o
L]
e
-
o
=
O
O
Ll
LI
L

-
=
.
0.
LLI
o
>
—
LUl
O
®,
h

IEEE COMPUTER SOCIETY
1109 Spring Street, Suite 300
Silver Spring, MD 20910

IEEE
COMPUTER
SOCIETY
PRESS




LINEAR CONGRUENTIAL GENERATORS DO NOT PRODUCE RANDOM SEQUENCES

% %
AM. Frieze*, R. Kannan** and J.C. Lagarias*

*:GSIA, Carnegie-Mellon University and Queen Mary College, London,
sxglOMputer Science Department, Carnegie-Mellon University,
AT&T Bell Laboratories, Murray Hill.

Abstract
One of the most popular and fast methods of

generating "random"™ Sequence are linear

congruential generators., This paper discusses the
predictability of the sequence given only a
constant proportion o of the leading bits of the
first few numbers generated. We show that the
rest of the sequence is predictable in polynomial

time, almost always, provided o > 2/5.

One of the most popular and fast methods of

generating '"random™ sSequences are 1linear

congruential generators. These work as follows:
a modulas M, a multiplier a relatively prime to M

and an increment c¢ are picked. Then starting at a

random "seed" X1 one generates the sequence {Xi}
given by
(0)

X =a* Xi + c(mod M)

i+t 7

(Thus the X; are all integers between 0 and M
- 1) Knuth (Vol. 2)
discussion of linear congruential generators
(LCG).
shown to satisfy various statistical tests of

contains an elaborate

The sequences produced by LCG's have been

randomness for proper choices of the modulas and
multiplier. (Knuth-Vol. 2). However it does not
immediately follow from these that these sequences
are "unpredictable®” - which one would intuitively
expect a random sequence to be. This aspect of
randomness has been formalized by cryptographers
Shamir (1980), Blum and Micali (1982), Yao (1982)
and Goldreich, Goldwasser and Micali (1984).

Also, the thesis that problems that can be done in

0272-5428/84/0000/0480$01.00 © 1984 IEEE

480

random polynomial time are essentially tractable
is based on the hypothesis that a deterministic
polynomial time bounded process can produce
sequences that are indistinguishable from truly
random sequences in deterministiec polynomial time.
(See Cook (1983) for a discussion of this thesis).
Indeed the general observation so far seems to be
that probabilistic (coin-tossing) algorithms work
well in practice. In view of this it is important
to analyse one of the most popular random number
generators - the linear congruential generator for
predictability.

It has been suggested (Knuth 1980) that a way
of producing secure sequences from an LCG is to
output the leading part of each of the Xi's - say
the leading half of the bits.; The main result of
this paper is to show that this sequence is not
Knuth. (1980), Plumstead (1982) and Reeds
(1977) have considered the question of whether

secure,

bits generated by linear congruential generators
are predictable. Plumstead (1982) uses a clever
idea to show that if all the bits of several
consecutive Xi's are known, then the multiplier a
can be inferred and with greater difficulty the
modulas too, thus demonstrating that when all bits
of Xi
predictable even if the modulas and multiplier are
Knuth (1980) considers the problem when

are announced, the sequence becomes

unknown.,

+Note that if the modulas is known it is certainly
insecure to output xi,x1+1.x +2 for any i, for

(xi*z-xi+1) and
Here the inverse is modulo

then a is given by (xi+1-xi)’
thence ¢ can be found.
M,

modification of the expression suffices to find a.

if the inverse does not exist, a simple



the multiplier and modulas are unknown and only a
small fraction of the bits of several consecutive
xi's are announced. For this case, he devises an
exponential time algorithm to infer the hidden
information. Reeds (1977) considers some special
Plumstead (1982)

also treats the case when the trailing 0(log(n))

cases with fixed multipliers.

bits of several consecutive xi's are unknown.

To describe our result we first introduce
2m be the number of bits
in M. We break Xi into two equal parts:

some notation: 1let n =

)
where 0 < y;,z; < 2" The problem we
consider is: given M, a, c, Yyr Yoo ya,...yn for
some 2, can one determine Z4 (and then of course
all the Xi can be easily computed.)
result is an algorithm A with the following
properties:

The main

1) A is deterministic polynomial time
bounded. Indeed A runs in time O(nalognloglogn).

