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Abstract

An n-lift of a graph K, is a graph with vertex set V (K) × [n] and for each edge (i, j) ∈
E(K) there is a perfect matching between {i} × [n] and {j} × [n]. If these matchings are
chosen independently and uniformly at random then we say that we have a random n-lift.
We show that there are constants h1, h2 such that if h ≥ h1 then a random n-lift of the
complete graph Kh is hamiltonian whp and if h ≥ h2 then a random n-lift of the complete
bipartite graph Kh,h is hamiltonian whp.

1 Introduction

For a graph K, an n-lift G of K has vertex set V (K) × [n] where for each vertex v ∈ V (K),
{v} × [n] is called the pillar above v and will be denoted by Πv. The edge set of a an n-lift G
consists of a perfect matching between pillars Πu and Πw for each edge (u,w) ∈ E(K). The set
of n-lifts will be denoted Ln(K). In this paper we discuss random n-lifts, chosen uniformly from
Ln(K). In this case, the matchings between pillars are chosen independently and uniformly at
random.

Lifts of graphs were introduced by Amit and Linial in [1] where they proved that if K is a
connected, simple graph with minimum degree δ ≥ 3, and G is chosen randomly from Ln(K)
then G is δ−connected whp, where the asymptotics are for n → ∞. They continued the study
of random lifts in [2] where they proved expansion properties of lifts. Together with Matoušek,
they gave bounds on the independence number and chromatic number of random lifts in [3].
Linial and Rozenman [4] give a tight analysis for when a random n-lift has a perfect matching.

In this paper we discuss the probability that a random n-lift is hamiltonian. In particular we
study the case where K is the complete graph Kh or the complete bipartite graph Kh,h. We use

the notation y
r
∈ Y for “y is chosen uniformly at random from Y ”.

Theorem 1. There exists a constant h1 such that if h ≥ h1 and G
r
∈ Ln(Kh) then G is

hamiltonian whp.

Theorem 2. There exists a constant h2 such that if h ≥ h2 and G
r
∈ Ln(Kh,h) then G is

hamiltonian whp.

Theorem 1 is proved in the next section. Theorem 2 is proved in Section 3.
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2 Proof of Theorem 1

2.1 Structural Properties of Ln(Kh)

The vertices of Ln(Kh) will be denoted by V and its edges wil be denoted E.

We will use the coloring argument of Fenner and Frieze [7] to show G is hamiltonian whp. For
G ∈ Ln(Kh) we choose a set H1 = H1(G) ⊆ E(G) as follows: Each vertex of G arbitrarily
chooses 12 edges of G incident with it. Thus the number of distinct edges chosen is between
6hn and 12hn and the minimum degree of the graph induced by H1 is at least 12. Next let
P0 = P0(G) be a specific longest path in G. Let F (G) = P0 ∪ H1 be the fixed edges of G.

The analysis uses an unspecified, sufficiently small, positive constant β < 1.

Let B = B(G) be the set of subsets of E(G) of size β
(

h
2

)

n. We say that a subset of edges H is
acceptable if H = B∪F for some B ∈ B(G). Let H(G) be the collection of acceptable subgraphs
of G. For a lift G, each B ∈ B(G) defines a coloring of the edges of G in which the edges of
H = B ∪ F are colored blue and the edges of R = G\H are colored green.

Let S ⊆ V be of size s and let Si be the intersection of S ⊆ V with pillar Πi for i ∈ [h]. The
number of choices for S is

(

hn
s

)

and by considering the number of choices for the Si we see that

∑

s1+···+sh=s

∏

i

(

n

si

)

=

(

hn

s

)

≤

(

hne

s

)s

. (1)

For a graph G = (V,E) and S ⊆ V let N(S) = {v ∈ V \S : ∃u ∈ S such that (u, v) ∈ E(G)} be
the disjoint neighborhood of S.

For G
r
∈ Ln(Kh) and sets S ⊆ Πi and T ⊆ Πj , |S| = s, |T | = t,

Pr(N(S) ∩ Πj ⊆ T ) =
t(t − 1) . . . (t − s + 1)

n(n − 1) . . . (n − s + 1)
≤

(

t

n

)s

. (2)

Throughout this section all statements hold for n and h sufficiently large.

