ON LARGE MATCHINGS AND CYCLES IN SPARSE RANDOM GRAPHS

A.M. FRIEZE*

Department of Computer Science and Statistics, Queen Mary College (University of London), London, E1 4NS, United Kingdom

Received 28 February 1984 Revised 5 September 1985

Let k be a fixed positive integer. A graph H has property M_k if it contains $\lfloor \frac{1}{2}k \rfloor$ edge disjoint hamilton cycles plus a further edge disjoint matching which leaves at most one vertex isolated, if k is odd. Let p = c/n, where c is a large enough constant. We show that $G_{n,p}$ a.s. contains a vertex induced subgraph H_k with property M_k and such that $|V(H_k)| = (1 - (1 + \varepsilon(c))c^{k-1}e^{-c}/(k-1)!)n$, where $\varepsilon(c) \to 0$ as $c \to \infty$. In particular this shows that for large c, $G_{n,p}$ a.s. contains a matching of size $\frac{1}{2}(1 - (1 + \varepsilon(c))e^{-c})n$ (k = 1) and a cycle of size $(1 - (1 + \varepsilon(c))ce^{-c})n$ (k = 2).

1. Introduction

In this paper we study the size of the largest matching and cycle in random graphs with edge probability c/n, where c is a large constant. We continue the analysis of Bollobás [2], Bollobás, Fenner and Frieze [3] and confirm the conjecture in the final paragraph of the latter paper.

We shall let $G_{n,p}$ denote a random graph with vertex set $V_n = \{1, 2, ..., n\}$ in which edges are chosen independently with probability p. We say that $G_{n,p}$ has a property Q almost surely (a.s.) if $\lim_{n\to\infty} \Pr(G_{n,p} \in Q) = 1$.

For c > 0 define $\alpha(c)$, $\beta(c)$ by

$$\alpha(c) = \sup(\alpha \ge 0)$$
: $G_{n,c/n}$ a.s. contains a matching of size at least $\frac{1}{2}\alpha n$) (1.1)

and

$$\beta(c) = \sup(\beta \ge 0)$$
: $G_{n,c/n}$ a.s. contains a cycle of size at least βn). (1.2)

Our main result is an improved estimate of $\beta(c)$.

In what follows p = c/n and $\varepsilon_1(c)$, $\varepsilon_2(c)$ are unspecified functions satisfying $\lim_{c\to\infty} \varepsilon_i(c) = 0$, i = 1, 2.

0012-365X/86/\$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

^{*} Research carried out while the author was a visiting professor at Carnegie-Mellon University, Pittsburgh, U.S.A.

To prove (2.3) we observe that

$$\operatorname{Exp}(|\{v \in V_n : d_G(v) > 4 \log n\}|) = n \sum_{k > 4 \log n} {n-1 \choose k} p^k (1-p)^{n-k-1}$$

$$\leq n \sum_{k > 4 \log n} \left(\frac{ce}{k}\right)^k = o(1)$$

as $ce \le 3 \log n$.

Since the expectation of the number of cycles of length 3 or 4 is $o(c^4)$ their contribution is easily absorbed into what follows.

Next let $P_k = \{ \text{paths of length } k \text{ in } G \text{ with small endpoints} \}$. Now clearly

$$|W_k| \le 2|P_k|$$
 for $k = 1, 2, 3, 4.$ (2.7)

Furthermore

$$\operatorname{Exp}(|P_k|) = \binom{n}{2} p \lambda^2, \tag{2.8}$$

Where $\lambda = BS(c/10 - 1, n - 2) \le e^{-0.669c}$. Now

$$\operatorname{Exp}(|P_1|^2) = \operatorname{Exp}(|P_1|) + \binom{n}{2} \binom{n-2}{2} p^2 \lambda_1 + 2(n-2) \binom{n}{2} p^2 \lambda_2,$$

where

$$\lambda_1 = \Pr(\text{SMALL} \supseteq \{1, 2, 3, 4\} \setminus E(G) \supseteq \{\{1, 2\}, \{3, 4\}\})$$

$$\leq \Pr(|N_G(1) \cap \{5, 6, \dots, n\}| \leq c/10 - 1)^4$$

$$\leq (\lambda(1 - p)^{-2})^4$$

and

$$\lambda_2 = \Pr(\text{SMALL} \supseteq \{1, 2, 3\} \setminus E(G) \supseteq \{\{1, 2\}, \{2, 3\}\})$$

 $\leq (\lambda(1-p)^{-1})^3.$

This gives

$$Var(|P_1|) \le ce^{-4c/3}n \quad \text{for } n \text{ large.}$$

Similar calculations give

$$|P_k| = \frac{1}{2}(1 + o(1))n^{k+1}p^k\lambda^2$$
 for $k = 2, 3, 4$. (2.10)

(2.4) now follows from (2.7), (2.8), (2.9) and (2.10).

