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Let & be a fixed positive integer. A graph H has property M, if it contains [3k] edge disjoint
hamilton cycles plus a further edge disjoint matching which leaves at most one vertex isolated,
if & is 'odd. Let p = c/n, where c is' a large enough constant. We show that G, n,p 4.8. COntains a
vertex induced subgraph H, with property M, and-such that [V(H,)| = (1 — (1+ &(c))c* e~/
{k — 1)Nn, where e(c)—> 0 as ¢— . In particular this shows that for large ¢, G, p 4.5, contains
a matchmg of size 3(1—(1+e(c))e In (k= 1) and a cycle of size (1-— (1 + g(c))ce™)n
(k=2).

1. Introduction

In this paper we study the size of the largest matching and cycle in random
graphs with edge probability c¢/n, where ¢ is a large constant. We continue the
analysis of Bollob4s [2], Bollobds, Fenner and Frieze [3] and confirm the
conjecture in the final paragraph of the latter paper.

We shall let-G,, , - denote a random graph with vertex set V,={1,2,...,n} in
which edges are chosen independently with probability p. We say that G, , has a
property Q almost surely (a.s.) if lim,.. Pr(G, , e @) = 1. :

For ¢ >0 define a(c), B{c) by

a(c) =sup(a=0): G, ., a. S. contains a matching of size
at least zcm) _ (1.1
and . L . 7 . . B
B(c) =sup(B = 0): G, ., a.s. contains a cycle of size
at least fr). : : (12
Our main result is an improved estimate of 8(c). -

In what follows p =c/n and &,(c), &)(c) are unspecified functions satisfying
lim.,., g(c)=0,i=1,2.

* Research carried out while the author was a visiting professor at Carnegie-Mellon University,
Pittsburgh, U.8.A. -
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To prove (2.3) we observe that

Exp({v € Vi do(w) >4logni) =n 3 ("7 )pHa—py—t

k>4logn k
ce\*
<n > (-— =0(1)
k>4logn k
as ce <3logn.
Since the expectation of the number of cycles of length 3 or 4 is o(c*) their
contribution is easily absorbed into what follows.
Next let P, = {paths of length & in G with small endpoints}. Now clearly

(Wl <2|P| fork=1,2,3, 4 )
Furthermore -
n
Bxp(IPd) = ()2 @8)
Where A= BS(c/10 — 1, n —2) < e~ Now
-2
Bxp(R) =Exp( + (3) (" * )t + 20 - 25 o,
where
Ar=Pr{smarL 2 {1,2,3,4}1\E(G) 2 {{1, 2}, {3, 4}})
<Pi(|[Ns(1)N{5,6,..., n}{<c/10-1)*
<@AQQ-p)™?*
and
Az =Pr(smaLL 2 {1, 2, 3]\E(G) 2 {{1, 2}, {2, 3}})
<((1-p).
This gives

Var(|P)|) <ce™*®n for n large. (2.9)
Similar calculations give
|2 =34(1 + o(1))n**'p*A%  for k =2,3,4. (2.10)

(2.4) now follows from (2.7), (2.8), (2.9) and (2.10).

To prove (2.5) we take ¢=20(/ + 1)log(/ + 1) and first consider § for which
1<s=|8|=<n/(200e°( +1)°). Let T=8UNg(S) and ¢t=|T|. If (2.5) does not
hold for § then |T|<m,= [n/(200¢*(+1)*] and T contains at least m,=

e
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[ct/20(I + 1))] edges of G. The probability that such a T exists is no more than
M1 orn (t) LA tZep m;
2 <2 (7) (5
m;
) (gg)’(lﬂe(l + 1):)2‘
t n
1006°( + 1)%\"

(L) = o1)

For |S|=m; = [n/(300e*( + 1)*] we can ignore the fact that the vertices of S are

large. Let m, = [n/2[]. The probability that such an § exists violating (2.5) is no
more than

5213 (‘:) (;)(1 — p)sn=i) sé; (Esf)s(%e)tse_wn

< 5 (3000 + 1yt moRer DY _ o1y

F=h

A

i
]

[5

It
-

=

b3

n

=1

which proves (2.5).
the probability that (2 6) does not hold i is not more than

S ( )BS(cs/3l s(n—s))<28[i,:4(s ) (M)f’m(i)“ﬂ}m |

S=H1y cs .
(¢, n large)