Lemma 1. For G
r
∈ Ln(Kh),

Pr(∃S ⊆ V : |S| ≤
n

10h
and S contains at least 2 |S| edges) = o(1)

Proof Using (1) we see that the expected number of sets S of size s that contain at least
2s edges is no more than

φ(s) =
∑

s1+···+sh=s

∏

i

(

n

si

)(
(

s
2

)

2s

)(

1

n − 2s

)2s

≤

(

hn

s

)(

s2e

4s

)2s(
1

n(1 − 1
5h )

)2s

≤

(

hne

s

)s
(se

4

)2s
(

2

n

)2s

≤

(

e3hs

4n

)s
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Then
n/10h
∑

s=5

φ(s) = o(1).
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Lemma 2. If G
r
∈ Ln(Kh) and H

r
∈ H(G), then whp H satisfies

S ⊆ V, |S| ≤ hn/4 implies |NH(S)| ≥ 2 |S| . (3)

Proof Assume first that |S| ≤ n/10h and let U = S ∪ N(S). Let a be the number of edges
contained in S and let b be the number of edges from S to N(S). The degree sum of S in H1

is at least 12 |S| and so 2a + b ≥ 12|S|. But then U contains at least a + b ≥ 6|S| edges and we
can assume by Lemma 1 that |U | > 3|S|. This completes the argument for |S| ≤ n/10h.

Let H ′ be defined by including an edge of G in H ′ independently with probability β′ where
β′ < β. Then |H ′| is a binomial random variable whose expected value is less than β

(

h
2

)

n. The
Chernoff bound implies that for a monotone increasing property of lifts Q, if H ′ ∈ Q whp, then
H ∈ Q whp.

For n/10h < |S| ≤ hn/4, let T = N(S) and t = |T |. Using (1) and (2), the expected number Z
of sets S with |NH′(S)| < 2 |S| is bounded as follows: In the first line of the following display,
the notation j � i denotes sj + tj > si + ti or sj + tj = si + ti and j > i.

Z ≤

hn/4
∑

s=n/10h

2s−1
∑

t=0

∑

s1+···+sh=s

∑

t1+···+th=t

∏

i

(

n

si

)

∏

j

(

n

tj

) h
∏

i=1

∏

j�i

(

β′ sj + tj
n

+ (1 − β′)

)si+ti

≤

hn/4
∑

s=n/10h

2s−1
∑

t=0

∑

s1+···+sh=s

∏

i

(

n

si

)

∑

t1+···+th=t

∏

j

(

n

tj

) h
∏

i=1

∏

j 6=i

(

β′ sj + tj
n

+ (1 − β′)

)(si+ti)/2

=

hn/4
∑

s=n/10h

2s−1
∑

t=0

∑

s1+···+sh=s

∏

i

(

n

si

)

∑

t1+···+th=t

∏

j

(

n

tj

) h
∏

j=1

(

β′ sj + tj
n

+ (1 − β′)

)(s+t−(sj+tj))/2

≤

hn/4
∑

s=n/10hn

2s−1
∑

t=0

∑

s1+···+sh=s

∏

i

(

n

si

)

∑

t1+···+th=t

∏

j

(

n

tj

)





h
∑

j=1

(

β′ sj + tj
(h − 1)n

+ (1 − β′)

)





(h−1)(s+t)/2

=

hn/4
∑

s=n/10h

2s−1
∑

t=0

∑

s1+···+sh=s

∏

i

(

n

si

)

∑

t1+···+th=t

∏

j

(

n

tj

)(

β′ s + t

(h − 1)n
+ (1 − β′)

)(h−1)(s+t)/2

≤

hn/4
∑

s=n/10h

2s−1
∑

t=0

(

neh

s

)s(
neh

t

)t(

1 − β′

(

1 −
s + t

(h − 1)n

))(h−1)(s+t)/2

≤

hn/4
∑

s=n/10h

2s−1
∑

t=0

(

neh

s

)s(
neh

t

)t

exp

{

−β′

(

1 −
s + t

(h − 1)n

)

(h − 1)(s + t)/2

}

≤

hn/4
∑

s=n/10h

(

neh

s

)3s

exp

{

−
β′hs

10

}

≤ e−βn/199. (4)
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Lemma 3. If G
r
∈ Ln(Kh) and H

r
∈ H(G), then whp H is connected.

Proof If H is not connected, Lemma 2 implies that whp H is the union of a constant
number of components of size at least hn/4. We will again work under the assumption that
edges are included in H ′ independently with probability β′ where β′ < β.

