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1. Introduction

This paper is concerned with a probabilistic analysis of linear programs with
random objective function coefficients. In particular we consider the problem

minimise ¥ ¥
=1
L3

subjectto T ayx;=b, i=12,...,m, (1.1)
=

%20, j=L2,...,n

We assume that ¢y, c;, .. ., ¢, are independent non-negative random variables. The
remaining parameters of (1.1}, that is the a,’s and b;'s, are assumed to be known
constants,

In order to give a flavour of our results we quote the following theorem which
will be proved later. Let z* denote the (random) minimum value of {1.1).

Theorem 1.1, Suppose that ¢y, ¢,, . . ., ¢, are independent uniform {0, 1] random vari-
ablesand £,, %,, . . . , %, is any fixed feasible solution to (1.1) (not necessarily optimal).
Then

E(z¥)smmax{%:j=1,2,...,n} (1.2)
3
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This result will be shown to generalise a recent result of Karp [7] which states
that the expected value of a random assignment problem with independent uniform
[0, 1] costs is no more than 2. An earlier bound of 3 had been obtained by Walkup
[9]. In Section 2 below we prove a semewhat stronger result than Theorem 1.1
together with results on the probability that z* exceeds the right hand side of {1.2)
by a significant amount.

Interesting though such resuits on the expected optimal value may be in them-
selves, they also have an important impact in algorithmic analysis. Branch-and-
bound is an important technique for solving NP-hard discrete optimisation problems
exactly. In many cases the bounds used are bascd on LP relaxations of the original
problem. it is important to know how close this bound is to the value of the tiriginal
problem, on average.

Results like Theorem 1.1 are obviously useful in such circumstances. [n Section
3 below we consider the probable effectiveness of branch-and-bound aigorithr‘ns for
solving one particular important problem-the Quadratic Assignment Problem. Our
main result is that for a certain natural stochastic model, with probability tending
to one, any branch-and-bound algorithm based on proposed LP bounds takes
super-exponential time,

2. Main results
We first prove a resuit that contains Theorem 1.1 as a special case.

Theorem 2.1. Letc,, ¢z, ..., ¢, be independent non-negative random variables. Suppose
that there exists 8, 0< =<1 such thai, for j=1,2,...,n,

E(g|e=h)y=E(¢)+Bh (@)

for all h>0 with P(c=h)>0. Let £, %,,..., %, be any fixed feasible solution to
(1.1). Then, assuming E(¢,)%,= E(c)%; = - - = E(c, )%,

E(zM =g T E(c)i. 22
(L1

Proof. Let ¢ R" be the vector of s, Let @y={(ay ..., a,y)" be the jth column of
the constraint matrix of (1.1) for j=1,2,...,n Let b=(b, by, ..., b,)" be the
vector of right hand sides.

We can assume without loss of generality that the constraint matrix is of full row
rank m and that {1.1} is non-degenerate. Otherwise we can delete constraints and/or
apply standard perturbation techniques to ensure this.

Let P be the (simple) polyhedral feasible region to (1.1). Suppose P has N
vertices. Let S, S3,..., Sy be the basic index sets for the N feasible bases come-
sponding to the vertices. Let B, be the basis matrix with colurans 4, (j€ $;) and
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¥ be the row vector with elements ¢; {j€ S,). Then the condition that B, is an
optimal basis to (1.1) with value z*(¢)=y""B;"b is

¢—y"B g =0 (j28) 23

This is a set of linear inequalities in the ¢’s and it defines a convex polyhedral

subset Q, of R% The Q, (r=1,2,..., N) partition R} (except for overlapping on
null-sets). Now if ce Q, (i.e. B, is optimal), there is only one inequality involving
each j £ S,. Thus conditional on ce Q,, and on ¢'”, the ¢ (j £ S,) are independent
and conditioned only by {2.3). Let E, be the event {¢< Q,}. Then, for j& §,,

