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Abstract

We establish a threshold for the connectivity of certain random graphs whose
(dependent) edges are determined by the uniform distributions on generalized Or-
licz balls, crucially using their negative correlation properties. We also show the
existence of a unique giant component for such random graphs.

1 Introduction

Probabilistic combinatorics is today a thriving field bridging the classical area of probabil-
ity with modern developments in combinatorics. The theory of random graphs, pioneered
by Erdős-Rényi [2], [3] has given us numerous insights, surprises and techniques and has
been used to count, to establish structural properties and to analyze algorithms. There
are by now several texts [1], [6], [4] that deal exclusively with the subject. The most
heavily studied models being Gn,m and Gn,p. Both have vertex set [n] and in the first we
choose m random edges and in the second we include each possible edge independently
with probability p.

Let X be a random vector in [0,∞)(
n
2) with a log-concave down-monotone density f , that

is (i) log f is concave and (ii) f(x) > f(y) if x 6 y (coordinate-wise). For 0 < p < 1,
let GX,p be a random graph with vertices 1, . . . , n and edges determined by X: for 1 6
i < j 6 n, {i, j} is an edge if and only if X{i,j} 6 p. Such log-concave random graphs
were introduced by Frieze, Vempala and Vera in [5]. For instance, when X is uniform on

[0, 1](
n
2), GX,p is the random graph Gn,p. The paper [5] introduced a surprising connection

between random graphs and convex geometry.
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It studied, among other things, the connectivity of GX,p and found a logarithmic gap for
the threshold. There is no gap when GX,p is defined by uniform sampling from a “well-
behaved” regular simplex1 and we extend this case to Generalized Orlicz Balls GOBs:
that is sets of the form {x ∈ Rd :

∑d
i=1 fi(|xi|) 6 1} for some nondecreasing lower

semicontinuous convex functions f1, . . . , fd : [0,∞) → [0,∞] with fi(0) = 0, which are
not identically 0 or +∞ on (0,∞).
The key property of Orlicz balls is negative correlation. We say that a random vector X
in Rd has negatively correlated coordinates if for any disjoint subsets I, J of {1, . . . , d}
and nonnegative numbers si, tj, we have

P(∀i ∈ I |Xi| > si,∀j ∈ J |Xj| > tj) 6 P(∀i ∈ I |Xi| > si)P(∀j ∈ J |Xj| > tj).

It was shown in [7] that this property holds for random vectors uniformly distributed on
GOBs (see also [8] for a first such result treating two coordinates and [9] for a simpler
proof of the general result).
Notation: Throughout the paper we will let σmin and σmax be defined by

σ2
min = min

16i<j6n
EX2

i,j and σ2
max = max

16i<j6n
EX2

i,j.

Our result concerning connectivity is the following theorem.

Theorem 1.1 Let X = (Xi,j)16i<j6n be a log-concave random vector in [0,∞)(
n
2) with a

down-monotone density and negatively correlated coordinates.

(a) For every δ ∈ (0, 1), there are constants c1 and c2 dependent only on δ such that for
p < c1σmin

logn
n

, we have

P(GX,p has isolated vertices) > 1− c2n−δ.

(b) For every δ ∈ (0, 1), there are constants C1 and C2 dependent only on δ such that for
p > C1σmax

logn
n

, we have

P(GX,p is connected ) > 1− C2n
−δ.

We will also discuss the existence of a giant component for smaller values of p.
Notation: Let

M = max
T

sup
y∈[0,∞)|T |

max
(i,j)/∈T

E(X2
i,j|XT = y), (1)

where the first maximum is over all nonempty subsets T of the index set {(i, j), 1 6 i <
j 6 n} and we denote XT = (Xi,j)(i,j)∈T .
For our theorem on the existence of a giant component we need to have M = O(1). For a

GOB,
{
x ∈ R(n2) :

∑
16i<j6n fi,j(|xi,j|) 6 1

}
, this is justified by the following assumption:

we let
ai,j = sup {t > 0 : fi,j(t) 6 1} .

1A regular simplex
{
x ∈ Rd : a · x 6 1

}
for some a > 0 if ai/aj 6 K for some not too large K.
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Now our assumptions on the fi,j imply that the ai,j’s are finite. Furthermore, M 6
maxi,j a

2
i,j and so our assumption here is that maxi,j ai,j is bounded by an absolute con-

stant.

Theorem 1.2 Let X = (Xi,j)16i<j6n be a log-concave random vector in [0,∞)(
n
2) with

a down-monotone density. Assume that M = O(1). There are constants c1 and c2 such
that for every β > 1, we have

(i) If p < c1σmin

n
, then

P(GX,p has a component of order > β log n) <
12

nβ−1
.

(ii) If p >
c2M log

(
M
σmin

)
n

, then

P(GX,p has a component of order ∈ [β log n, n/2]) <
1

nβ−1

and

P(GX,p has a unique giant component of order > n/2) > 1− 5β

log n
− 1

nβ−1
.

Note that we have dropped the assumption of negative correlation.