Assume without loss of generality that |S| ≤ hn/2. The expected number of sets S of size
|S| ∈ [hn/4, hn/2] with no edges between S and its complement is no more than

hn/2
∑

s=hn/4

(

∑

s1+...sh=s

∏

i

(

n

si

)

)

h
∏

i=1

∏

j�i

(

β′
(sj

n

)

+ (1 − β′)
)si

≤

hn/2
∑

s=hn/4

(

neh

s

)s(

β′

(

s

(h − 1)n

)

+ (1 − β′)

)(h−1)s/2

≤

hn/2
∑

s=hn/4

(

neh

s

)s

exp

{

−
β′s

2
(h/2 − 1)

}

≤ e−βh2n/5 (5)

2

Let P = (v0, . . . , vk) be a longest path in graph H. A Pósa rotation of P [10] with v0 fixed gives
another longest path P ′ = (v0, . . . vivk . . . vi+1) created by adding edge (vk, vi) and deleting edge
(vi, vi+1). Let ENDH(v0, P ) be the set of endpoints obtained by a sequence of Pósa rotations
starting with P , keeping v0 fixed and using an edge (vk, vi) of H.

Each vertex vj ∈ ENDH(v0, P ) can then be used as the initial vertex of another set of longest
paths ENDH(vj , P ), this time using vj as the fixed vertex, but again only adding edges from
H. Let ENDH(P ) = {v0} ∪ ENDH(v0, P ).

The Pósa condition
|N(END(v, P ))| ≤ 2 |END(v, P )| − 1

for v ∈ ENDH(P ) together with Lemma 2 implies the following.

Lemma 4. If G
r
∈ Ln(Kh) and H

r
∈ H(G), then whp |ENDH(v, P )| ≥ hn/4 for all v ∈

ENDH(P ), P = P (G).

We say next that an ordered pair of pillars (Πk,Πl) is good w.r.t. a longest path P if

|{u ∈ Πk ∩ ENDH(P ) : |{v ∈ Πl ∩ ENDH(u, P ) : (u, v) 6∈ E(H)}| ≥ n/500}| ≥ n/500. (6)

In words, Πk contains at least n/500 vertices u ∈ ENDH(P ) for which there at least n/500
vertices v ∈ Πl ∩ ENDH(u, P ) such that the edge (u, v) /∈ E(H).

Lemma 5. If (3) holds then G has at least
(

h
2

)

/3000 good pillar pairs.

Proof We show first that for u ∈ ENDH there are at least h/7 − 1 pillars for which

|{v ∈ Πl ∩ ENDH(u, P ) : (u, v) 6∈ E(H)}| ≥ n/8 (7)
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holds. Let u ∈ ENDH and suppose that there are m pillars for which (7) fails. The total number
of vertices in END(u,H) must be at least hn/4 by Lemma 4 which gives the inequality

mn/8 + (h − m)n ≥ hn/4

so that m ≤ 6h/7. We get h/7 − 1 “good” pillars, because we have to discount the pillar
containing u.

Next, we say that a non-edge (x, y) /∈ E(H) must be avoided if x ∈ ENDH and y ∈ END(u,H).
We have just shown that for each u ∈ ENDH , there are at least hn/57 edges incident with u
that must be avoided. As |ENDH | ≥ |END(u,H)| and each non-edge is counted at most twice,
the total number of non-edges in G that must be avoided is at least 1

2hn/4 · hn/57.

Assume now that there are δ
(

h
2

)

pillar pairs that contain at least n2/250 edges that must be
avoided. We then get the inequality

δ

(

h

2

)

n2 + (1 − δ)

(

h

2

)

n2/250 ≥ h2n2/456

which gives δ > 1/3000.

Let (Πk,Πl) be a pillar pair that contains at least n2/250 edges that must be avoided. To show
that (Πk,Πl) is good, let

|{u ∈ END ∩ Πk : |{v ∈ END(u,H) ∩ Πl, (u, v) /∈ E(H)| ≥ n/500}| = γn. (8)

We then get the inequality
γn2 + (1 − γ)n2/500 ≥ n2/250

so γ > 1/500. 2

2.2 The Proof

For a lift G, let D(G) be the subset of H(G) in which H is connected and satisfies (3) for
|S| > n/10h and let D = ∪GD(G). Let A be the subset of Ln(Kh) such that for G ∈ A and H
chosen randomly from H(G),

Pr(H ∈ D(G)) ≥ 1 − α.

where α = e−βn/400.

Let C be the subset of Ln(Kh) that is not hamiltonian and let F = A ∩ C. To show that
Pr(C) → 0, we will first show that |A| = (1−o(1)) |Ln(Kh)| and then use the coloring argument
of Fenner and Frieze [7] to show that Pr(F) → 0.

