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We consider a random digraph D, 4(n) with vertex set {1, 2, .., n} in which each
vertex v independently chooses a random arcs entering v and § random arcs leaving
v. We compute the limiting probability that D, 4(n) is strongly connected as n tends
to infinity. This solves an open problem from [2]. © 1990 Academic Press, Inc.

1. INTRODUCTION

This paper is concerned with the connectivity of a particular model of a
random digraph. Let o, § be positive real constants. The random digraph
D, 4(n) is constructed as follows: it has vertex set V., = {1,2,..,n} and
each veV, randomly chooses 2 sets of vertices IN(v) and OUT(v) as
follows. For IN(v), choose x,, x,, ..., X . € V, independently of each other
and then with probability « — | & | choose a further random vertex in V.
OUT(v) is independently chosen in the same manner.

The arcs of D, g(n) are {(v, w): we OUT(v), ve V,}
v {(w,v):welIN(v),veV,}.

Fenner and Frieze [2] considered a class of digraphs D.(n) for fixed

117
0095-8956/90 $3.00

Copyright ¢ 1990 by Academic Press, Inc.
All rights of repreduction in any form reserved.



118 COOPER AND FRIEZE

positive integer k. D,(n) is closely related to D, (n). One of the results of
that paper is the following:

lim Pr(D,(n) is k-strongly connected) = 1 for k > 2.

(k-strongly connected means that one must remove at least k vertices
before the remaining digraph is no longer strongly connected. A digraph is
strongly connected if there is a directed path joining each pair of vertices.)

The case k=1 was left unresolved by that paper. The following theorem
includes this case.

Thus far we have described o,  as constants. In our theorem we will also
deal with the case where « say, is a function of » that tends to 1 as n tends
to infinity.

THEOREM 1. Let
(a) o=1—w/n where w =w(n)—> o then
lim Pr(D, g(n) is strongly connected)= 0.
(b) a=1—a/n, B=1—b/n for a,b=0 then
lim Pr(D, 4(n) is strongly connected) = (1 —e~')% e~ (a+®e,
(c) a=1—a/nfora>0,1<B<2 then

lim Pr(D, 4(n) is strongly connected) = e“’""(l —e P (1-2-B)e ")
n-—co
(d) a=1—a/nforaz0, $22 then
lim Pr(D, ,(n) is strongly connected)=e~“"'(1 — e~#).

(e) 1<a<2, f=2 then

lim Pr(D, 4(n) is strongly connected)=1—(2—a)e~~.
(f) 1<a, B<2, then

im Pr(D, g(n) is strongly connected)=(1—(2—a)e #)(1 —(2—B) e ).

We first prove Theorem 1 for the special case where o« =f=1, having
done this it will be easy to show how to obtain the complete result.
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The next section introduces connectivity blocking substructures and
computes the probability that one exists. Section 3 deals with the main
problem in showing that nothing else is likely to prevent strong connec-
tivity.

2. SMALL STRONG COMPONENTS

From now on let D denote the random digraph D, ,(n) and 4 denote
its arc-set. Let now OUT(v)= {out(v)} and IN(v)={in(v)}. Let
Aoue={(v, out(v)):ve V,} and let 4,, be defined similarly. Let D, be the
sub-digraph (V,, 4,,,) and let D, be defined similarly. For S< V, define

IN(S) = {in(v): ve S} and OUT(S) = {out(v): ve S}
N*(S)={w¢S:IveSst (v,w)eA}and
N (S)={w¢S:veSs.t (wv)eAd}.

The subgraph D,, constitutes a random functional digraph. The
properties of such digraphs are well established (see, e.g., Bollobas [1]).
The components are unicyclic and the directed edges of any component are
“directed towards” the unique cycle. Similar results obtain for D,,.

If D is not strongly connected then there exists ScV,, 1<|S|<n—1
such that N*(S)=N—(V,—-S)=.

Let C,, ,={C<=V,: {(v,0out(v)):veC} is a cycle of D} and let C;, be
defined similarly.

LEMMA 2.1. Suppose ScV,.

If N*(S)=( then 3Ce C,,, such that C< S.
If N~ (S)=( then 3Ce Cy, such that C< S.

