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Abstract

We consider the length L(n) of the longest path in a randomly generated Apollonian
Network (ApN) A,,. We show that w.h.p. L(n) < ne” 198" for any constant ¢ < 2/3.

1 Introduction

This paper is concerned with the length of the longest path in a random Apollonian Network
(ApN) A,,. We start with a triangle Ty = zyz in the plane. We then place a point v; in the
centre of this triangle creating 3 triangular faces. We choose one of these faces at random
and place a point v, in its middle. There are now 5 triangular faces. We choose one at
random and place a point v3 in its centre. In general, after we have added vy, vy, ..., v; there
will 2n + 1 triangular faces. We choose one at random and place v, inside it. The random
graph A, is the graph induced by this embedding. It has n + 3 vertices and 3n + 6 edges.

This graph has been the object of study recently. Frieze and Tsourakakis [4] studied it in the
context of scale free graphs. They determined properties of its degree sequence, properties of
the spectra of its adjacency matrix, and its diameter. Cooper and Frieze [2], Ebrahimzadeh,
Farczadi, Gao, Mehrabian, Sato, Wormald and Zung [3] improved the diameter result and
determine the diameter asymptotically. The paper [3] proves the following result concerning
the length of the longest path in A,,:

Theorem 1 There exists an absolute constant o such that if L(n) denotes the length of the

longest path in A, then
n 1
Pr | L(n) > < :
r< (n) 2 logo‘n) ~ log®n
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The value of « from [3] is rather small and we will assume for the purposes of this proof that

o < % (1)

The aim of this paper is to give the following improvement on Theorem 1:

Theorem 2
Pr(L(n) > ne 8" < O™ 5" ™)

for any constant ¢ < 2/3.

This is most likely far from the truth. It is reasonable to conjecture that in fact L(n) < n'—®
w.h.p. for some positive ¢ > 0. For lower bounds, [3] shows that L(n) > n!°ss2 4 2 always
and E(L(n)) = Q(n®®). Chen and Yu [1] have proved an Q(n'°#32) lower bound for arbitrary

3-connected planar graphs.

2 QOutline proof strategy

We take an arbitrary path P in A, and bound its length. We do this as follows. We add
vertices to the interior of xyz in rounds. In round i we add o; vertices. We start with
oo = n'/? and choose o; > 0;_; where A > B iff B = o(A). We will argue inductively
that P only visits 7,1 = o(0;_1) faces of A,, , and then use Lemma 2 below to argue that
roughly a fraction 7;,_1/0;_1 of the o; new vertices go into faces visited by P. We then use
a variant (Lemma 3) of Theorem 1 to argue that w.h.p. 7 < 27;1—‘_11 Theorem 2 will follow
easily from this.

3 Paths and Triangles

Fix 1 < o < n and let A, denote the ApN we have after inserting o vertices A interior to Tj.
It has 20 + 1 faces, which we denote by T = {T3,T5,...,To,+1}. Now add N more vertices
B to create a larger network A, where ¢’ = 0+ N. Now consider a path P = x1, 29, ..., 7,
through A,. Let I = {i:x; € A} = {i1,a,...,i,}. Note that @ = (i1,12,...,4,) is a path
of length 7 — 1 in A,. This is because ixiy1,1 < k < 7 must be an edge of some face in 7.
We also see that for any 1 < k < 7 that the vertices z;, 1, < j < ix41 will all be interior to
the same face 7 for some [ € [20 + 1].

We summarise this in the following lemma: We use the notation of the preceding paragraph.
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Lemma 1 Suppose that 1 < o < o' <n and that Q is a path of A, that is obtained from a
path P in A, by omitting the vertices in B.

Suppose that Q) has T vertices and that P wvisits the interior of 7' faces from T . Then

T—1<7<7+1.

Proof The path P breaks into vertices of A, plus 7 + 1 intervals where in an interval
it visits the interior of a single face in 7. This justifies the upper bound. The lower bound
comes from the fact that except for the face in which it starts, if P re-enters a face xyz, then
it cannot leave it, because it will have already visited all three vertices x,y, 2. Thus at most
two of the aforementioned intervals can represent a repeated face. |

4 A Structural Lemma

Let
A\ = log®n.