To prove (2.5) we take $c \ge 20(l+1)\log(l+1)$ and first consider S for which $1 \le s = |S| \le n/(200e^3(l+1)^3)$. Let $T = S \cup N_G(S)$ and t = |T|. If (2.5) does not hold for S then $|T| \le m_1 = \lceil n/(200e^3(l+1)^2) \rceil$ and T contains at least $m_2 = \lceil n/(200e^3(l+1)^2) \rceil$

[ct/20(l+1)) edges of G. The probability that such a T exists is no more than

$$\sum_{t=1}^{m_1} \binom{n}{t} \binom{\binom{t}{2}}{m_2} p^{m_2} \leq \sum_{t=1}^{m} \left(\frac{ne}{t}\right)^t \left(\frac{t^2 e p}{2m_2}\right)^{m_2}$$

$$\leq \sum_{t=1}^{m_1} \left(\frac{ne}{t}\right)^t \left(\frac{10e(l+1)t}{n}\right)^{2t}$$

$$\leq \sum_{t=1}^{m_1} \left(\frac{100e^3(l+1)^2 t}{n}\right)^t = o(1)$$

For $|S| \ge m_3 = \lceil n/(300e^3(l+1)^3 \rceil$ we can ignore the fact that the vertices of S are large. Let $m_4 = \lceil n/2l \rceil$. The probability that such an S exists violating (2.5) is no more than

$$\sum_{s=m_3}^{m_4} \binom{n}{s} \binom{n}{ls} (1-p)^{s(n-ls)} \le \sum_{s=m_3}^{m_4} \left(\frac{ne}{s}\right)^s \left(\frac{ne}{ls}\right)^{ls} e^{-3cs/7}$$

$$\le \sum_{s=m_3}^{m_4} (300e^4(l+1)^3 e^{-8(l+1)\log(l+1)})^{(l+1)s} = o(1)$$

which proves (2.5).

the probability that (2.6) does not hold is not more than

$$\sum_{s=m_4}^{\lfloor \frac{1}{2}n \rfloor} {n \choose s} BS(cs/3l, s(n-s)) \le 2 \sum_{s=m_4}^{\lfloor \frac{1}{2}n \rfloor} \left(\frac{ne}{s}\right)^s \left(\frac{3ls(n-s)e}{cs}\right)^{cs/3l} \left(\frac{c}{n}\right)^{cs/3l} e^{-cs/3}$$

$$(c, n \text{ large})$$

$$\le 2 \sum_{s=m_4}^{\lfloor \frac{1}{2}n \rfloor} (2le(3le)^{c/3l}e^{-c/3})^s = o(1). \quad \Box$$

The proofs of our theorems rely on the removal of a certain set of vertices. We must show that this set is not too large. The following lemma deals with part of this set.

Lemma 2.2. Let $X_0 = \text{SMALL}$ and let the sequence of sets X_1, X_2, \ldots, X_s be defined by

$$X_i = \left\{ v \in V_n \colon \left| N_G(v) \cap \bigcup_{t=0}^{i-1} X_t \right| \ge 2 \right\}$$

and let s be the smallest $i \ge 1$ such that $X_{i+1} = X_i$. Let $X = \bigcup_{i=1}^s X_i$, then

$$|X| \le 2e^4c^4e^{-4c/3}n$$
 a.s. (2.11)

Proof. For $x \in X \cup X_0$ let $i(x) = \min\{i: x \in X_i\}$ and let D(x) = (V(x), A(x)) denote a digraph inductively constructed as follows: for $x \in X_0$, $D(x) = (\{x\}, \emptyset)$ and for $x \in X_0$ let y_1 , y_2 be 2 distinct neighbours of x satisfying $i(x) > i(y_1)$, $i(y_2)$.