Proof. We need only consider the case N*(S)=. If veS, the
unicyclic component of D, which contains v contains a unique cycle. As
N*(S)= & this cycle must be contained in S. |}

We now define cycle sets C.,,, Ci, as follows:
Cou={CeCou: Cnin(V,) =, ICI < /nflog n},
Cin={CeCyp: Crout(V,)= 3, |C| </nflog n},

Let C=C;,uC,,. We note that if g" # & then the digraph is not
strongly connected. For example if CeC,,, then N*(C)= as C is a
cycle in D, and Cnin(V,)= .



120 COOPER AND FRIEZE

We further define sets

Cou={CeCoy:3Sst.CS S, N*(S)= @ and |S| < /nflog n},
Cin={CeC;,:3Sst.CSS, N~(S)= and |S| < \/n/log n}.

Let C'=Cj,u Coy. We go on to show that almost every (a.e.) D has a
large strongly connected component and that in a.e. D, C'=C. Note that
Cc C always.

LEMMA 22. If D is not strongly connected then at least one of the
Sfollowing events occur:
(a) E,={3S:/nflogn<|S|<n2 and either N*(S)= or
N7(S) =g}
(b) E,={C'#C}
() Es={C#g}.

Proof. 1If D is not strongly connected there is a se set S, |S| <n/2 such
that N*(S)= or N~ (S)=(. If E, does not occur then assume w.l.o.g.
that N*(S)= and |SI<\/;/log n. By Lemma 2.1 S contains a cycle
Ce C.,,. Either CeC and E, occurs or Ce C'— € and E, occurs. ||

LeMMA 2.3. The limiting probabilities for the events in Lemma 2.2 are:
(a) lim,_ , Pr(E,)=0,
(b) lim,_, , Pr(E;)=0,
(¢) lim,_ o Pr(E)=1—(1—e"")2%

Proof. (a) We prove in the next section that for a.e. D, vertex 1 is
connected by directed paths to and from all but at most 4(log n)* vertices.

(b) To show that Pr(E;) »0 we count the expected number N of
cycles in C’-C. This satisfies

v 5 (DS (-5)

(2.1)

To see this, suppose S satisfies N*(S)=¢J and |S|=s. From S choose
a cycle C of size k contained in A,,. The probability of such a cycle is
(k — 1)!/n*. The remaining s — & vertices make their out choices in S and no
vertex outside S makes its in choice in S. As Ce C' — C at least one vertex
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ve S chooses in(v) from C. The case N~ (S)=F is covered by a similar
argument. Thus for large n

Lﬁ/lognJ Y X s—1 s—k
Ng2 Z (n)s (n_s)__ s
s

n" 2z (s—k)'

s=1 skO

L/nftogn | )
<3 3 = O((log n)~2).

s=1

Thus Pr(E,)—0.

(c) Let X=|Cyl+|Coul. We compute Pr(X=0). If C,eC,
C,eC,, then C,n C,= for if not Ace C, such that ¢ =inv(v) for some
ve ¥, which contradicts C,nin(V,)=F. Let E(X) be the rth factorial
moment of X. We show that

lim E(X)= (z log (i—l))

and so (see, e.g., Bollobas [1a]) X is asymptotically Poisson with mean
2log(e/(e—1)) and so Pr(X=0)— (1—e™")%

E.(X)—Zlo( >kz, Z e ZME,‘ (k,n k,)(s,:.,_f,s,)

Siplt A S=S

—k\""*/n— n—k i k.—1)! ! j_l!
() e

i
n j=1 M o B

where k,, .., k; are the sizes of i cycles from €. an s,,,, .., 5, are the sizes
of t—i cycles from C,,. As k;, s; are at most \/n/logn and ¢ is fixed, we
have for example

n* ? n n*
(1— z)s( <—2
i\ " ogm?) S\ky k) Stk

We thus replace the multinomial coefficients by (" %/(k,!---5,1))
(14 o0(1)) and then

EX=(+o) ¥ (1) T 5 L

i=0 k=i s=t—i ky,. 5,

=(1+o(1)) 20 (i)(log (ei 1))l
=(1+o0(1)) (2 log (ei;l))l- |
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Theorem 1 (for o= B = 1) follows immediately from Lemmas 2.2 and 2.3
since

Pr(E;) < Pr(D(n) is not strongly connected) < Pr(E; u E, U E;). (2.2)

If we suppress all loops in our digraph so that in(v) and out(v) are
chosen randomly from ¥, — {v} for each v we obtain a random digraph D’.