Lemma 2 The following holds for all i. Let 0 = o; and suppose that \y < 7 < . Suppose
that T1,T5, ..., T, is a set of triangular faces of A,. Suppose that N > o and that when
adding N wvertices to A, we find that M; vertices are placed in T; for j =1,2,...,7. Then
for all J C [20 4+ 1], |J| = 7 we have

g T

jedJ

This holds q.s.* for all choices of 7,0 and T1,Ts, ..., T,.

Proof We consider the following process. It is a simple example of a branching random
walk. We consider a process that starts with s newly born particles. Once a particle is
born, it waits an exponentially mean one distributed amount of time. After this time, it
simultaneously dies and gives birth to k new particles and so on. A birth corresponds to a
vertex of our network and a particle corresponds to a face.

Let Z; denote the number of deaths up to time ¢. The number of particles in the system is
Oy = s+ N(k—1). Then we have

Pr(Zyia = N) = By_1 Pr(Z, = N — 1)dt + (1 — Bydt) Pr(Z, = N).

LA sequence of events &, holds quite surely (q.s.) if Pr(=€,) = O(n=¥ for any constant K > 0.



So, if py(t) = Pr(Z, = N), we have fy(0) = 1y—s and

P (t) = Bnoipn—1(t) — Bupw(t).

This yields

Asps =1. When s is even, s, N — 0o, and k = 3 we have

P ﬁ (3/27' - 1> _ <N;L/2s/_21— 1)

=1
(14572 YL 2N 21 N +s
- 2N 5—2 27Ns

We also need to have an upper bound for small even s, N2 = o(s), say. In this case we use

Az ns < s,

When s > 3 is odd, s, N — oo (no need to deal with small N here) and k = 3 we have

11 2i T 2N(s— )INI((s — 1)/2+ N)!

(1] N L4 2N (=02

- 2N s—1 (2T N)L/2
We now consider with 7 — oo, 7 < 0, N > m > 27N/o > 7 and arbitrary t,
(under the assumption that 7 is odd and o is odd)

A3,N,521N—[(2i_2+5) (s—14+2N)!((s—1)/2)!




(We sometimes use A <, B in place of A = O(B)).

Pr(My+---+M,=m|M + -+ M,=N)

Pr(My+-- -+ M, =m)Pr(M;y1+---+ M, =N —m)
- Pr(M, +---+ M, = N)
_ A3 mr A3 N-mo—r

AS,N,U
_— m m (771)/2 P me N—m (O’*T*Q)/Q
O EDT )T (1 ) (1) (NN —m) + o))/
(1+ %)™ (14 202 Qrme (N — m))1/2

(2)
(r—1)/2 2m )\ (7—1)/2 o(T) (o—7)/2 2(N—m) (0—7-2)/2 12
elr /2 ((2) 7V o)) elomf2 (1 4 20m)) (NN —m) +0))

o—

<b
eo/2—0?/8N <(¥)(U_1)/2 602/(4+0(1))N> (mO'(N — m))1/2

o—T—2

S (o—7-2)/2
ot ()TN (1 4 2N (NN = m) + o))V
<b

) (2) " (mo (N — m))V2

g

The above bound can be re-written as

60(7') (Z)(Tfl)/Q Nl/ZO'(Uil)/Z m(T*l)/Q (1 + 2(N—m)

o—T17—2
T X

(2N)e—D72g1/2 (m(N —m))'/2

> (c—7-2)/2

<

(N —m+o)¥/?

Suppose first that m < N — 4¢. Then the bound becomes

eo(7) (%)(7_1)/2 N1/24(0=-1)/2 (r—2)/2 ) 2(N _ m) (o—7-2)/2
eN)e gz i ——

o(t)o(r=1)/2 AT1/2 —(0—1)/2 (0=7)/2
eo(m)o(T=1)/2 N'1/2 (0 -1)/ 22 2(N —m) oo/ (N=m)
(2N)(e=D/277/2

eo(m) Ny 1/2 U(N . m) (o—7)/2 <@>(T—1)/2 6‘72/(N*m)
ml/2 N(o—1) TN

< e?TINY2 [ e2mo m(oc —T) N 202 (r=1)/2
exp{ — :
= \ N P U o ON T - DV —m)
e?OINV2 [ e2mo mo LT 20 20 (r=1/2
= . eX _ ] - - — —
ml/? TN P (r—1)N o m N-m

N2 [ 2mo { ma} (r=1)/2
ml/2 N TPV

<»