4n]
<2 ﬁj (le(3le)™e “"’3)’-0(1) O

s=my

The proofs of our theorems rely on the removal of a certain set of vertices. We
must show that this set is not too large. The following lemma deals with part of
this set. '

Lemma 2.2. Let X, =sMALL and let the sequence of sets X;, X;, . . . , X, be defined

by
| =2}

and let s be the smallest i =1 such that X;,, = X,. Let X=\_J_, X,, then

X;={veV,,:

|X| <2e*c*e™"n a.s. ' (2.11)

Proof. For xe XU X, let i(x)=min{i: x4erX,-} and let D(x)=(V(x), A(x))
denote a digraph inductively constructed as follows: for x € X;, D(x) = ({x}, §)
and for x € X let yy, y, be 2 distinct neighbours of x satisfying i(x) > i(y,), i(y,).
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Then ' ,
D)= (Vi) UV () U {x}, An) UAG) U{(x, y1), (%, 12)})
Each D(x) is acyclic, (weakly) connected and satisfies

each v € V(x) has outdegree 0 or 2 and x is the unique

vertex of indegree 0. (2.12)
Let

k = the number of vertices of outdegree 2 = |K(x)|,

where K(x) = S(x) - X,
and let

I = the number of vertices of outdegree 0 = |L(x)|, .
where I(x) = S(x) N X,.

It follows then that ’
|A(x)] =2k ' , (2.13a)

and we will show

Isk+landifi=k+1, then D(x} is a binary tree rooted at x. (2.13b)

This is most easily proved by induction on k. A digraph satisfying (2.12) has at
least one vertex y whose outneighbours z,, z, both have outdegree zero.
Removing arcs (y, z;) and (y, z,) and any vertex which becomes isolated we
obtain a smaller digraph satisfying (2.12).

We obtain from the above that we can associate with each x € X, aset V(x) of
vertices and a partition of V(x) into K(x), L(x) satisfying

x#x" implies V(x) + V(x"); (2.14a)

if £ =|K(x)|, I =|L(x)|, then2<I<k +1; (2.14b)

. L{x) ¢ smMALL; _ o : . (2.14¢)

“G(x) = G[V(x)] is connected and has at least 2k edges; - (2.14d)
if /=% +1 and G(x) has 2k edges, then G(x) is a tree :

with leaves L{x). (2.14e)

We estimate | X, — X,| by counting sets of vertices sétisfying (2.14). For a given
k, I, m let A, be the expected number of sets X, L with |[K|=k, |L|=1
satisfying (2.14) above, where G{K U L] has m edges. Then

k/\1

< (_r;j)k(%)f((k ;’;)Ze)m(g)me_wﬁ(li_ 5)—1(1!:4-1)

=B tme

k+1
(3 | ,
A'k,l,ms( )( ) 2/ p"™BS(c/10,n -k 1)
m
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Now if c<2logn, k, I<n'?, then py i1/t m=<n""* for n large. Thus
3" . :
2 A<+ 0(1))phes 2 ' (2.15)

m=2k
With the same bounds on ¢, &, [ and with n large and I <k + 1 we have
b s ox < 2101 F (e cPh) ] e =20 ' S (2.16)

which implies
k+1 k+1

> Brrae=21(e*c%kin)* 2 (n/le)
=2

< n(etc?)re 2k

<ne *? a5 ¢=300.

It follows that s <log # a.s., and we can assume k <log n. Now, using (2.16),
legn k logn

2 E B poe <21 Z (e°c®)e2*?
i=2 k=2

-

= 22(6402)43 —4¢/3
and so
the number of sets, K, L with 2</<k is a.s. less than n'%e~*". (2.17)

We only need to consider the case /=% +1 from now on. But as Brirtm+r!
,uk k+1,m = 3ck/n we have

> B krim S (1 + 0(1))Nk k+1,2k _(2- 18)

m=2k
So we are finally reduced to estimating

7, =the number of vertex induced binary trees with k leaves
(k-b- trees) in which each leaf is small.