Lemma 6. |A| = (1 − o(1)) |Ln(Kh)|

Proof If G
r
∈ Ln(Kh) and H

r
∈ H(G) then

Pr(H ∈ D) =
∑

G∈Ln(Kh)

Pr(H ∈ D|G)Pr(G)

=
∑

G∈A

Pr(H ∈ D|G)Pr(G) +
∑

G6∈A

Pr(H ∈ D|G)Pr(G)

≤ Pr(A) + (1 − α)(1 − Pr(A))

= 1 − α + αPr(A) (9)
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and (4) and (5) imply that
Pr(H ∈ D) ≥ 1 − α2. (10)

Putting (9) and (10) together, we get

1 − α + αPr(A) ≥ 1 − α2.

so that
Pr(A) ≥ 1 − α.

2

To get an upper bound on the number of graphs G ∈ Ln(Kh) such that G ∈ F , we construct
a 0-1 matrix A = ||ai,j ||. Row index i corresponds to a graph Gi ∈ Ln(Kh) and index j ranges
over all acceptable subgraphs H ∈ H(Gi). Subgraph j of Gi will be denoted by Hi,j . Let

ai,j = 1 if































(i) S ⊆ V, |S| ≤ hn/4 implies
∣

∣NHi,j
(S)
∣

∣ ≥ 2|S|

(ii) Hi,j is connected

(iii) Hi,j ⊇ P0(Gi)

(iv) Gi is not Hamiltonian

(v) |EHi,j
(Πk,Πl)| ∈ [(1 ± n−1/3)βn], ∀ k 6= l ∈ [h]

(11)

Note that (ii), (iii) and (iv) imply

6 ∃ longest path P of Hi,j , (u, v) ∈ E(Ri,j) : u ∈ ENDHi,j
(P ), v ∈ ENDHi,j

(u, P ) (12)

Now let
N1 =

∑

i

∑

j

ai,j

be the number of ones in A.

Lemma 7. If Gi ∈ F then

∑

j

ai,j ≥ (1 − o(1))

(

(

h
2

)

n − 13hn

(1 − β)
(

h
2

)

n − 13hn

)

.

Proof Gi ∈ F and Hi,j

r
∈ H(Gi) implies that Hi,j satisfies (i), (ii), (iii) and (iv) whp.

Now B1, B2 ∈ B(G) may give rise to the same subgraph H if the edges not in B1 ∩ B2 are
all in F . So we count the number of ways to select R as a lower bound on |H(Gi)|. We have
|H| ≤ β

(

h
2

)

n + 13hn since there are at most 13hn edges in P0 and H1. Then the number of

choices for R is at least the number of ways to select a set of (1− β)
(

h
2

)

n− 13hn edges from the
(

h
2

)

n − 13hn not in F . Condition (v) holds through the Chernoff bound. 2

It follows immediately from Lemma 7 that

N1 ≥ (1 − o(1))

(

(

h
2

)

n − 13hn

(1 − β)
(

h
2

)

n − 13hn

)

|F| . (13)

We now obtain an upper bound on N1. Let

X = {H : ∃i, j for which Hi,j = H and ai,j = 1}
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The following bound follows from the definition and a concentration inequality for sampling
without replacement, see Hoeffding [9], Theorem 4:

|X | ≤

(
(

h
2

)

n

13hn

)

(

(1 + o(1))

(

n

βn

)2

(βn)!

)(h

2)

. (14)

For a fixed H ∈ X let
GH = {Gi : Hi,j = H and ai,j = 1}.

Thus,

N1 =
∑

H∈X

|GH |.

Lemma 8.

H ∈ X implies |GH | ≤ e−ch2n
(

((1 − β + O(n−1/3))n)!
)(h

2)
(15)

for some absolute constant c > 0.

Proof We begin with H and count the number of ways to add back the edges of R to
form a lift Gi ∈ GH . The number of edges in R(k, l) between two pillars of Gi is no more than
(1 − β + O(n−1/3))n. Thus there are at most ((1 − β + O(n−1/3))n)! possible matchings to add
back between each pair of pillars.