E(g|E, v =E(glg=v""B e, ¥"") =&+ 8y""B'q

where §=E(g) forj=12,...,n
Thus, for r=1,2,..., N,

5(3 otlE. v0)= 3 W%+ T BGoIE.7S
j=1 JES, J£S,

= T Y45+ T (§+ByBa)g
Jes, S,

=T &+ L Effﬁﬂv"’&"(b— L ap?;)
je s, jes, jes,
{using the fact that ¥, @ =b)

=1 (vj”-By""B.'a)}% +1§ZS &%+ BE(2*| E, ¥)
JeS, £5,

Now, for j& §,, v\” = y'" B 'a, and since 7}”, 1~ and % are all non-negative,
we have

5(£ o815, v") = £ a4+8EGY B, v)
J=1 JES,
and hence
E(z cp?,|5,)a ¥ &4+BE(z*|E,).
Jmal JeS,
Thus if p,=Pr{E,)
N a R N R N
3 pB(£ 0815)= 1 b 3 6%+8 £ pEGIED
r.- - P i r ra

But
N n n n " ]
: pe(f c;x,lE.)=E(z c,x,)= T &g,
rel i=1 F=1 J=i
and

T pE(z*|E)=E(z*
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n N N
E(s¥) < T af— - _a
BE(z%) ;§1 ok, ’,E:] "',Z: &% E‘ p,JEZ &%, {2.4)

s S,
The Theorem now follows from (2.4) and the fact that ¥, &% <X,., &% for
r=1,2,..., N by assumption. '

This proof is a simplification and generalisation of Karp’s proof [7]. To prove
Theorem 1.1 we note that for uniform [0, 1] random variables & =8 ={ in (2.1).

We will alse be concerned with exponentially distributed random variables, A
random variable X is exponentially distributed with parameter A > 0 if

Pr{iX=x)=1-e™ forx=0.
This implies that
E(X|X=h)=max{(0, )+A" = h+ A"
and so (2.1) holds with B =1 if the ¢'s are exponentially distributed.

We therefore have

Corollary 2.2, If ¢, ¢, ..., ¢, are independent exponentially distributed random vari-
ables with parameters Ay, Aa, ..., A, and R, %5, ..., X, is any fixed feasible solution 10
(1.1) then, assuming A7 %= A7 %2 2 A%,

E(z%)= T AT'%.

f=]

Before discussing applications of these results we check that condition (2.1)is
not particularly restrictive,

Lemma 2.3. Let X be a non-negative random variable with finite mean p > 0. Then
there exists B> 0 such that

E(X|Xz=h)=p+ph
Jor all h>>0 with Pe(X = h)>0, if and only if

P

llIEl‘l)nfh Pr(X =<h)>0. (2.5}

Proof. Let F(h)=Pr(X <h).
(Only if.) Suppose that lim inf,, ;o F(h)/h=0.Let 8>0andlet §= 8/2u > 0. Then
there exists k>0 such that F(h) < sh<3i. But then

E(X|X=h)<p/(1-F(h))< u/(1- 6h) < (1 +28k)
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so that
E{(X|X=h)<u+ph

(If.} Now suppose that lim infnye F(h)/h=25>0. Consider small h first. Let
0< hy< j2/3 be such that F(h)/h= & for 0<h= hy. Then for such h

E(X|X = hy= (u—hF(h)/(1- F(h))> (.~ kF()}(1 + F(h))
>p+ F(h)pe/3  using h<p/3
=+ (5u/3)h.

Thus the desired result holds for small A. But now consider h > hg with Pr(X = k) >
0: if hy< h=2p say, then

E(X|X=h)= p+(8u/3ho= pu+(8ho/6)h
and if h>2p then
E(X|X=hy=h=p+ih

We stress once again that the above results are still valid if we drop either the
non-degeneracy assumption or the assumption that the row rank of the constraint
matrix is egual to the number of constraints. They are also valid if some of the
constraints are inequalities. Given a feasible solution £ to Axs b x=0 say, we
consider the restricted linear program min ¢+ x subject to Ax= Af, x=0.