<»
c—T

We inflate this by n (QUH) to account for our choices for o, 7,717, ...,T, to get
_ ) eo(T)Nl/Q 4€4m0.3 mo (r=1)/2
=T ey 9P {_37]\7} '



So, if mg = w then
N—4o
> Pr(3o. Ty, T Mi+- -+ M =m| M+ -+ M,=N)
m=mgq
N-4o (r—1)/2
4etmo3 mo
<, n2e0() N5/ ' {__}
= re Z BN CPUTgN
m=mg
4etmoo® moay \ 7Y/
< n2e0(M) NT/2 09" {_ 0 }
=ne BN P3N
since ze~4? is decreasing for Az > 1

4 2 (r—1)/2
= e (0 oy {0 T exp {520

TN 67N T2 " 6TN
2 (r—1)/2
e (40064+0(1) log (g) % e—50/3 o 0_2 (Z>5O/3)
T 72 \o

— O (nfanyconstant) )

Suppose now that N — 40 < m < N — ¢'/3. Then we can bound (3) by

eo(7) (2)(T—1)/2 o(e=1)/2

T

<b (2N)(e=1)/2

_(Sa\ D (I
— \ 2N T '

We inflate this by n?(* ") < n?4% to get

< ) 8680 (o—T7)/2 16680 (r—1)/2
n
=0 N T

% m(T—l)/264U

So,
N—gl/3
> Pr(EorTh..... T, My+-+M,=m| M+ -+ M,=N)
m=N—4o0
o—T1)/2 T—1)/2
Sbn2N2a(8680>( )/ (16680)( )/
N T

— O (n—anyconsmnt)

since olog N > 71logo.



When m > N — o'/3 we replace (2) by

(152" (14 2) )
1+ 2" 1+ 2% (e=D/2 0 \1/2
2N
eT/2+o(7) (2_)( 1)/2 FN—m pN1/2
(%

<

<s

Q|2~1

oo )(U 1)/2 ml/2

_ plto1) 5\ (7~ 1)/2( o >(UT)/2 o1/3
=0 T 2N a

Inflating this by n?4° gives a bound of

14o(1 (r=1)/2 Tio(1)N (0—7)/2
Sb n? (M) (80' ( )) _ O(n_anyconstant>‘

T N

5 Modifications of Theorem 1

Let A = log’n and partition [\] into ¢ = logn sets of size A\; = log®n. Now add n — X
vertices to T, and let M; denote the number of vertices that land in the ith part II; of the
partition. Lemma 2 implies that q.s.

200n

M; < Mpyax = IOg IOg n, I<i:<T (4)
n

Let
wi(z) = log™? x (5)
for z € R.

Let L; denote the length of the longest path in II;. Suppose that 7, contains a path of length
at least n/wi, w; = wi(n) and let k be the number of ¢ such that

200n loglogn S M ax

L; > )
— Wogn T log®(Mpax)
Then, as k < ¢ = logn we have
kQOOn loglogn + (logn — ) 200n loglogn > n

logn w?logn Wi



which implies that
logn

~ 201w, loglogn’
Theorem 1 with the bound on M; given in (4) implies that the probability of this is at most

logn logn
1 logn ) ( 1 ) 207w loglogn | ( 1 ) 307w, logTog 1
—+ oan N T — <S—+ |5 < (6)
n (2010.)11 lgoglogn log®(n/logn) n log®3n o(n,wq)

where |
B ogx
R

The term 1/n accounts for the failure of the property in Lemma 2.

In summary, we have proved the following

Lemma 3

Pr (2 S5 ) < gy )

We are using ¢(x,y) in place of ¢(x) because we will need to use wy(z) for values of x other
than n.

Next consider A, and \; < 7 < o and let 11, T3, ..., T, be a set of 7 triangular faces of A,.
Suppose that we add IV > o more vertices and let N; be the number of vertices that are
placed in T3, 1 < j < 7.