When adding back new edges to H we must avoid edges (u, v) where u ∈ ENDH and v ∈
END(u,H) so that ai,j = 1 in the resulting graph. For a good pillar pair (Πk,Πl) as defined in
(6), there are at least n/500 vertices x ∈ Πk, each adjacent to at least n/500 vertices y ∈ Πl that
give rise to an edge (x, y) that must be avoided. The probability that we avoid all such edges
between a good pillar pair is at most

n/500−1
∏

i=0

(

1 −
n/500 − i

n − i

)

≤ e−n/250,000

As there are at least
(

h
2

)

/3000 good pillar pairs, the probability that a set of new edges avoids

all required edges in Gi is at most (e−n/250,000)(
h

2)/3000. 2

It follows from (13), (14) and (15) that |F|
|Ln(Kh)| is bounded above by

e−ch2n
(

(1 − β + O(n−1/3)n)!
)(h

2) ((h

2)n

13hn

)

(

(1 + o(1))
(

n
βn

)2
(βn)!

)(h

2)

(1 − o(1))(n!)(
h

2)
( (h

2)n−13hn

(1−β)(h

2)n−13hn

)

≤
e−ch2n/2

(

n
βn

)(h

2)

( (h

2)n

β(h

2)n

)

β14hn

≤ e−ch2n/2+14hn ln(1/β)

= o(1)

where the second line uses
(

a−x
b−x

)

≥ ( b−x
a−x )x

(

a
b

)

. 2
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3 Proof of Theorem 2

3.1 Structural Properties of Ln(Kh,h)

Let V1, V2 be the bipartition of Kh,h and let W1,W2 be the bipartition of the lifts of Kh,h that
it induces.

We now prove similar properties to those in Section 2.1. Let H1, P0 be sets of edges defined as
in Section 2.1 and let F = P0 ∪H1. Again we use an unspecified, suitably small constant β < 1,
let B be a set of β

(

h
2

)

n edges in G and B(G) the collection of subgraphs B. A set of edges H
in G is acceptable if H = B ∪ F for some B ∈ B(G). Let H(G) be the collection of acceptable
subgraphs of G and let R = G\H.

Throughout this section all statements hold for n and h sufficiently large. The proof is similar
to that for Kh and so we will omit calculations that are almost identical to those of the previous
sections.

The main difficulty with using a Posá type argument is that if a longest path P in G is even then
it cannot be closed to a cycle, connectivity notwithstanding i.e. we gain nothing from avoiding
choosing edges to join v to END(v). In this case, there are no edges to avoid. We therefore have
to modify the argument. We follow Bollobás and Kohayakawa [6] who considerably simplified
the argument of [8].

Lemma 9. For G
r
∈ Ln(Kh,h)

Pr(∃S ⊆ V : |S| ≤
n

20h
and S contains at least 2 |S| edges) = o(1)

2

Lemma 10. If G
r
∈ Ln(Kh,h) and H

r
∈ H(G), then whp H satisfies

S ⊆ Wi, |S| ≤ hn/4 implies |NH(S)| ≥ 2 |S| . (16)

2

Lemma 11. If G
r
∈ Ln(Kh,h) and H

r
∈ H(G) then whp H is connected.

2

Lemma 12. If K has a 2-factor and G ∈ Ln(K), then G has a 2-factor.

Proof Let C ⊆ V (K) be one of the cycles of a 2-factor of K and let G[C] the subgraph of
G induced by the pillars above the vertices of C. Let v1, . . . , vk be an ordering of the vertices
of C such that (vi, vi+1) is an edge of C (where v1 = vk+1) and let Πi be the pillar of G above
vi ∈ C. Let σi be the permutation that defines the matching from pillar Πi to Πi+1 for each
Πi ∈ G[C]. For each j ∈ Π1, define σ(j) = σkσ2 · · ·σ1(j) to be the permutation on the vertices
of Π1 that results from following the permutations σ1 through σk back to Π1. Then a cycle of
σ is a cycle of G so that the cycles of σ define a 2-factor of G[C]. This process can be repeated
for all cycles of a 2-factor of K to obtain a 2-factor of G ∈ Ln(K). 2

We now describe an extension-rotation process which attempts to transform the 2-factor F of
Lemma 12 into a Hamilton cycle.

General Step: Given the current 2-factor (initially F ) choose an edge e = (x, y) of G which
joins two distinct cycles C,C ′. This is possible because G is connected whp. Let f be an edge of
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C incident with x and f ′ be an edge of C ′ incident with y. Let P be the path C∪C ′∪{e}\{f, f ′}.
There are now several possibilities.