Examples. Suppose, for ease of exposition, that the objective function coefficients
below are al! independent and uniformly distributed on {0, 1].
(1} Linear program for d-dimensional matching.

n
Minimise z= T cy.Xy.
ifye=1

-

subjectto ¥ xy =1, fori=12,...,n,
L |

x4, 20, forij,...=1L2,...,n

The variables x,,, are assumed to have d (>1}) subscripts. The constraints are that
summing over the variables with a fixed value for one subscript gives one.

This linear program has m = dn constraints. Choose as a feasible solution %, =
Yn' for ij,...=1,2,...,n So £,,=1/n""" and hence, from Theorem L.,

E(z¥y=dn/n®'=d/n"
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Also, from Corollary 2.6 (below),
Pr{iz*=(1+o{1}})d/n* %} >0 asn-»co.

(2) Linear program for d-dimensional assighment.

n
Minimise z= Y ¢y Xy,
dufpin=1

n
subjecttc XL x; =1 forjk...=1,2,...,n
i=1

x,. =0 forij...=1L2,....n

We have the same set of variables as in example (1). The constraints are that keeping
the values of all but one subscript constant and summing gives one.

This has m = dn?™"' constraints. Choose feasible solution Xy =1/n for &4,...=
1,2,...,n So £,,=1/n and, as before from Theorem 1.1,

E(z*)=dn'"fn=dn""?,
and, from Corollary 2.6,
Priz*=<(1+0(1))dn*?}»0 asn-co.

Either of these examples generalises Karp's bound for the assignment problem,
as does the next cne.

(3} Minimum weight matching in regular bipartite graphs.

Let G=(V, E) be a regular bipartite graph, of vertex degree k If edge-weights
on & are chosen independently from the uniform distribution on [0, 1], then the
minimum weight z* of a perfect matching on G satisfies

E(z*}=|Vl/k
Proof. Since G is bipartite, the value z* is that of the linear program

minimise z= } cxX,.
ecE

subjectto ¥ x.=1 (veV),

eauv
x, =0,

Since (& is regular of degree k, %, = 1/k is a feasible solution to this LP. Thus, since
the LP has |V| constraints, the result now follows directly from Theorem 1.1,
Furthermore, by Coroliary 2.6,

Pr(z*=(1+0(1))|V|/k) >0 as|V|->cx.
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Note that this bound also applies to the fractional matching problem in regular
nonbipartite graphs. ‘

{4) Greedy heuristic for the 3-dimensicnal assignment problem. This problem is
the integer programming problem with constraints as in Example {2} with d =3.
We shall show that the expected value of the three-dimensional assignment problem
with independent uniform {0, 1] weights is less than 2r log . {(All logarithms here
are natural.)

Proof. Use a greedy ‘plane-by-plane’ heuristic, solving the minimuim-cost match-
ing problem in each piane on the remaining graph, when the previously selected
matchings have been removed, We have | V| = 2n, and k successively n, (n—1),..., L.
Thus using example (3) the expected value is at most

2+ﬂ+- - -+2<2n(log n+1),

n n-1 1
{using the relationship between the sum and the integral of 1/x). This bound can
be tightened slightly by noting that at the last three stages a random matching gives
a better bound. This has expected value in which is better than 2n/3, 2n/2 or 2n/1.
Thus the expected value is at most

2n(i+' . ~+$)+n(5+§+§)<2n(log n+l1-Y)+in

‘=2n(logn—%)<2nlogn asclaimed.

Moreover, we have a polynomial-time heuristic which guarantees this. [Its time-
complexity is O(n*), n phases each O(n*).] Corotlary 2.6 again can be used to show
that Pr(zyp= (2+0(1))n log n}» 0 as n -» o, where z;p is the integer optimum value.

This problem is NP-hard (see Frieze [3]) and no heuristics are known with a
proven good performance, in a probabilisitc sense.

We now consider the problem of bounding the probability that z* exceeds the
given upper bounds. We shall work with exponential random variables and derive
a result for uniform random variables as a corollary.