2) It takes as input integers M, a and
integers y1.y2 and y3, 0 < y1,y2.y < 2" and
returns an integer z, between 0 and 2° or returns
the answer "cannot solve the instance", (See (3)
below)

3) For each M, there is a set SM containing
at least (1 - O(M'(1/5)) of the integers modulo M
such that

a) for any a in Sy» and any e, given
y1.y2,y3 integers in [0,YM], there is a unique Zs
2z, and 23 in [0,7M] such that Xqe X, and x3
defined by (1) satisfy (0).

b) there is a polynomial-time algorithm that
given a,M tests whether a is in SM'

c) whenever a ¢ SM’ the algorithm A gives
the correct (unique) answer; if a ) SM' A returns

"cannot solve",

Algorithm A
We use the algorithm of Kannan (1983) to find

an integer solution to

azy =z, + Mp1 =Y
az, - z3 +mMp2 =¥, (2)
0<z <2 i=1,2, 3.

]
(]

where Yi = zm(yi+1 - ay; - c) (mod M) for i = 1,2
and Py» P, are new integer variables. (We remark
that Lenstra's (1979) algorithm could take 8(nY)
time).

Now clearly if Z41 Zg 23 are the "mhidden
bits" of an LCG then they will form a solution to
The key
issue is whether or not there are any other

(2) with suitable values for Py p2.

solutions,
valid.

We define the set SM for which we know that
the solution is unique.

If there are none then our method is

Suppose that there is another solution (z%,

Zé. 25, P{. pé) to (2). Then putting ug =2y - 2f
for i = 1, 2, 3 we have
u, = au, (Mod M) (3
u3 z au2m+1 (Mod M)
gt <2 i=1,2,3

where we define (Mod M), as opposed to (mod M) to
be the least absolute value residue i.e. -M/2 ¢
y(Mod M) < M/2, We can assume without loss of
generality that u, > 0 (clearly if u, < 0 we

replace u1 by -u1. If u1 = 0 we find that u2 = u3
= 0 as :ui: < M. But then Py = P{ for 1 = 1,2
follows easily and our solutions are not
distinct.)

Thus if

By=(0¢<a <M1t 3x,0<x < 2™ such that
lalx (Mod M) < 271, 521,2)

and
SM=[0, 1, ...M-1}—BM

then we have



If a ¢ SM then there is at most one solution

to (2) and our algorithm finds it. (u)

Our next task is to bound the size of BM‘
For 0 ¢x <L =2 1et

B(x) =
L}.

Now

{0 < a < M-1:

(5)

as each a ¢ By is counted at least once in the sum
on the right hand side of (5).

Consider now a fixed x, 0 < x < L and assume
first that x and M are relatively prime. Let w =
x~! (Mod M).

Then putting y = ax (Mod M) and using a2x =

wyz (Mod M) we obtain

1B(x)} = :xw: (6)
where X = {-L <y < L: twy? (Mod M)} <L}

We now obtain a bound for the size of {Xw:
which will be used with (5) and (6) to bound :BM:.

Consider the function ¢: Xi ~=> 1 defined
by

oy, ¥5) = wy2 + ¥2) (Mod M) )

10 ¥p) = Wy  + v, .
Note that
e(yq, ¥ < 2L for yi, ¥5 € X0 (8)

Let now ¢ > 0 be an arbitrarily small

positive real number. We show that there exists

ac such that if }u} < 2L then

o7l <a_ 122 (9
\

e
W l¢ aLx e

tax(Mod M) i, :azx(Mod M) <

To see this consider a fixed (Yq0¥5) € ¢'1(u)

2

having the smallest value of ¥y o+ yg. Then (y{,

vy € 67 W)

if and only if

wyi® + y3%) = wiyZ 4 vd) (od M)
if and only if
y;z + yéz = yf + yg (Mod M)
if and only if
y%e + yéz = ¥y + yg + pM
for some integer p, 0 < p < P = |,(2L2 - y2 -

1
2
YZ)/MJ.

Now for non-negative integer n, let ¥(n) denote
the number of distinet integer solutions (x,y) to
the equation

x2+y2=n.

It follows that

5
TR C I S O I

0

(10)

p

Now it is known (Le Veque (1956) for example) that
for any ¢ > 0 there exists be such that y(n) <
bcne. It follows from (10) that (9) holds with a
= 2™+ ©
= .
It then follows from (8) and (9) that

X1 < (na L3212 (1

which completes the case for x and M relatively
prime.

If d=d(x) = ged(x,M)>1 we find that

*
IB(x)| = d(x) | {-L<y<L :
where M = M/d, L =

|ay2 (Mod M)| < L}|
[L/d| and §=(x/d)~ (Mod M).