(a): There is an endpoint u say, of P which has a neighbour v in a cycle C ′′ disjoint from P .
We extend P by replacing P,C ′′ by P ∪ C ′′ ∪ {(u, v)} \ f ′′ where f ′′ is an edge of C ′′ incident
with v. We repeat this operation as long as we can. We then carry out (b) or (c).

(b) The endpoints u, v of P are connected by an edge in H. Adding (u, v) to P creates a 2-factor
with at least one less cycle than at the start of the General Step and completes it.

(c) Carry out rotations on P until either (i) we construct a path Q with an endpoint x which is
adjacent to a vertex y on cycle C outside Q or (ii) we satisfy the condition of (b). In the latter
case we proceed as in (b) above. In the former case we extend Q by adding the edge (x, y) and
deleting an edge of C incident with y.

We continue the above operations until we either obtain a Hamilton cycle or obtain a path
P0 = P0(G) = (v0, v1, . . . , vp) that cannot be extended or closed to a cycle via a sequence of
rotations. Note that this path is necessarily of odd length.

We therefore let P0 be a longest path of odd length which (i) cannot be extended by rotations
and (ii) for which there are a set of vertex disjoint cycles covering the vertices not in P .

We use the Pósa condition (which still holds) and Lemma 10 to get the following.

Lemma 13. If G
r
∈ Ln(Kh,h) and H

r
∈ H(G), then whp |ENDH(v, P0)| ≥ hn/4 for all

v ∈ ENDH(P0), P0 = P0(G).

We say next that an ordered pair of pillars (Πk,Πl) is good w.r.t. a longest path P if Πk ∈ Wx,
Πl ∈ W3−x, x = 1, 2 and

|{u ∈ Πk ∩ ENDH(P ) : |{v ∈ Πl ∩ ENDH(u, P ) : (u, v) 6∈ E(H)}| ≥ n/500}| ≥ n/500. (17)

In words, Πk contains at least n/500 vertices u ∈ ENDH(P ) for which there at least n/500
vertices v ∈ Πl ∩ ENDH(u, P ) such that the edge (u, v) /∈ E(H).

Lemma 14. If (16) holds then G has at least
(

h
2

)

/3000 good pillar pairs.

Proof We first note that P0 and the paths obtained by rotations are of odd length and so
each has one endpoint in each of W1,W2.

Now we can argue as in Lemma 5 that for each u ∈ Wx ∩ ENDH , x = 1, 2 there are at least
h/7 pillars Πj ∈ W3−x ∩ END(u,H) for which

|{v ∈ Πk ∩ ENDH(u, P ) : (u, v) 6∈ E(H)}| ≥ n/8.

The rest of the proof is identical to that of Lemma 5. 2

3.2 The Proof

Define the sets A, C,F as in the proof of Theorem 1. We have |A| ≥ (1− o(1)) |Ln(Kh,h)| using
the argument in Lemma 6 with the results from Lemmas 10 and 11. Define also the matrix A
and N1 as in the proof of Theorem 1. The proofs of the following Lemmas are similar to the
proofs of Lemmas 7 and 8.
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Lemma 15. If Gi ∈ F then

∑

j

ai,j ≥ (1 − o(1))

(

h2n − 25hn

(1 − β)h2n − 25hn

)

.

It follows immediately from Lemma 15 that

N1 ≥ (1 − o(1))

(

h2n − 25hn

(1 − β)h2n − 25hn

)

|F| . (18)

We now obtain an upper bound on N1. Let

X = {H : ∃i, j for which Gi,j = H and ai,j = 1}

It follows from the definition that

|X | ≤

(

h2n

25hn

)

(

(1 + o(1))

(

n

βn

)2

(βn)!

)h2

. (19)

For a fixed H ∈ H let
GH = {Gi,j : Hi,j = H and ai,j = 1}.

Thus,

N1 =
∑

H∈X

|GH |.

Lemma 16.

H ∈ X implies |GH | ≤ e−ch2n
(

(1 − β + O(n−1/3)n)!
)h2

. (20)

for some absolute constant c > 0.

It follows from (18), (19) and (20) that |F|
|Ln(Kh)| is bounded above by

e−ch2n
(

(1 − β + O(n−1/3)n)!
)h2
(

h2n
25hn

)

(

(1 + o(1))
(

n
βn

)2
(βn)!

)h2

(1 − o(1))(n!)h2
(

h2n−25hn
(1−β)h2n−25hn

)

≤
e−ch2n/2

(

n
βn

)h2

(

h2n
βh2n

)

β24hn

≤ e−ch2n/2+24hn ln(1/β)

= o(1).
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