2 Connectivity: Proof of Theorem 1.1

Part (b) is part of Theorem 2.1 of [5]. For (a), we adapt the standard second moment
argument used for the Erdös-Rényi model. For 1 6 i 6 n, let Yi be equal to 1 if the vertex
i is isolated and 0 otherwise. Let Y = Y1 + . . . + Yn be the number of isolated vertices.
We have,

P(GX,p has isolated vertices) = P(Y > 0) >
(EY )2

EY 2
.

Thus, if we show that EY 2 6 (1 + ε)(EY )2, then P(Y > 0) > 1− ε. Clearly,

EY 2 =
∑
k

EY 2
k +

∑
k 6=l

EYkYl =
∑
k

EYk +
∑
k 6=l

P(Yk = 1 = Yl) = EY +
∑
k 6=l

P(Yk = 1 = Yl)

and our goal is to show that

EY 6
ε

2
(EY )2 and

∑
k 6=l

P(Yk = 1 = Yl) 6
(

1 +
ε

2

)
(EY )2.
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From the negative correlation of coordinates of X as well as an elementary inequality
P(A) 6 P(A ∩B) + 1−P(B), we get

P(Yk = 1 = Yl) = P(∀i 6= k Xik > p,Xil > p,Xkl > p)

6 P(∀i 6= k Xik > p)P(∀i 6= k, l Xil > p)

6 P(∀i 6= k Xik > p)
[
P(∀i 6= l Xil > p) + 1−P(Xkl > p)

]
= P(Yk = 1)

[
P(Yl = 1) + P(Xkl 6 p)

]
.

By Lemma 3.5 from [5], P(Xkl 6 p) 6 p
σmin

(recall that by the Prékopa-Leindler inequality,
marginals of log-concave vectors are log-concave; clearly, marginals of down-monotone
densities are down-monotone). Therefore,∑

k 6=l

P(Yk = 1 = Yl) 6
∑
k 6=l

P(Yk = 1)P(Yl = 1) +
∑
k 6=l

P(Yk = 1)
p

σmin

6

(∑
k

P(Yk = 1)

)2

+
np

σmin

∑
k

P(Yk = 1)

6

(
1 +

np

σminEY

)
(EY )2 <

(
1 +

c1 log n

EY

)
(EY )2,

so it suffices to take ε such that

ε >
2

EY
and ε >

2c1 log n

EY
.

By Lemma 3.1 from [5], P(Yk = 1) > e−apn/σmin , for some universal constant a (the
assumption p < 1

4
σmin of that lemma is clearly satisfied if p < c1σmin

logn
n

), so

EY =
∑
k

P(Yk = 1) > ne−apn/σmin > n1−ac1 .

Thus, ε = c2n
ac1−1 log n will suffice. �

3 Giant Component: Proof of Theorem 1.2

Lemma 3.1 Let X = (Xi,j)16i<j6n be a log-concave random vector in [0,∞)(
n
2) with a

down-monotone density. There are universal constants a and b such that for S, T ⊂
{(i, j), 1 6 i < j 6 n} and p > 0, we have

P(∀s ∈ S Xs > p,∀t ∈ T Xt 6 p) 6 e−ap|S|/M
(
bp

σmin

)|T |
.
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Proof Fix disjoint sets S, T ⊂ {(i, j), 1 6 i < j 6 n} (if they are not disjoint, the
probability in question is 0) and y ∈ [0,∞)|T |. Let f be the density of (XS, XT ). The
conditional density of the vector XS given XT = y,

fXS |XT (x|y) =
f(x, y)∫
f(x′, y)dx′

is down-monotone and log-concave. Therefore, by Lemma 3.1 from [5],

P(∀s ∈ S Xs > p|XT = y) 6 e−ap|S|/M .

We denote the density of XT by fXT and get

P(∀s ∈ S Xs > p,∀t ∈ T Xt 6 p) =

∫
[0,p]|T |

P(∀s ∈ S Xs > p|XT = y)fXT (y)dy

6
∫
[0,p]|T |

e−ap|S|/MfXT (y)dy

= e−ap|S|/MP(∀t ∈ T Xt 6 p)

6 e−ap|S|/M
(
bp

σmin

)|T |
,

where the final inequality follows directly from Lemma 3.2 of [5]. �

With this lemma in hand, we can prove Theorem 1.2.
Proof Let Zk be the number of components of order k (that is, on k vertices) in
GX,p. As for the Erdös-Rényi model, looking at a spanning tree for each component and
bounding the corresponding in-out edge probabilities using Lemma 3.1 yields

EZk 6
(
n

k

)
kk−2e−apk(n−k)/M

(
bp

σmin

)k−1
6
(en
k

)k
kk−2e−apk(n−k)/M

(
bp

σmin

)k−1
=
σmin

bp

1

k2

[
eb

σmin

pne−
ap
M

(n−k)
]k
.