Let 6, be the number of (vertex labelled) k-b-trees contamed in.a complete
graph with 2k — 1 vertices. (Clearly 8, < (2k 1)%**73), Then:

Exp(7) = (2k ~ 1)8,492"“2(1 —p) TS (010 — 1, n — 2k + 1)F
<n(e’c’e > for n large. (2.19)

To estimate Var(ty), let {T3, 5, ..., Tp}, B=("1)6; be the set of
k — b-trees contained in a complete graph with n vertices. Let A; be the -event
that 7; is a vertex induced subgraph of G, , in which all leaves are small.

Next let Y¥,={G):|V(DUV(T)|=p} for p=2k—1,...,4k—2 and let
Zpq =G )) € ¥,: |E(T) UE(T)| = g}. Then -

Exp(z3) = Exp(z) + A1+ Ay, L (220)
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where
A= D Pr(A;NA)
(i.i)e Yar-2
and
4k—3
Az = E 2 PI(A,' M Aj,).
p=2k—1 (i.j)}eY,
N_ow
1 2k _ 1 k. ]
where

0=BS(c/10—1,n —2k + 1)*BS(c/10—1, n — 4k + 2)*

is an estimate of the probability that all leaves of 2 particular disjoint trees are
small. It follows that

A, <Exp(r)*(1 — p)~%. (2.21)
Now for p <4k — 3 we have
4k—4
> Pr(4;n4)= 2 > Pr(A;NA)
(f,j)EY;, g=p—1(i, j)ezp.q
4k—4 n) (P) ( q )2(c a ,
= 2 het —2cki3 11— —BK
q;;'_l(p . ) \2k=1 n)e (1-p)
<ne *? for n large. (2.22)

(2.19), (2.20), (2.21), (2.22) plus the Chebycheff inéquality implies that 7, is
a.s. within a factor (1 + o(1)) of the right-hand side of (2.19).- This together with
(2.17) and (2.18) proves the result. O

For a positive integer k, the k-core Vi.(G) is defined to be the largest set S c V,
such that 8(G[S]) = k. This is well defined, for if 8(G|[S;])=k for i=1, 2, then
I(G[S; U 8,)) = k. We let G, denote the subgraph of G induced by Vi (G).

The k-core can be constructed using the following algorithm.

begin
H:=G;
while 6(H) <k do
begin
Y:={veV{(H): dy(v)<k};
H:=H[V(H)-Y]
end
end

On termination H = G,. This is because one can easily show inductively that

i

2
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each iteration removes vertices that are not in V,(G) and as 6(H) =k we have
V{H) < Vi{G).

Clearly any matching of G is contained in G; (= G minus isolated vertices) and
any cycle of G is contained in G,. 7

Now for k=1 let Ay =Au(G,p) = Vi(G,,) — (WUXUY,), where W, X are
as defined in Lemmas 2.1, 2.2 respectively and ‘

Yo={yeV.dg, (y)=k and Ng (y)NX+§}.
Let Hy = Hi (G, ) = G, ,[A], then we have

Lemma 2.3. For k=1 let M be any matching of G, ,[A,] which is not incident
with any small vertex. Let Hy, = H, — M, then for large ¢ = ,

0+ Sc Ay |S|<n/(2k +8) implies |Ng(S)|=k|S| as. (2.23)

Proof. Let G=G, ,, H= H, and for a given S let §; =S NsMALL and 5, = 5§ — 5;.
Now

INi(S)] = INis(S)] = 1S3] + INee(S)] — min([S, [S:]). (2.24)

This follows from § N (W UX) (B
Also, we claim

INe (S} = K |- : _(2-25)

Note first that v e S, implies ds(v) =k and no -pair of vertices of §; are
adjacent, since §; MW, ={. Note that no pair of vertices of S, have a common
neighbour as S;NW,=0. Also Ng(S)NWUY)=0 as S NW=4.
Furthermore v € S, implies [Ng(v) N X|<1 as §;N X =§. Thus to prove (2.25)
we need only show that if veS; and dg(v) =k, then Ng(v)NX= ﬂ But this
follows from $; N Y, = 4.

We claim next that if (2.5) holds with / = k + 4, then

INa(S:)| = (K +2) |S,]. (2.26)
For then |Ng($,)|=(k +4)|S,| and for each veS,, |(Ng(v)|=<|Ng(v)|+2.
This is because v is incident with at most one edge of M and is adjacent to at most

one vertex of WUXUY,. It is a simple matter to verify (2.23) from (2.24),
(2.25) and (2.26). O

Lemma 2.4,

|Ak >n(1 —(1+e(c) (k —1)! e‘c) a.s., (2.27)

where g(c)— 0 as c— o,
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Proof. .
|4kl = Vil(G)] = [W| - |1X] - |¥ - W U X].