Then

$$D(x) = (V(y_1) \cup V(y_2) \cup \{x\}, A(y_1) \cup A(y_2) \cup \{(x, y_1), (x, y_2)\})$$

Each D(x) is acyclic, (weakly) connected and satisfies

each
$$v \in V(x)$$
 has outdegree 0 or 2 and x is the unique vertex of indegree 0. (2.12)

Let

k = the number of vertices of outdegree 2 = |K(x)|, where $K(x) = S(x) - X_0$,

and let

l = the number of vertices of outdegree 0 = |L(x)|, where $l(x) = S(x) \cap X_0$.

It follows then that

$$|A(x)| = 2k \tag{2.13a}$$

and we will show

$$l \le k+1$$
 and if $l = k+1$, then $D(x)$ is a binary tree rooted at x. (2.13b)

This is most easily proved by induction on k. A digraph satisfying (2.12) has at least one vertex y whose outneighbours z_1 , z_2 both have outdegree zero. Removing arcs (y, z_1) and (y, z_2) and any vertex which becomes isolated we obtain a smaller digraph satisfying (2.12).

We obtain from the above that we can associate with each $x \in X$, a set V(x) of vertices and a partition of V(x) into K(x), L(x) satisfying

$$x \neq x'$$
 implies $V(x) \neq V(x')$; (2.14a)

if
$$k = |K(x)|$$
, $l = |L(x)|$, then $2 \le l \le k + 1$; (2.14b)

$$L(x) \subseteq \text{SMALL};$$
 (2.14c)

$$G(x) = G[V(x)]$$
 is connected and has at least $2k$ edges; (2.14d)

if
$$l = k + 1$$
 and $G(x)$ has $2k$ edges, then $G(x)$ is a tree

with leaves
$$L(x)$$
. (2.14e)

We estimate $|X_s - X_0|$ by counting sets of vertices satisfying (2.14). For a given k, l, m let $\lambda_{k,l,m}$ be the expected number of sets K, L with |K| = k, |L| = l satisfying (2.14) above, where $G[K \cup L]$ has m edges. Then

$$\lambda_{k,l,m} \leq {n \choose k} {n \choose l} {k+l \choose 2 \choose m} p^m BS(c/10, n-k-l)^l$$

$$\leq {ne \choose k}^k {ne \choose l}^l {(k+l)^2 e \choose 2m}^m {c \choose n}^m e^{-2cl/3} {1-c \choose n}^{-l(k+l)}$$

$$= \mu_{k,l,m}.$$

Now if $c \le 2 \log n$, k, $l \le n^{1/3}$, then $\mu_{k,l,m+1}/\mu_{k,l,m} \le n^{-1/4}$ for n large. Thus

$$\sum_{m=2k}^{\binom{k+l}{2}} \lambda_{k,l,m} \leq (1+o(1))\mu_{k,l,2k}. \tag{2.15}$$

With the same bounds on c, k, l and with n large and $l \le k+1$ we have

$$\mu_{k,l,2k} \le 21n^{l-k} (e^4c^2k)^k l^{-l} e^{-2cl/3} \tag{2.16}$$

which implies

$$\sum_{l=2}^{k+1} \mu_{k,l,2k} \leq 21 (e^4 c^2 k/n)^k \sum_{l=2}^{k+1} (n/l e^{2c/3})^l$$

$$\leq n (e^4 c^2)^k e^{-2ck/3}$$

$$\leq n e^{-ck/2} \quad \text{as } c \geq 300.$$

It follows that $s \le \log n$ a.s., and we can assume $k \le \log n$. Now, using (2.16),

$$\sum_{k=2}^{\log n} \sum_{l=2}^{k} \mu_{k,l,2k} \le 21 \sum_{k=2}^{\log n} (e^4 c^2)^k e^{-2ck/3}$$
$$\le 22 (e^4 c^2)^4 e^{-4c/3}$$

and so

the number of sets, K, L with $2 \le l \le k$ is a.s. less than $n^{1/2}e^{-4c/3}$. (2.17)

We only need to consider the case l = k+1 from now on. But as $\mu_{k,k+1,m+1}/\mu_{k,k+1,m} \le 3ck/n$ we have

$$\sum_{m \ge 2k} \mu_{k,k+1,m} \le (1 + o(1))\mu_{k,k+1,2k}. \tag{2.18}$$

So we are finally reduced to estimating

 τ_k = the number of *vertex induced* binary trees with k leaves (k-b-trees) in which each leaf is small.