The moment generating function of a random variable Z is defined to be M;(¢) =
E(exp(1Z)). It is a standard tool in probability theory and statistics and its use in
this paper comes from the following: if Z is a non-negative random variable then

Pr(Z=a)< E(e?)/e™, forallt (2.10)

Theorem 2.4. Suppose that ¢y, ¢3, ..., €y Xy, %2, ..., %, are as in Corollary 2.2. Then

"o A
Ma(nysT] —L-, o0=r<a/i,
jet Ay — Xt

Proof. We note first that an exponential random variable with parameter A has
moment generating function A/(A —1). We write M{(¢) for A;/(A;—1). Letting E,,
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ir) H
7", S, be as in the proof of Theorem 2.1, we have, for 0t<) /%,
n
o1 5 o)
J=l

=expit g (rp- a a
ol 5,778} Liesstmnco, v mapt s

(T A a
Eny )"’""(';Zs ) )x’),”s Efexp(1g5)| = "B, ay')
€8, £5,

?exp{’ T ¥U8+ ¥ th(y"B'a 2
iS5, +H JE&‘, 1(7 ’ tz,} jBS, M(%‘}
=exp(ty'”B;'b) [1 My(%1)

JES,

= E(exp(tz*)| E, ") ] M(%1).
jes,

Hence
E (exp(rjzl c,f,.)f E) =E (exp(!z*) il M,(f,:)iﬁ,)
- JES,
and so

Il M(£n=E (GXP(rz*)' [l M;(fjr))
i=1 JROPT

where OPT is the (random) set of optimal basic variables.

Hence
E(exp(rz*) It M,-(;‘Ejt)) =1
JjeOPT
and so
M,.(r)sm?x Il M%) (z.11)

Jes,

and the theorem follows.

Corollary 2.5: Suppose that ¢y, ¢, ... ., ¢, are independent exponential random vari-
m!‘»les“each wllii parameter A and thar (£, %y, ..., %,) is a feasible solution 10 (.
with £ =max{£:j=1,2,..., n}. Then

Pr(z*=(1+8)mA~'x) < exp(~m(3 ~log(1+5)})) ford=0. (2.12)
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Proof. Put a=(1+8)mA™"% and 1=8A/({1+ &)%) in (2.10) and use Theorem 2.4.

Corollary 2.6. Suppose that ¢, cy,..., ¢, are independent uniform (0,1] random
variables and (%, %,...,%,) is a feasible solution to (1.1) with %=
max{f:j=1,2,..., n}. Then

Pr(z*={1+&)m%) <exp(-m(5—log(1+8))} fors>0. (2.13)

Proof. A uniform [0,1] random variable X is smaller in distribution than an
exponentialty distributed random variable Y with parameter 1, for, if />0,

Pr(Y>t)=e ' zmax(0, 1 - ) =Pr(X >1).

Thus the result of Corollary 2.5 applies with A =1,

3. Solving quadratic assignment problems

We now consider the computational consequences of our results for the exact
solution of the Quadratic Assignment Problem (QAP):

LI

n n
minimise {=F L ¥ L ayuXXu
Pl jml k=l fm1

subjectto ¥ xy=1, j=1,2,...,n,
1=l
(3.1)

T oxy=1,i=112,....n
J=1

xy=0orl.

This problem has a large number of important applications including the location
of rooms in buildings, the location of symbol keys on type-writers, the location of
files on disks and the design of printed circuits - see Burkard [1] for a recent review.

The problem is known to be NP-Hard (Garey and Johnson, [5T) and extremely
difficult to solve exactly. Problems of size n =20 cannot be solved on a routine basis.

We consider the case where the ay,'s are independent uniform [0, 1] random
variates. Now it is easy to show, Burkard and Fincke [2], that

Pr{{mex = (14 0(1) }imia) = 0(1) (3.2)

for suitable o(1) terms. Here £ (1€Sp. £rmu,} denotes the minimum (resp. maximum)
value of { in the QAP (3.1). Thus any algorithm aimost always finds a good solution.