If p = M
a
c
n
, with c being a constant (chosen soon), this becomes

EZk 6
e

A

1

c

n

k2
[
Ace−ceck/n

]k
,

where we put A = eb
a

M
σmin

.
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Case 1. If c is a small constant, say c 6 1
eA

(equivalently, p 6 σmin

e2b
1
n
), then we bound

e−ceck/n crudely by 1 and get that

EZk 6
e

A

1

c

n

k2
(Ac)k 6 en(Ac)k−1 6 e2ne−k.

Thus,

E

( ∑
k>β logn

Zk

)
6 e2n ·

∑
k>β logn

e−k 6 e2ne−β logn 1

1− e−1
=

e3

e− 1

1

nβ−1
<

12

nβ−1
.

By the first moment method, this gives (i).

Case 2. Let c be a large constant, say such that Ace−c/2 6 1
e

and Ac > e2, which holds
when, say c > 4 logA, provided that A is large enough, which leads to the assumption on
p in (ii). Then for k 6 n/2, we have

EZk 6
en

Ac
(Ace−c/2)k 6 ne−k−1.

Thus,

E

 ∑
β logn6k6n/2

Zk

 6 ne−1
∑

k>β logn

e−k 6
1

e− 1

1

nβ−1
<

1

nβ−1
.

By the first moment method, this gives the first part of (ii).
To go about the second part and show that there is a giant component, we shall simply
count the number of vertices on the small components and show that with high probability,
there are strictly less n such vertices. The uniqueness of a giant component plainly follows
from the fact that it has more than n/2 vertices, so there cannot be more than one such
components. Fix 1 6 k 6 β log n and set t = ne−k−1. For any positive integer l 6 et+ 1,
we have

P(Zk > et) 6 P(Zk(Zk − 1) . . . (Zk − l + 1) > et(et− 1) . . . (et− l + 1))

6
EZk(Zk − 1) . . . (Zk − l + 1)

et(et− 1) . . . (et− l + 1)

6
EZk(Zk − 1) . . . (Zk − l + 1)

(et− l + 1)l
.

As for the upper bound for EZk, looking at spanning trees for each l-tuple of distinct
components of order k and bounding the corresponding in-out edge probabilities using
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Lemma 3.1 yields

EZk(Zk − 1) . . . (Zk − l + 1)

6

(
n

k

)(
n− k
k

)
. . .

(
n− (m− 1)k

k

)
(kk−2)le−

ap
M
kl(n−kl)

(
bp

σmin

)(k−1)l

6
(en
k

)kl
(kk−2)le−

ap
M
kl(n−kl)

(
bp

σmin

)(k−1)l

=

(
e

A

1

c

n

k2
[
Ace−ceckl/n

]k)l
.

Provided that kl 6 n/2, under our assumption c > 4 logA, this is further upper bounded
by (t/k2)l, which gives

P(Zk > ne−k) = P(Zk > et) 6
1

k2l

(
t

et− l + 1

)l
.

For k > 1
2

log n, we choose l = 1 and get

P(Zk > ne−k) 6
1

e

1

(1
2

log n)2
, k >

1

2
log n.

For k < 1
2

log n, we have t = ne−k−1 > e−1
√
n, so choosing, say l − 1 = be−1

√
nc yields

P(Zk > ne−k) 6

(
t

et− be−1
√
nc

)l
=

(
1

e− be−1
√
nc

t

)l

6

(
1

e− 1

)l
6

(
1

e− 1

)e−1√n

, k <
1

2
log n.

Combining the last two estimates, the union bound gives that the probability of the event
E = {∃k 6 β log n, Zk > ne−k} is at most

4

e

(β − 1/2) log n+ 1

(log n)2
+

1
2

log n

(e− 1)e−1
√
n
<

5β

log n

(we check that
1
2
logn

(e−1)e−1√n <
2

logn
and simply bound 4

e
(β−1/2) logn+1

(logn)2
6

4
e
β+ 2

e

logn
). To finish, it

remains to check that on Ec, there are few vertices on the small components. On Ec, we
have ∑

k6β logn

kZk 6 n
∑

k6β logn

ke−k < n
∞∑
k=1

ke−k = n
e

(e− 1)2
< 0.93n.

�
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Remark 3.2 It was shown in [9] that the negative correlation property holds in fact
for random vectors with densities of the form h(

∑
fi(xi)), where h : [0,∞) → [0,∞) is

a nonincreasing log-concave function (h = 1[0,1] giving uniform densities on GOBs). For
such densities, M is finite and can be bounded as for GOBs in terms of certain parameters
depending on the functions fi and h.

4 Conclusion and Open Questions

We have successfully generalised the results on the regular simplex in [5] to GOBs. The
following questions seem most apposite.

Q1 What we prove in Theorem 1.2 does not rule out the possibility that in some range
of p there is more than one giant component. Can the proof be tightened to rule this
out?

Q2 What is the connectivity or giant component threshold for the intersection of two
well-behaved regular simplices?

Q3 What is the connectivity or giant component threshold for the intersection of a few
regular simplices with independent randomly chosen coefficients?
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