Let θ_k be the number of (vertex labelled) k-b-trees contained in a complete graph with 2k-1 vertices. (Clearly $\theta_k \le (2k-1)^{2k-3}$). Then

$$\operatorname{Exp}(\tau_k) = \binom{n}{2k-1} \theta_k p^{2k-2} (1-p)^{\binom{2k-1}{2}-2k+2} BS(c/10-1, n-2k+1)^k$$

$$\leq n(e^2 c^2 e^{-2c/3})^k \quad \text{for } n \text{ large.}$$
(2.19)

To estimate $Var(\tau_k)$, let $\{T_1, T_2, \ldots, T_B\}$, $B = \binom{n}{2k-1}\theta_k$, be the set of k-b-trees contained in a complete graph with n vertices. Let A_i be the event that T_i is a vertex induced subgraph of $G_{n,p}$ in which all leaves are small.

Next let $Y_p = \{(i, j): |V(T_i) \cup V(T_j)| = p\}$ for $p = 2k - 1, \dots, 4k - 2$ and let $Z_{p,q} = \{(i, j) \in Y_p: |E(T_i) \cup E(T_j)| = q\}$. Then

$$\operatorname{Exp}(\tau_k^2) = \operatorname{Exp}(\tau_k) + \Delta_1 + \Delta_2, \tag{2.20}$$

where

$$\Delta_1 = \sum_{(i,j) \in Y_{4k-2}} \Pr(A_i \cap A_j)$$

and

$$\Delta_2 = \sum_{p=2k-1}^{4k-3} \sum_{(i,j) \in Y_p} \Pr(A_i \cap A_j).$$

Now

$$\Delta_1 \leq {n \choose 2k-1}^2 (\theta_k p^{2k-2} (1-p)^{{2k-1 \choose 2}-2k+2})^2 \sigma,$$

where

$$\sigma = BS(c/10-1, n-2k+1)^k BS(c/10-1, n-4k+2)^k$$

is an estimate of the probability that all leaves of 2 particular disjoint trees are small. It follows that

$$\Delta_1 \le \text{Exp}(\tau_k)^2 (1-p)^{-2k^2}.$$
 (2.21)

Now for $p \le 4k - 3$ we have

$$\sum_{(i,j)\in Y_p} \Pr(A_i \cap A_j) = \sum_{q=p-1}^{4k-4} \sum_{(i,j)\in Z_{p,q}} \Pr(A_i \cap A_j)$$

$$\leq \sum_{q=p-1}^{4k-4} \binom{n}{p} \binom{\binom{p}{2}}{q} \binom{q}{2k-1}^2 \binom{c}{n}^q e^{-2ck/3} (1-p)^{-8k^2}$$

$$\leq ne^{-ck/2} \quad \text{for } n \text{ large}. \tag{2.22}$$

(2.19), (2.20), (2.21), (2.22) plus the Chebycheff inequality implies that τ_k is a.s. within a factor (1 + o(1)) of the right-hand side of (2.19). This together with (2.17) and (2.18) proves the result. \square

For a positive integer k, the k-core $V_k(G)$ is defined to be the largest set $S \subseteq V_n$ such that $\delta(G[S]) \ge k$. This is well defined, for if $\delta(G[S_i]) \ge k$ for i = 1, 2, then $\delta(G[S_1 \cup S_2]) \ge k$. We let G_k denote the subgraph of G induced by $V_k(G)$.

The k-core can be constructed using the following algorithm.

begin

$$H := G;$$

while $\delta(H) < k$ do
begin
 $Y := \{v \in V(H) : d_H(v) < k\};$
 $H := H[V(H) - Y]$
end
end

On termination $H = G_k$. This is because one can easily show inductively that

each iteration removes vertices that are not in $V_k(G)$ and as $\delta(H) \ge k$ we have $V(H) \subseteq V_k(G)$.