On the other hand, Frieze and Yadegar [4] showed that many proposed branch
and bound algorithms use bounds which are weaker than the bound derived from
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the following LP relaxation of QAP:

n
minimise z=F ¥ ¥ ¥ aum by
I=1 =1 k=1 f=1

subjectto ¥ x;=1, j=1,2,...,n,
=1

n

L ox=1, i=1,2,....n

i

n

Aglyijld:xkl: Ak 1=1,2,...,n,

n

Jgi)’rykr=xu. Lki=1,2...,n

L]

kZIy,,-wxu, Lihl=1,2,...,n, (3.3)

Zym=x Lik=12..n

Yo = X Wi=1,2,000,m,
xJJ;O: i,j=1,2,...,ﬂ,
P =0, LiklI=1,2...,n

Let now z* denote the minimum value of z in the LP relaxation (3.3). It follows
from Theorem 2.1 that '

E(z*)=5n+0(1) (3.4)

(Fix x;=ypy=1/n for i,j=1,2,...,n and then consider the restricted linear
program remaining, with feasible solution

e ={1/[:1(“—1)] ifish,j=1
S i} otherwise.)
On the other hand as.in (3.2) we have
Pr(fmn= (L—o(1))n?/2) = o(1). (3.5)

Thus for large n, the expected duality gap. is enormous. As a consequence, we
can use the results of Section 2 to show the following result, which we feel gives
some insight into the difficulty of the QAP.

Theorem 3.1. Consider any branch-and-bound algorithm for solving the QAP (3.1}
that branches by setting variables Xy t0 0 or 1 and bounds by using the LP(3.3). The
number of branch nodes explored is at least n"~°"Pn/4 yon probability 1 —o(1)as n - o,
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Proof. A probe for the QAP problem QAP, in (3.1} is a pair (A, B) of disjoint
subsets of N7, where N={1,2,...,, n}. The value u,{4, B} is the minimum value
of z in the LP relaxation (3.3) subject to the further constraints

_{1 forall (i, j)e A,
=o forall{i )eB.

The probe (A, B} is feasible if this program, say LP,(A4, B), is feasible.

Clearly each node in a branch-and-bound tree for QAP, cotresponds to a probe,
and the lower bound at a node is the value of the probe. Note that if some variable
Xy has a fixed value in all integer feasible solutions to LP,(A, B) then it has this
fixed value in all feasible solutions. Hence from any branch-and-bound tree we may
construct one which is no larger and in which each node corresponds to a feasible
probe. Thus we can restrict attention to such trees.

Let the random variable % be the optimum value of QAP,. Given non-negative
integer-valued functions o = a{n) and 8 = g(n} define the random variable v¥{a, 8)
to be the maximum value of v,{A, B) over all feasible probes (A, B) with |A]< a(n)
and | B]= B8(n). If v¥(a, 8) < {¥ then the number of nodes in any branch-and-bound
tree T is at least

(a+ﬁ

o

)?(ﬁ/a)“.

To see this, let branching to the left mean setting some variable x; = 0 and branching
to the right mean setting x;=1. If o¥(, 8) <Z¥ then the tree T must contain all
possible paths from the root with « right turns and B left turns.

Let e =e(n)>0and e(n) -0 slowly as n > 00, say e(n)~ (log n}~". Let & = ai(n)
and 8= A(n) be non-negative integer-valued functions such that a(r)~(1-—¢)n
and B{n)~ n*%(log n)~>. We shall show that, with probability~+1 as n o0,

v, B)<{X {3.6)
and thus the number of nodes in each branch-and-bound tree for QAP, is at least
(ﬁ/a)u‘ = n(l—oll]]n,M.