COROLLARY 1. lim,_,, Pr(D’ isstrongly connected)=((1—e~")e* ')e*™")2

Proof. 1If we suppress loops then the summation over the cyle sizes in
E(X)is from 2<k;, 5;< \/r_1/log A |

3. AN ALGORITHM

We must show that Pr(£,) > 0 in Lemma 2.2a. In order to do this we
consider the following sets:

X, ={jeV,: D contains a directed path from 1 to j}
X_={jeV,: Dcontains a directed path from jto 1}.

The main result of this section is

THEOREM 3.1. lim,_ ,, Pr(min{|X,|, |X_|} <n—2(logn)’)=0.

The proof of this theorem is based on the analysis of Algorithm
CONNECT, which attempts to construct a subset of X, of size at least
n—2(logn)’n in the following manner. During Pass j of the algorithm
there are two Steps, 1 and 2. Step 1 is an iterative process whereby at itera-
tion i the set V(i — 1, j) of vertices not so far identified as belonging to X,
is examined to determine those ve V(i — 1, j) with in(v) ¢ V(i — 1, j). These
can be added to X, . However, to simplify the proof, only a subset S(i, j)
of a specific size is chosen. This process is continued until the total number
of vertices acquired during the current stage is sufficiently large. This
occurs at Step i*. The algorithm then goes on to Step 2 where it takes T()
the set of vertices acquired at Step 1 on this Pass j, and finds the vertices
ve V(i¥, jynout(T(j)). A fixed size subset S(0, j+ 1) of these vertices is
then used to start Step 1 at the next Pass(j+ 1) of the algorithm.

We now define the constants required by Algorithm CONNECT and in
its subsequent analysis.

3.2. Notation

The algorithm has three Passes, j=1,2, 3. We let s(i, j)=|S(i, j)| and
v(i, j)=V(i, j)l for j=1,2,3 and i >0.
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In general v(i—1, j)=v(i, j)+s(i, j). When i=0 this has no meaning
unless we define v(—1, j) to be v(0, j) + (0, j), which we do.

At each Pass the size of the set of vertices on which it starts Step 1 will
be required to be

s(0,1)= ['\/r_z/log n, 5(0,2)=[n"7, 5(0,3)=[n/107.  (3.1a)

(0, j) is the unacquired vertex set at the start of Step 1, Pass j. Thus

v(0,1)=n—-s5(0,1)
v(0,2)=n—(s(0, 1)+, + (0, 2)) (3.1b)
v(0, 3)=n—(s(0, 1)+, + s(0, 2) + L, + 5(0, 3)),

where the /; are the stopping sizes for vertex acquisition at Step 1 of Pass j
and are given by

L=n"™], l,=[4n], I;=0(0,3)—[21log*n7.

¢; and ¢; are (respectively) constants relating to probablllty inequalities and
bounds on the number of iterations at Pass j and are given by

&, =log n/n*, 1, =[1/e]
&2 =5(0, 2)/n, n=[1/e;1

11 v(—1,3) . _|'4(logn—3loglogn)‘|
=3 °g( v(0, 3) ) 37| 3log(o(—1, 3))/0(0, 3)

and hence ¢; > 1/100 log n.

3.3. Algorithm CONNECT
begin

Imnahse
:= {1, out(1), out?(1), ..., out" v*"s"Y(1)}
|f |M| <[ /nflog n7 then fail
else S(0,1):=M; ¥(0,1):=V,—S(0,1); T(1):=&
Passes j=1,2,3:
for j:=1,2,3 do
begin
Step 1:
i:=0
while [T(j)| </; do
begin
i=i+1
P(i, j):={ve V(i—1, j):in(v) ¢ V(i—1, j)}
Choose S(i, j) € P(i, j) where
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for j=1,2

=] (1 =gy =L Doti=1))
|S(t,1)l—[(1 &) v(i—2, j) —l
for j=3

e o(i—1,3)?
ISG, 3)] =o(i -1, 3)—[(‘ ) .,(i—z,s)J

else fail {i.e. if | P(i, j)| is too small}
if |S(i, N <= |T()| then S :=S(i, j) else S is a random (/,— [T(j)))-
subset of S(/, ;)
T(j):=T()uS
Vi, j) = V(i—1, j)—§
end
if j=3 then stop else
begin
Step 2:
=i
S’ := {ve V(i;*, j): 3x e T(j) such that v=out(x)}
if |8’ <s(0, j+ 1) then fail else
TG+ 1)=g
(O, j+ 1) :=V(i#, j)— S(0, j+ 1) where S(0, j+ 1) is a randomly chosen s(0, j)-subset
of 8
end
end
end