Clearly any matching of G is contained in G_1 (= G minus isolated vertices) and any cycle of G is contained in G_2 .

Now for $k \ge 1$ let $A_k = A_k(G_{n,p}) = V_k(G_{n,p}) - (W \cup X \cup Y_k)$, where W, X are as defined in Lemmas 2.1, 2.2 respectively and

$$Y_k = \{ y \in V_n : d_{G_{n,n}}(y) = k \text{ and } N_{G_{n,n}}(y) \cap X \neq \emptyset \}.$$

Let $H_k = H_k(G_{n,p}) = G_{n,p}[A_k]$, then we have

Lemma 2.3. For $k \ge 1$ let M be any matching of $G_{n,p}[A_k]$ which is not incident with any small vertex. Let $\hat{H}_k = H_k - M$, then for large c

$$\emptyset \neq S \subseteq A_k, |S| \le n/(2k+8) \quad implies \quad |N_{\hat{H}_k}(S)| \ge k |S| \text{ a.s.}$$
 (2.23)

Proof. Let $G = G_{n,p}$, $H = \hat{H}_k$ and for a given S let $S_1 = S \cap SMALL$ and $S_2 = S - S_1$. Now

$$|N_H(S)| \ge |N_H(S_1)| - |S_2| + |N_H(S_2)| - \min(|S_1|, |S_2|). \tag{2.24}$$

This follows from $S \cap (W \cup X) = \emptyset$. Also, we claim

$$|N_H(S_1)| \ge k |S_1|.$$
 (2.25)

Note first that $v \in S_1$ implies $d_G(v) \ge k$ and no pair of vertices of S_1 are adjacent, since $S_1 \cap W_1 = \emptyset$. Note that no pair of vertices of S_1 have a common neighbour as $S_1 \cap W_2 = \emptyset$. Also $N_G(S_1) \cap (W \cup Y_k) = \emptyset$ as $S_1 \cap W_1 = \emptyset$. Furthermore $v \in S_1$ implies $|N_G(v) \cap X| \le 1$ as $S_1 \cap X = \emptyset$. Thus to prove (2.25) we need only show that if $v \in S_1$ and $d_G(v) = k$, then $N_G(v) \cap X = \emptyset$. But this follows from $S_1 \cap Y_k = \emptyset$.

We claim next that if (2.5) holds with l = k + 4, then

$$|N_H(S_2)| \ge (k+2)|S_2|.$$
 (2.26)

For then $|N_G(S_2)| \ge (k+4) |S_2|$ and for each $v \in S_2$, $|(N_G(v))| \le |N_H(v)| + 2$. This is because v is incident with at most one edge of M and is adjacent to at most one vertex of $W \cup X \cup Y_k$. It is a simple matter to verify (2.23) from (2.24), (2.25) and (2.26). \square

Lemma 2.4.

$$|A_k| \ge n \left(1 - (1 + \varepsilon(c)) \frac{e^{k-1}}{(k-1)!} e^{-c}\right) \text{ a.s.},$$
 (2.27)

where $\varepsilon(c) \rightarrow 0$ as $c \rightarrow \infty$.

Proof.

$$|A_k| \ge |V_k(G)| - |W| - |X| - |Y_k - W \cup X|$$

We show first that

$$|Y_k - W \cup X| \le |X|. \tag{2.28}$$

Ü

For $y \in Y_k - X$ there is, by definition, a unique $x(y) \in X$ such that y is adjacent to x(y) in G. Now for distinct y_1 , $y_2 \in Y_1 - W$ we have $x(y_1) \neq x(y_2)$ else $y_1 \in W_2$ and (2.28) follows.

Now let Z_0 be the set of vertices of degree $\leq k-1$ in G and let Z_1, Z_2, \ldots be the sequence of sets removed in each iteration of the k-core finding algorithm. Now, it is well known that

$$|Z_0| = (1 - o(1))n\left(1 - \sum_{i=0}^{k-1} \frac{c^i e^{-c}}{i!}\right)$$
 a.s.