In order to prove (3.6) we shall consider feasible probes of the form (A, ¢). Let
m=m(n) be a positive integer-valued function such that

m(n)~3(n’ log n)"*.
We shall show that for n sufficiently large

vi(e, B)<vi(n—m,0), : (3.7
and

Pr{vi(n—-m,0)<{¥>1 asn-soo, (3.8)

This will of course establish (3.6) and complete our proof.
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We can dispose of (3.7} quickly, by postponing the (deterministic) work to a later
lemma. Consider any feasible probe (A, B) with |A|=<a(n) and |B|=pg{n). By
Lemma 3.2 below, if n is sufficiently large there is a feasible proble (A, B) such
that Ac A, |Al=n-m and A ‘covers’ B, that is for each (i j)e B e1ther some
(4 k)& A or some (k, j}€ A. Then

0.{A, B) < 1,(A, B)=,(A, ¢} < v¥(n—m,0),

which establishes (3.7).
It remains for us here to prove (3.8). Let (A, ¢} be a feasible probe with {A|=n —m,
Our first step is to define a feasible solution to LP,(A, ¢). Let

X=N\X,
¥=N\Y.

X ={ie N: (i, j)€ A for some j},
Y={jc N: (i j)e A for some i},
Of course |X|={¥|=m, Let a(A) be the subarray of a=(ay,) with i ke X and
Lle ¥
Consider the restricted linear program RLP,(A)} defined as follows. Start with
the LP relaxation (3.3) of the QAP corresponding to the subarray a{A4). Now fix

xXy=yy=1/m

for all i€ X and je ¥, thus leaving m*~ m? variables y, where i, ke X and j,le ¥
and (i, j) # (&, I). Let y* be an optimal solution to RLP,{A), and let the random
variable r, be the corresponding minimum value of the objective function,

Now let

1/m ifie X je ¥,
0 otherwise,

{1 if(i f) e A,

and

1 if (i, jle A and (k, I} e A,

I/mif(4l)eAand ke X Ic ¥,
Vo= ofifie X, je ¥ and (k, De A,

Yha ifikeX and jic ¥,

0 otherwise.

It is straightforward to check that this does define a feasible solution £ § to
LP,(A, ¢). The corresponding random value 7,{A} of the objective function is given
by

A 1
Z,(A)= T z Ay +—
(ifeA (klsA

1
Y ap+t— T

Y Y autt.
(L)eA keX le ¥ M eX je¥ (kilea

(3.9}
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Let the random variable #* be the maximum value of Z,(A) over all feasible probes
(A, ) with |A&| = n~m, Of course v}(n—m, 0}= . We shall show that

Pr{f¥<t*}+1 asn-—og, : (3.10)

which will then complete our proof.

We shall use an inequality of Hoeffding. Let X,, ..., X, be independent random
variables each uniformly distributed on [0, 1]. Then by a special case of theorem 1
of {6], if 0<e<1,

Pr{ZX; < (1—e)k/2} = Pr{ZX, = (1+£)k/2} <exp(—1e’k). (3.11)

Let 6 = 8(n) ={log n/n)"% Now ¢¥* is the minimum over all n! possible assign-
ments of a sum of n® costs. Hence by (3.11}

Pr{{¥= (- 5)n’}< nlexp{~28°nT}<exp(nlogn—2nlogn)»0 asn-w,

Let 2, X2, () be the first three terms in the expression (3.9) for £,(A). NowZy,
is a sum of {n—m)* costs and so, by (3.11),

Pr{Z,, = (3+8)(n— m)’} < exp(—28*(n —m)*) =exp(—(2+0(1))nt log n).
Similarly m(Z)+Z,,) is a sum of 2m?(n—m) costs, and so
Pr{Z)+ Xy = (34 8)2m(n — m)} < exp(—48°m*(n ~ m))
=exp(—(36+0(1)){n log n}*?).
Now let % be the maximum value of Z,,+ 2, + Xy, over all feasible probes (A, ¢)
with |A| = n — m. Then, by the above,
Pr{Z*=(}+8)n*—m?)}=< (n iim) exp(—(2+o(1))n log n)

<exp(nloglen)—(2+o{1})nlogn)—»0 asn->00.