It should be observed that if the algorithms does not fail then the set
sizes s(i, j) and v(i, j) are not in fact random. They are the values generated
by the following recurrence relations:
for j=1,2,3 50, j), v(0, ) and v(—1, j)=s(0, j)+ v(0, j) are defined by
(3.1) and then

)S(i— Lv-1))

i—2,)) —‘ for j=1,2andi>1, (3.2a)

s(i, j)= [(l —g

i—1, 3)2 ,
s(i,3)=v(i,3)—[(l+s,)HJ for i1, (3.2b)
oli, )=v(i—1, j)—s(, j) for izl. (3.2¢)

From now on s and v refer explicitly to the values generated by these
recurrences. Thus for i sufficiently large, CONNECT will not produce a set
S(i, j) of size s(i, j). The next lemma gives the salient properties of these
sequences.

Lemma 34. (a) For0<i<tjandj=1,2,

5612 50.) (1 -6) 22 (33 )
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(b) ForO0<i<tyandj=1,2,

5 )0l ) _

g i—1,J) = nY, (344, j)

where 6, =.02 and 8, = .15.
(c) (i, 3)=2(log n)?® implies e5(v(i, 3)*/v(i — 1, 3)) > log n/6250.
(d) v(i, 3)<v(0, 3)(1 +&3)* 2(v(0, 3)/v(—1, 3))' for i =0.
(€) XV.,s(i, )y=1 for j=1,2, and v(t5, 3) < 2(log n)*.
Proof. (a)and (b). Fix j=1 or 2. We show by induction on i that for
i=0 we have
s(i, j) < s(0, j)
U(l— 19j)\v(_19j).
This is easy to check for i=0, and inductively assume it is true for some
i20. Then

(3.34, j), (3.44, j), and

s+ 1,j)=[(1 —¢) s(i, j) vl j)'|<S(i, Do) o, s ) ol J)

U(l—l,j) = U(l—l,j) / v(l_laj)
And so
s+ 1)) __stij) __s(0,))
U(I,J) 0(1_19.1) U(—I,j)
and
, , s(i, j) v(i, j) . L o(i—1, j)—s(, j)
Lz1—-¢g)—————=(1-¢;)s(i, - -
si+1, /)2 (1—¢) wi—1,J) (1—¢)s(i, j) i—1.7)
. 0’ j) i+1
? —p. i+1 _L(_ .
01 =e) (v(—l,j))
Furthermore,
s(i, 1) o(i, 1) _ . Jn 2 log n\["*iesn1+1
i1, 1) >StFL D2 (' e )
Ja
2—
2e*logn
and then

eis(i+ 1, 1) = n* log n/(2¢?).
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Similarly

0 2) l/e21+1
. <(1—g a1+ _ 30 ”
s(i+1,2)<(1—¢gy) (1 'n—O(n)) "

&, =5(0, 2)/n and so
s(i+1,2)=n"e"%2
giving
e2s(i+1,2)=n'% %2,

which completes the induction.

(c) We first observe that v(i+1,3)=](1+4¢&3)(v(i 3)2w(i—1,3))]
for i 20 and hence

o(i+1,3)_ v 3) (e3v(i,3)2
v(i,3) T w(i-1,3) \w(i-1,3)

- 1) v(i, 3)~ " (3.5)

We show now by induction that v(i, 3) > 2(log n)? implies

0(i3) v(0, 3)
v(i—1,3)" v(—1,3)

4
Z< .
. (36)

This is true when i=0 and assume it true for some i >0. From (3.5) we
have

v(i+1,3)_ v(0,3) (830(1‘, 3) (0, 3) ) a1

= —1 X . .
053) S o(—13) T\ o(-13) o(i-3) (37)
Now if v(i, 3) = v(i+ 1, 3) > 2(log n)* then &;v(i, 3) > (log n)%/50. Hence

(3.7) implies (3.6) for i+ 1 completing the induction.
So (3.6) implies

, (i 3)? >ﬂ - >logn
&oi-1.3)> 5503255

(d) We first show by induction on i that for i>0

v(0, 3)

W )< +e) o s

o(i—1,3). (3.8)
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This is clearly true for i =0 and inductively assume it is true for some i > 0.
Then

. v(i, 3)°
1,3)<g _—
v(i+1,3) (1+83)v(i—1,3)
implying

. i1 v0,3) .
v(i+1,3)<(1+&5)' ! ( 13) v(i, 3)

as required. We obtain (d) by iterating (3.8).