We showr first that
' Y, — WU X|<|X]. o (2.28)

For y € Y, — X there is, by definition, a unique x(y) € X such that y is adjacent to
x(y) in G. Now for distinct y;, y, € Y; — W we have x(y,) ¥ x(y,) else y; € W, and
(2.28) follows. ‘ ’ : '

Now let Z, be the set of vertices of degree <k — 1 in G and let Zy, 2, ... be
the sequence of sets removed in each iteration of the k-core finding algorithm.
Now, it is well known that

1Zo) = (1 — 0(1))n(1 -3 cif!—c) as.

i=0
We show that
Z;gXUWlqu (i=1,2,:..)

Thus assume inductively that Z,, Z,, ..., Z,_, c X U W, U, for some i =1 (true
vacuously for i=1) and let T'={JZ§ Z. Then y e Z implies ds(y)=k but
|Ne(y) = T| <k —1.

Case 1. |No(¥)NT|=2
By assumption T'c X UsMALL and so y € X.

Case 2. [Ng(y)NT|=1
Then dg(y) =k impliesy e X UW, U Y,.. 7
Hence |Vi.(G)|=|Zy| — | X U W; U Y,| and the lemma follows. [J

Lemma 2.5. Let ¢ be large and G satisfy the conditions in Lemmas 2.1, 2.2 and
2.3. Let X be a t-factor of H, where, t<k. Then H=(A, E(A,)—X) is
connected.

Proof. If H is not connected, then there exists a nonempty S < Ay such that
Ny(S)=9. We show that this is not possible for ¢ large enough. (2.23) implies
that |$|=n/(2k +8). (2.27) implies that, for c large, fewer than 2c* e~

vertices are deleted from G in producing H. Then (2.2) implies that at most

8c*e™n edges are lost in the construction. But then (2.6) with / =k + 4 implies
that not all edges with one vertex in § have been deleted. [

Suppose a graph G contains 4 edge-disjoint hamilton cycles. Let the graph
obtained from G by deleting the edges in these cycles be referred to as an
h-subgraph of G.

|
¥
4
i
i
1
El
!
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Define ¢(G) = (h, p) by
h = maximum number of disjoint hamilton cycles in G;
0 | | if k<2h

maximum cardinality of a matching

p =4 in any h-subgraph of G itk=2h+1
maximum length of a path

in any k-subgraph of G

If $(G) = (h, p) we define a ¢-subgraph H of G to be any h;subgraph of G
containing either a matching of size p or a path of length p as the case may be.
Let the edges in E(G) — E(H) be referred to as a ¢-set.

ifle=2h+2

Lemma 2.6, Let H be a graph which cannot be disconnected by the removal of a
t-factor, t<k. Suppose that H does not have property M. Then there exists
U={uy, up, ..., utc V(H) and for each u, € U, a set U, c V(H) such that
() yyeU,wel] zmphes (u;, w) ¢ E(H) and ¢(H) > y(H) (in the lexicographic
ordering), where H is obtained from H by adding the edge (u,, w).
(ii) INH(U)|<k |Ul, i=1,2,.

Proof. Let (h, p)=¢(H) and H' be a ¢- subgraph of H. We deduce that H' is
connected.

Case 1. h < |3k] 4 7

Let U= {uy, u, ..., u,} be the set of vertices which are endpoints of longest
paths of H’'. Posa [12] has shown that for each u; € U there exists a set U;c U
such that

(a) for each w € U, there is a longest path in A’ with endpomts U, Wi

(b) [N (Ul <2|U].
Since H’ is connected and non-hamiltonian no edge joins the endpoints of any
longest path. Adding such an edge must increase ¢ (in the lexicographic sense).

Case 2. h=|3k], k odd

Let 4 be the set of maximum cardmahty matchings of H. Let U=
{t1, us, . .., u} be the set of vertices left isolated by some M € .

Let u;e U and let some M; e M leave u; isolated. Let S;#@ be the set of
vertices, different from w;, left isolated by M. Let U] be the set of vertices
reachable from §; by an even length alternating path w.r.t. M,. Let U;=S;U U,f c
U. Tt is clear that (1) holds.