Next consider the random value r,=r,(A)} of RLP,{A). The linear program
RLP,{A) has m* — m® variables, 4m® constraints, a constant term m in the objective
function, and a feasible solution

(m(m—-1)" ifikeX i#kandjle¥ j=]
Yu= {0 otherwise.
Let s{n)=m+2{4m*/ m(m —1)}. Then by corollary (2.6) with =1,
Pr{r, = s(n)} <exp(—(1-log 2}4m®).
Let the random variable r¥ be the maximum value of r,(A) over all feasible

probes (A, ¢} with |A|=»—m. Then

2
Pr{r¥=s(n)}= (;) exp(—(1-10g2)4m®}-»0 asn->co,




16 M.E. Dyer, A.M. Frieze, CLH. McDiarmid } LP's with random costs
We may at last complete the proof of (3.10). For with probability > 1 as n >0,
DI+t <+ 8~ mD) +s(n)< (- 8)n*< ¥,

as required.

Lemma3.2. Let G=(U, V, E) be a bipartite graph with | U/| = | V|= n and {E|= n* - 8,
where 0< 8= n’/17 and n = 141. Suppose that G has a perfect maiching. Then there
exist U'c U, V'c V such that
(iy G(L", V') is complete,
(i} GUINU', V") has a perfect matching,
(iity [U)=|V']= [(n/2)/[48/n}].
Here G(U, V') denotes the induced subgraph of G with vertex set U’'u V',

Proof. We may assume that 8= n/2. Let r = [48/n]. The number of vertices in U
of degree =n—r is at most 8/r=<n/4; and similarly for V. Since G has a perfect
matching we may pick Usl, VeV such that |U)|=|Vi|=n=n/2,
G(U\U,, V\'V,) has a perfect matching, and in G(U,, V,) all vertex degrees are at
least n,—r+1. By adding vertices alternately from U, and V, we may find U, < U,
Vi< ¥, such that | U] =|Vy|=|n,/r} and the graph G(U,, V2) is complete.

Now let U;=U\U,, V,=V\V, and consider the graph G, = G(U,, V3). Note
that |U5| =| V3] = n,— | n,/r| = n, say. It will be sufficient for us to show that G; has
a perfect matching. This will be true if each vertex degree is at least ny/2 (by for
example Hall's theorem). But each vertex degree is at least n,—r and so it remains
for us to show that nt;—2r=0. However, 2< r<4n/17+ 1, and so

m—2r=nf2—(n/2r+2r)=n/2-max{n/4+4, 8n/17+3}=0 since n =141

For further related work see [8].
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A FINITE CHARACTERIZATION OF K-MATRICES IN
DIMENSIONS LESS THAN FOUR
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The class of real n X n matrices M, known as K-matrices, for which the linear complementarity
problem w—Mz =g, w20, =0, W'z =0 has a solution whenever w~Mz=g, w=0, 220 has
a solution is characterized for dimensions n <4, The characierization is finite and ‘practical'.
Several necessary conditions, sufficient conditions, and ples p to K-matrices
are also given. A finite characterization of completely K-malrices (K-mavrices all of whose
principal submatrices are atso K-matrices) is proved for dimensions <4.

Key words; Linear complementarity problem, K-matrix, Qg-matrix, finite characterization,
@-matrix.

1. Introduction

Let E” be the n-dimensional Euclidean space and let E™" be the set of real
nxn matrices. For M e E™", M, denotes the (i,j) entry in M, and for [, J=
{L, ..., n}, M, is the submatrix of M consisting of the rows indexed by I; and M.,
consists of the columns indexed by J. The jth column of M is denoted either M,
or M., the ith row of M is denoted by M,. .

Given a matrix M e E"*" and vector g € E”, the linear complementarity problem,
denoted by (g, M), is to find vectors w, ze E" such that

w—Mz=gq,
(LCP)

w=0, z=0, w'z=0,

This problem arises in such diverse areas as economics, game theory, linear program-
ming, mechanics, Jubrication, numerical analysis, and nonlinear optimization. Gen-
eraily in a particular application area the matrix M has a special structure (e.g.,
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