We show that

$$Z_i \subseteq X \cup W_1 \cup Y_k \quad (i = 1, 2, \ldots)$$

Thus assume inductively that $Z_1, Z_2, \ldots, Z_{i-1} \subseteq X \cup W_1 \cup Y_k$ for some $i \ge 1$ (true vacuously for i = 1) and let $T = \bigcup_{t=0}^{i-1} Z_t$. Then $y \in Z_i$ implies $d_G(y) \ge k$ but $|N_G(y) - T| \le k - 1$.

Case 1. $|N_G(y) \cap T| \ge 2$

By assumption $T \subseteq X \cup \text{SMALL}$ and so $y \in X$.

Case 2. $|N_G(y) \cap T| = 1$

Then $d_G(y) = k$ implies $y \in X \cup W_1 \cup Y_k$.

Hence $|V_k(G)| \ge |Z_0| - |X \cup W_1 \cup Y_k|$ and the lemma follows. \square

Lemma 2.5. Let c be large and G satisfy the conditions in Lemmas 2.1, 2.2 and 2.3. Let X be a t-factor of H_k where, t < k. Then $H = (A_k, E(A_k) - X)$ is connected.

Proof. If H is not connected, then there exists a nonempty $S \subseteq A_k$ such that $N_H(S) = \emptyset$. We show that this is not possible for c large enough. (2.23) implies that $|S| \ge n/(2k+8)$. (2.27) implies that, for c large, fewer than $2c^{k-1}e^{-c}n$ vertices are deleted from G in producing H. Then (2.2) implies that at most $8c^ke^{-c}n$ edges are lost in the construction. But then (2.6) with l=k+4 implies that not all edges with one vertex in S have been deleted. \square

Suppose a graph G contains h edge-disjoint hamilton cycles. Let the graph obtained from G by deleting the edges in these cycles be referred to as an h-subgraph of G.

Define $\phi(G) = (h, p)$ by

h = maximum number of disjoint hamilton cycles in G;

$$p = \begin{cases} 0 & \text{if } k \leq 2h \\ \text{maximum cardinality of a matching} & \text{if } k \leq 2h + 1 \\ \text{in any h-subgraph of G} & \text{if } k \geq 2h + 2 \end{cases}$$

$$\text{if } k \leq 2h$$

$$\text{if } k \leq 2h + 2$$

If $\phi(G) = (h, p)$ we define a ϕ -subgraph H of G to be any h-subgraph of G containing either a matching of size p or a path of length p as the case may be. Let the edges in E(G) - E(H) be referred to as a ϕ -set.

Lemma 2.6. Let H be a graph which cannot be disconnected by the removal of a t-factor, t < k. Suppose that H does not have property M_k . Then there exists $U = \{u_1, u_2, \ldots, u_t\} \subseteq V(H)$ and for each $u_i \in U$, a set $U_i \subseteq V(H)$ such that

- (i) $u_i \in U$, $w \in U_i$ implies $(u_i, w) \notin E(H)$ and $\phi(\hat{H}) > \gamma(H)$ (in the lexicographic ordering), where \hat{H} is obtained from H by adding the edge (u_i, w) .
- (ii) $|N_H(U_i)| < k |U_i|, i = 1, 2, ..., t.$

Proof. Let $(h, p) = \phi(H)$ and H' be a ϕ -subgraph of H. We deduce that H' is connected.

Case 1. $h < \lfloor \frac{1}{2}k \rfloor$

Let $U = \{u_1, u_2, \ldots, u_t\}$ be the set of vertices which are endpoints of longest paths of H'. Posa [12] has shown that for each $u_i \in U$ there exists a set $U_i \subseteq U$ such that

- (a) for each $w \in U_i$ there is a longest path in H' with endpoints u_i , w;
- (b) $|N_{H'}(U_i)| < 2|U_i|$.

Since H' is connected and non-hamiltonian no edge joins the endpoints of any longest path. Adding such an edge must increase ϕ (in the lexicographic sense).

Case 2. $h = \lfloor \frac{1}{2}k \rfloor$, k odd

Let \mathcal{M} be the set of maximum cardinality matchings of H. Let $U = \{u_1, u_2, \ldots, u_t\}$ be the set of vertices left isolated by some $M \in \mathcal{M}$.

Let $u_i \in U$ and let some $M_i \in \mathcal{M}$ leave u_i isolated. Let $S_i \neq \emptyset$ be the set of vertices, different from u_i , left isolated by M_i . Let U_i' be the set of vertices reachable from S_i by an even length alternating path w.r.t. M_i . Let $U_i = S_i \cup U_i' \subseteq U$. It is clear that (1) holds.