Next let ,
A(z)=¢€" (8)
where z € R.
Now let
J = {] : ]\[‘7 > Ao} where AO = A(wl(n)) (9)

Let L; denote the length of the longest path through the ApN defined by T; and the N
vertices it contains, 1 < j < 7. For the remainder of the section let

w
Wo = WI(AO): G0 = Gb(Ao,Wo) = exp { 210;%} , W2 = Z%- (10)
Then let N
g {jej ]_wl(Nj)} (1)
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We note that

log wy = log ¢g — logwy = ﬂ — logwy
wq log log A
= wg — logw
(2 + o(1))wp log log wy &0

For j € J, N; > Ag (see (9)). It follows from Lemma 3 that the size of J; is stochastically
dominated by Bin(t,1/¢g). Using a Chernoff bound we find that

waT/Po
WaT (&
Pr|l|J|>—=—)<|— . 12
(n1=27) < (£) (12)

Using this we prove

Lemma 4 Suppose that

log<z>§ I
T log wq

Then q.s., for all \y <17 <K 0 < N and all collections T of T faces of A, we find that with
Ji as defined in (11),

W T
Jil < —.
hl< 5

Proof It follows from (12) that

Pr (HT,U,N,T: 7| > %j)

TPo

- n?) (20 + 1) i w27'/¢0

o T W9

<3 e(20 +1) e w2/do\ "

- T wWa

< exp {T (310gn + 2 + log (g) 4 W2 W2 10gw2)}
T T ®o %o

< 3logn Lo Wo n Wo
ex —
=GP T log wp (24 o(1)) loglog wy

— O (nfanyconstant ) )




6 Proof of Theorem 2

Fix a path P of A,. Suppose that after adding ¢ > n'/? vertices we find that P visits
nt? > 7> \wo (13)

of the triangles 11,75, ..., T, of A,. Now consider adding N more vertices, where the value
of N is given in (16) below. Let ¢’ = 0 + N and let 7" be the number of triangles of A,
that are visited by P.

We assume that
Wo

! o
- < ) <
5 loglogn < log (T> (14)

~ logwy
Let M; be the number of vertices placed in T; and let N; be the number of these that are
visited by P. It follows from Lemma 2 that w.h.p.

’ 1007 N
Z M, < 007 log (f) .
o T

=1

Now w.h.p.,

WoT oWo

1 N 1007 N
Z N; <1Ao+ 100w, N log (a(b(]) + 007 log (E> . (15)
; T

Explanation: 7A bounds the contribution from [7]\ J (see (9)). The second term bounds
the contribution from J;. Now |Ji| < weT/¢g < 7 as shown in Lemma 4. We cannot apply
Lemma 2 to bound the contribution of .J; unless we know that |J;| > A;. We choose an
arbitrary set of indices Jo C [7] \ J; of size waT/¢o — |J1| and then the middle term bounds
the contribution of J; U Jy. Note that war/¢g = 7/wy > Ay from (13). The third term
bounds the contribution from J \ J;. Here we use wy(N;) > wi(Ag) = wo, see (11).

We now choose

We observe that )
ﬂlog (a_%) < — ( il —|—2logw0) =o(1).
oo WoT wo \ log wy

1 1
— log <i> < =o(1).
wo T log wy

Now along with Lemma 1 this implies that

~ N
r< N, +1) < A =),
T_Z( +1) <7471 0—1—0(0)

=1

Since ¢/ = o + N this implies that

7/ < 1 +o(1) T_T
— —+o -< —.
o T \3 o 20
It follows by repeated application of this argument that we can replace Theorem 1 by
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Lemma 5

100 log n 1
Pr <L(n) Z logn + Wn) = O (qﬁ(—) .

n,wi(n))

Proof We add the vertices in rounds of size oy = n'/?,04,...,0,,. Here 0, = 30,_1
and m —1 > (1—o(1)) g5 = (1 —o(1)) ;%5 = log'**n. Welet Py, P1, Py, ..., P = P be

a sequence of paths where P, is a path in A; = A, +...40,. Furthermore, P, is obtained from
P, 1 in the same way that @) is obtained from P in Lemma 1. We let 7; denote the number
of faces of A; whose interior is visited by P;. It follows from Lemma 1 and Lemma 2 that
the length of P is bounded by

m+ Tm—1 O IOg (Uml) 7

Om—1 Tm—1

since the second term is a bound on the number of points in the interior of triangles of A, _;
visited by P.

We have w.h.p. that

2071 Oi—1 wo/ log wo
2 > { Ti—1 Ti—1 S €
= 0i—1 Oi—1 wo/logwo *
T, —_— e
t 100Ti,110g(0'i,1/7'i,1) Ti—1 >

The second inequality here is from Lemma 2.

The result follows from 218 “*7 > cwo/logwo

To get Theorem 2 we repeat the argument in Sections 5 and 6, but we start with w;(z) =
logl/ % x. The claim in Theorem 2 is then slightly weaker than the claim in Lemma 5.
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