendum

to

“Goal-seeking Behaviour in Queueing Systems” (Opl Res. Q. 1976 27, 605-614)
GEORGE W. TYLER

No EXACT criterion was given previously for states of accommodation, although they
were linked generally to maximum waiting times. Following Beneg,! we can now propose
that the energy of our goal-seeking queueing system is represented by the number of
customers in the system, and states of accommodation correspond to states of maximum
entropy. In our particular case, the situation is complicated slightly by customer discour-
agement, because a proportion of customers queueing at any instant will be selected
out before service commences. However, since these particular customers contribute
nothing to the effectiveness of the system we can simply discount them and define
energy on the effective number of customers in the system, i.e. those that are subse-
quently accepted for service. States of accommodation then correspond to maximum
values of the entropy based on these effective customers alone. To estimate the effective
number of customers in the system, we simply divide the waiting times of serviced
customers by the mean service time. So for the probabilities of finding n effective cus-
tomers in the system we get:

,Pn = Aexp{—[(o — d)/c]n}
g,,r = Aexp(aT — n).

The entropy is given by:
H= - f p. log p,dn.
0

Taking natural logs, this gives:
H=1—-InA - aATexp[—(c — a)T].
GEORGE W. TYLER

REFERENCE

'V. E. Beng$ (1963) A “thermodynamic” theory of traffic in connecting networks. Bell Syst. tech. J. 42,
567-607.

95

J. Opl Res. Soc. Pergamon Press 1978. Vol. 29, 1, p. 96. Printed in Great Britain

Corrigendum
Minimum Paths in Directed Graphs, Opl Res. Q. 28, pp. 339-346

IN THE proof of theorem 2 on pp. 344-345 it states “Once a tree is changed in step
3 it cannot re-appear as the y values never increase”. This statement would be valid
if y; was always the ¢ value of the path from s to i defined by the tree. This is not
always true as the y values “lag behind” in this algorithm. However, it is always true
that y; is the ¢ value of some path from s to i and the number of such paths is
finite. Thus one can see that a tree could only re-appear a finite number of times.
The proof then continues as before.

A. M. FrIEZE

96