If $u \in N_H(U_i)$, then $u \notin S_i$ and so there exists y_1 such that $\{u, y_1\} \in M_i$. We show that $y_1 \in U_i$ which will prove that $|N_{H'}(U_i)| < |U_i|$ and the lemma. Now there exists $y_2 \in U_i$ such that $\{u, y_2\} \in E(H)$. Let P be an even length alternating path from some $s \in S_i$ terminating at y_2 . If P contains $\{u, y_1\}$ we can truncate it to terminate with $\{u, y_1\}$, otherwise we can extend it using edges $\{y_2, x\}$ and $\{x, y_1\}$.

We are now ready for the

Proof of Theorem 1.3. We use a coloring argument that was introduced in Fenner and Frieze [6]. Suppose that after generating $G = G_{n,p}$ all its edges are colored blue, and then each edge of G is re-colored green with probability $p' = (\log n)/cn$ and left blue with probability 1 - p'. These recolourings are done independently of each other.

Let E^b , E^g denote the blue and green edges respectively and let $G^b = (V_n, E^b)$, $H_k = H_k(G)$ and $H_k^b = H_k(G^b)$.

Remark 2.7. It is important to note that for a fixed value of E^b , E^g is a random subset of \bar{E}^b , where each $e \in \bar{E}^b$ is independently included in E^g with probability $p_1 = pp'/(1 - p(1 - p'))$ and excluded with probability $1 - p_1$.

Consider next the following 2 events:

 $\mathcal{G} = G = G_{n,p}$ satisfies the conditions of Lemmas 2.1, 2.2, 2.3 and

$$\phi(H_k) < (\lfloor \frac{1}{2}k \rfloor, (\frac{1}{2}a)(k-2\lfloor \frac{1}{2}k \rfloor)), \text{ where } a = |A_k(G)|.$$

- $\mathscr{E} = (a) \emptyset \neq S \subseteq A_k(G^b), |S| \leq n/(2k+8) \text{ implies } |N_{H^b_k}(S)| \geq k |S|;$
 - (b) there does not exist $e = \{v, w\} \in E^g$, $e \subseteq A_k(G^b)$ such that $\phi(H_k^b + e) > \phi(H_k^b)$.

In consequence of what has already been proved, we need only prove

$$\lim_{n \to \infty} \Pr(\mathcal{G}) = 0. \tag{2.29}$$

To prove (2.29) we shall prove that for c large

$$\Pr(\mathscr{E} \mid \mathscr{G}) \ge (1 - o(1))(1 - p')^{kn}, \tag{2.30a}$$

$$\Pr(\mathscr{C}) \le (1 - p_1)^{n^2/(2(2k+8)^2)},\tag{2.30b}$$

which together imply (2.29).

Proof of (2.30a). Let $G_0 \in \mathcal{G}$ be fixed and let F_0 be any fixed ϕ -set of H_k . We prove

$$\Pr(\mathscr{E} \mid G_{n,p} = G_0) \ge (1 - p')^{kn} - 16(\log n)^4/c^2n. \tag{2.31}$$

We can readily verify this once we have shown that

$$\mathscr{E} \cap \mathscr{G} \supseteq \mathscr{E}_1 \cap \mathscr{E}_2 \cap \mathscr{E}_3 \cap \mathscr{G}$$

where

 $\mathscr{C}_1 \equiv E^g$ is a matching of G_0 ;

 \mathscr{C}_2 = no green edge meets any vertex of degree less than c/10 + 2 in G_0 or any vertex in $W \cup X \cup Y_k$;

$$\mathscr{E}_3 = F_0 \cap E^g = \emptyset.$$

For $\mathscr{E}_1 \cap \mathscr{E}_2$ implies

$$A_k(G_0^b) = A_k(G_0)$$

and then \mathcal{E}_1 implies (see Lemma 2.3) that (2.23) holds, which verifies $\mathcal{E}(a)$. \mathcal{E}_3 implies $\mathcal{E}(b)$.