0eB8X) > gaiMeBX

482

. t =0, - ‘dl'ﬁn



It follows from (11) that |B(x)| < d(x)
(Ha£L3+25/M)1/2 and hence that
L
Byl < r d(x)Tea L3*2e/m)1/2 (12)
€
X =1
<e W12
= e
where ¢ = 231/2.
€ € m+1
Substituting L = 2 and putting ¢ = 1/20

ﬂ/S) as stated.

yields EBMI = O(M
We note that if we are given slightly fewer

than n/2 bits i.e. iqni bits where o > 2/5 then

simply putting m = {(1=g)n{ in the above analysis

shows that our method works except on a set of a's

of size 0(M2~%¢/2*e) for any ( > 0.

We now consider the problem of testing for a ¢
This is again an integer program in a fixed

Thus a ¢ BM if and

BH’
number of variables.
there is a solution to

only if

1

in

x <L
=L {ax + pM <L
-L < a +pM<L

"N

Xy Pys Pp integer.

Extensions the problem naturally arises: what if
instead of half the bits we are only given a much
smaller fraction of them? Then, of course we may
require portions of more than 3 of the Xi's, but
will a fixed number depending only on 4 do? We
show that the answer is affirmative provided the
following number theory conjecture is true:

Corresponding to any fraction 4 ¢ (0,1) there
exists a natural number g and a fraction g§ ¢ (0,1)
such that the cardinality of the set B M defined
below is 0(M), u'

B : 0<a<M-1;3x,0 < x < M® such that

M= {a :
a? i
ta"x(Mod M)} £ M%, i = 1,2,...3}).

We have proved the conjecture when M is square
free, However the conjecture is open for general

483

We next consider the case where the constant c¢

in (0) is not known. As it turns out, we can
proceed in a similar manner to the above. This
time we need the first 3 numbers generated. Using

the decomposition (1) we will be looking for an
integer solution to

azy -z, + ¢ + Mp, = Y, (13)

az, - zZg +c+ Mp2 = Y2

az3 -zZy+c+ Mp3 = Y3

“M<e <M

2"z <" 1=1,2,3,4
where Yi = 2m(yi+1 - ayi) (mod M) for i = 1,2,3.
We show next that if we change the definition of
BH slightly by replacing 2m+1 by 2m+2 then

a ¢ Sy implies (13) has a unique solution (14)

Suppose (z{, zé, zi. zj, ', p{, pé. pé) is an
alternative solution. Put vy = Zq - zi for i =
1,2,3,4 and the ug = vy Vil for 1 = 1,2,3. It
follows that (3) holds with Pad replaced by 2m+2.

Finally the case when a and possibly M are also
unknown in addition to a fraction of the bits of

Xi, remains an interesting open problem.

The ideas used in this paper will yield an
algorithm for the case when M is odd and the
trailing half of the bits are given to us. (When
M is even these bits do not form a random sequence
- this can be seen from basic considerations.)

The sets BM' SM do not change.

We thank Rick Statman for
Blum and J.
Plumstead for bringing the problem to our

Acknowledgment
useful discussions and M.

attention.



References

M. Blum and S. Micali, "How to generate
cryptographically strong sequence of pseudo
random bits?" Proceedings of the 23rd IEEE
Symposium of the Foundations of Computer Science
(1982).

S. Cook, "An overview of computational complexity"
- 1982 ACM Turing Award lecture, Communications
of the ACM Vol. 26, No. 6 June (1983) pp.
400-408.

0. Goldreich, S. Goldwasser and S. Micali, "How to
construct random functions".

R. Kannan, "Improved algorithms for integer
programming and related lattice problems"™ 15th
Annual ACM symposium on theory of computing

(1983) pp. 193-206.

D. E. Knuth, "Seminumerical algorithms. The art
of computer programming" Vol. 2, Addison-Wesley
(1969).

D. E. Knuth, “"Deciphering a 1linear congruential
encryption® Technical Report no. 024800,
Stanford University (1980).

H. W. Lenstra, “"Integer programming with a fixed
number of variables® First announcement (1979)
To appear in Mathematics of Operations research.

W. J. LeVegne, "Topies in number theory,"
Addison-Wesley, Mass. (1956).

J. Plumstead, "Inferring a sequence generated by a
linear congruence" 23rd IEEE Symposium on the
Foundations of Computer Science (1982), pp.

153-159.

J. Reeds, "Cracking a random number generator"®
Cryptologia, Vol. 1, Jan (1977).

A. Shamir, %On the generation of cryptographically
strong pseudo random sequences" Seventh
International Colloquium on Automate, Languages
and Programming, (1980).

A. Yao, "Theory and applications of trapdoor
functions™ Proceedings of the 23rd IEEE Syposium
of the Foundations of Computer Science (1982),
pp L 80"91 .

484