If u € Ny(U,), then u ¢ §; and so there exists y, such that {u, y,} € M,. We show
that y, € U; which will prove that |[Ny.(U;)| <|U;| and the lemma. Now there exists
y, € U; such that {u, y,} € E(H). Let P be an even length alternating path from
some § € §; terminating at y,. If P contains {u, y;} we can truncate it to terminate
with {u, y;}, otherwise we can extend it using edges {y,; x} and {x, y;}.



254 A.M. Frieze
We are now ready for the

Proof of Theerem 1.3. We use a coloring argument that was introduced in
Fenner and Frieze [6]. Suppose that after generating G = G,, all its edges are
colored blue, and then each edge of G is re-colored green with probability
p' =(logn)/cn and left blue with probability 1 —p’. These recolourings are done
independently of each other, 7

Let E*, E® denote the blue and green edges respectively and let G® = (V,,, E?),
H, = H,(G) and H: = H,(G").

Remark 2.7. It is important to note that for a fixed value of E®, E#is a random
subset of E®, where each e € E® is independently included in E* with probability
p1=pp'/(1-p(1—p")) and excluded with probability 1 p1

Consider next the following 2 events: -

=G = G, , satisfies thc condltlons of Lemmas 2.1, 2.2, 2.3 and
¢(He) <(I2k), Ga)tk —213k])), where a =]4,(G)|.

€=(a) B+ c A(G"), [S|<n/(2k+8) implies |N,s(S)| = k |S];
(b) there does not exist e = {v, w} € E¥, e c A,(G?)
such that ¢(H7 + €) > ¢(H?).

In consequence of what has already been proved, we need only prove

lim Pr(%) =0. (2.29)

To prove (2.29) we shall prove that for c large
Pr(%| 9= (1 - o(1))(1—p'y*", (2.30a)
Pr(%) < (1 — p,)"ee+, (2.30b)
which togéther imply (2.29}.

Proof of (2.30a). Let Gy 4 be fixed and let F, be any fixed ¢-set of H,. We
prove

Pr(%|G,,=Gy)=(1—p")" —16(log n)“/czn. (2.31)
We can readily verify this once we have shown that
EN¥oENENENY,

where
- €, = E*is a matching of G;

€, = no green edge meets any vertex of degree less than ¢/10 + 2 in
Gy or any vertex in WU X U Yp;

G=RNE =0
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For &, N %, implies
Ak(Gg) = Ax(Go)
and then &, implies (see Lemma 2.3) that (2.23) holds, which verifies &(a). &,
implies €(b).
Now it follows from (2.3) that

Pr(%,) <16(log n)*/c?n.

From Lemmas 2.1, 2.2 and (2.27) we find that the total number of edges of G,
that are excluded by the conditions in &,, %, is no more than :

n((c/10+ Ve 2P + dcke ™)+ Jkn<kn
Thus .
Pr(,U&U &)<1-(1-p") + 16(logn)*/c?n,

which proves (2.31). O
Proof of (2.30b). Now
Pr(€) =2 Pr(¥| G® = N)P1i(G® =),
Ir

where I'is an arbitrary graph with vertices V,.

Now if H,(I') fails to satisfy &(a), then Pr(%|G®=1I)=0. So let us assume
that €(a) holds.

Now if U, Uy, ..., U, are as defined in Lemma 2.6 with H = H,, then each set
is of size at least n/(2k + 8) and for €(b) to hold no green edge can join u; € U to
w € U.. But then in view of Remark 2.7 and %(a) we have

Pr(8(b)| G* = Ny < (1 — p,)"@@k+8y)
which implies (2.30b). O

Finally, let us consider what happens when ¢— . The above proof shows that
H, a.s. has property M;. For k=1 and c =logn +x, x constant, one can easily
show that A, a.s. comprises all non-isolated vertices of G. Thus we obtain Erdos
and Renyi’s result [S] as a corollary. Similarly, when k=2 and c=logn +
loglogn + x, A, a.s. comprises all vertices of degree at least 2 and so we obtain
Komlés and Szemerédi’s result [9] as well. (Tomasz Luczak pointed out an error
in an earlier statement of these last two results). O

Corollary 1.2 follows directly from Theorem 1.2 and the Percolation Theorem
of McDiarmid [11].
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