Now it follows from (2.3) that

$$\Pr(\bar{\mathscr{E}}_1) \leq 16(\log n)^4/c^2n.$$

From Lemmas 2.1, 2.2 and (2.27) we find that the total number of edges of G_0 that are excluded by the conditions in \mathcal{E}_2 , \mathcal{E}_3 is no more than

$$n((c/10+1)e^{-2c/3}+4c^k e^{-c})+\frac{1}{2}kn \le kn$$

Thus

$$\Pr(\bar{\mathscr{E}}_1 \cup \bar{\mathscr{E}}_2 \cup \bar{\mathscr{E}}_3) \le 1 - (1 - p')^{kn} + 16(\log n)^4/c^2n,$$

which proves (2.31). \square

Proof of (2.30b). Now

$$\Pr(\mathscr{E}) = \sum_{\Gamma} \Pr(\mathscr{E} \mid G^b = \Gamma) \Pr(G^b = \Gamma),$$

where Γ is an arbitrary graph with vertices V_n .

Now if $H_k(\Gamma)$ fails to satisfy $\mathscr{C}(a)$, then $\Pr(\mathscr{C} \mid G^b = \Gamma) = 0$. So let us assume that $\mathscr{C}(a)$ holds.

Now if U, U_1, \ldots, U_t are as defined in Lemma 2.6 with $H = H_k$, then each set is of size at least n/(2k+8) and for $\mathcal{E}(b)$ to hold no green edge can join $u_i \in U$ to $w \in U_i$. But then in view of Remark 2.7 and $\mathcal{E}(a)$ we have

$$\Pr(\mathscr{C}(b) \mid G^b = \Gamma) \leq (1 - p_1)^{n^2/(2(2k+8)^2)},$$

which implies (2.30b).

Finally, let us consider what happens when $c \to \infty$. The above proof shows that H_k a.s. has property M_k . For k = 1 and $c = \log n + x$, x constant, one can easily show that A_1 a.s. comprises all non-isolated vertices of G. Thus we obtain Erdös and Renyi's result [5] as a corollary. Similarly, when k = 2 and $c = \log n + \log \log n + x$, A_2 a.s. comprises all vertices of degree at least 2 and so we obtain Komlós and Szemerédi's result [9] as well. (Tomasz Luczak pointed out an error in an earlier statement of these last two results). \square

Corollary 1.2 follows directly from Theorem 1.2 and the Percolation Theorem of McDiarmid [11].

References

[1] M. Ajtai, J. Komlós and E. Szemerédi, The longest path in a random graph, Combinatorica 1 (1981) 1-12.

- [2] B. Bollobás, Long paths in sparse random graphs, Combinatorica 2 (1982) 223-228.
- [3] B. Bollobás, T.I. Fenner and A.M. Frieze, Long cycles in sparse random graphs in: B. Bollobás ed., Graph Theory and Combinations, Proc. Cambridge Conf. in honour of P. Erdös (1984) 59-64.
- [4] B. Bollobás and A.M. Frieze, On matchings and hamilton cycles in random graphs, Ann. Discrete Math. to appear.
- [5] P. Erdös and A. Rényi, On the existence of a factor of degree one of a connected random graph, Acta Math. Acad. Sci. Hungar. 17 (1966) 359-368.
- [6] T.I. Fenner and A.M. Frieze, On the existence of hamiltonian cycles in a class of random graphs, Discrete Math. 45 (1983) 301-305.
- [7] W. Fernandez De La Vega, Long paths in random graphs, Studia Math. Hungar. 14 (1979) 335-340.
- [8] R.M. Karp and M. Sipser, Maximum matchings in sparse random graphs, 22nd IEEE Conf. Foundations of Computer Science (1981) 364-375.
- [9] J. Komlós and E. Szemerédi, Limit distribution for the existence of hamiltonian cycles in random graphs, Discrete Math. 43 (1982) 55-63.
- [10] A.D. Korsunov, Solution of a problem of Erdös and Rényi on hamiltonian cycles in nonoriented graphs, Soviet Math. Doklaidy 17 (1976) 760-764.
- [11] C.J.H. McDiarmid, Clutter percolation and random graphs, Math. Programming Study 3 (1980) 17-25.
- [12] L. Pósa, Hamilton circuits in random graphs, Discrete Math. 14 (1976) 359-364,