() Forj=1,2and ¢t>1 we use (a) to show

S s j)zat i)=Y (1-s) (J ”)(0)

i=1 i=1

ey SO0 (L 0)) Y
=( mﬂ&ﬂ+@d&ﬂ( ( ’(( ID))

Then a(t,, 1)=n"*/2logn)? and a(t,,2)=(1—0(1))((1 —e~2)/2)n> 4n.
For j=3 we use (d) to show

0(13, 3) < D(O, 3) ecm/Z(ezy;)lglzelglog(v(o,3)/v(- 1,3))

= U(O, 3) e —lo8n + 3loglogn + log(s(— 1,3)/v(0,3))/4 < 2(]0g n)S. l

The following lemma is easily derivable from Theorem 1 of Hoeffding [3]
and is used to bound probabilities:

LEMMA 3.5. Let X;, i=1, .., m be independent random variables taking
values in {0, 1] and let E(_T'., X;)=mu. Then for e€ (0, 1)

Pr(Z X;<(1 —e)m;z)ge—(c’mmu
i=1

(Z X;z(1+¢) mu)<e“”3"""
We can prove

LEMMA 3.6. Given i successful iterations of Step 1 of Algorithm CON-
NECT during Pass j
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(a) forj=1,2
Pr (IS(i+ 1)< [(l —¢) v(z‘,'j) S(l,jrl) < o= GG sthoti=1.72)
v(i—1,))
(b) forj=3

; 2
Pr (I V(l'l‘ 1, 3)| ?l-(l +83) vv(l, 3)

< o~ (/3N 3P eli ~ 1,3),
(i—-1,3)

Proof. (a) Suppose we have just successfully completed the ith
iteration of Step 1 at Passj. Let R(i, j)= P(i, j)— S(i, j) where P(i, j)=
{veV(i—1, ):inv(v)¢ V(i—1, j)} as defined in CONNECT and thus

R, )={veV(i—1,j):inv(v) ¢ V(i—1, ), v¢ S3, j)}
is the set of vertices found to be attached but not selected at the ith
iteration. For ve V(i, j) define a random variable Z, as follows
Z,=1 ifin(v)¢ V(i j)
Z,=0 otherwise.
If veR(i,j) then Pr(Z,=1)=1. If ve V(i j)— (i, j) then Pr(Z,=1)=

s(i, j)/v(i—1, j) as in(v) can only be chosen from V(i—1, j)=V(i, j)u
S(i, j) in this case. Now consider a random variable X, such that

X,=Z, ve Vi, j)— R(i, j)

s(i, J)

X, =1 with probability i-1.7)

for veR(, j).

Certainly 3, c v jy Zo 2 Zye viijy Xo» but by Lemma 3.5 we have

v(i»j)S(i,j)) s
P <(l—-¢g)—————— )< (£5/2)(0(i, j)si, ))fvti — 1, j)) :
' (veg(i.j) Xv ( 8]) U(l— ],]) se (3 9)

and paft (a) follows.

(b) Let U,=1-Z,, and let Y,=1-X, then X, 4y 7Y,2
S .evwn U, and the Y, satisfy the conditions of Lemma 3.5 and so

Pr( Y Y>(l+a)l)(i’—?j)z)se“é”""“‘”z/"“‘"3” (3.10)
ve V(i,3) ’ ? ”(i_1’3) .

and the result follows. |
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LemMma 3.7. Algorithm CONNECT terminates successfully on a.e. D.

Proof. Initialize. We form the sequence of out vertices starting from
vertex 1, given by (1, out(1), out(out(1)), ..., out*(1)).
The probability that the vertices are distinct up to and including the kth

iteration is at least 1 —k?%/n. Thus if k=|'\/;/log n] we will complete
Initialize successfully with probability at least 1 —2/log n.

Pass 1. Step 1. By Lemma 3.4(b) and Lemma 2.6(a)

Pr(Step 1 terminates unsuccessfully at some iteration ¢ <¢,)
<t e " =o(1).
By Lemma 3.4(e) the stopping size of T(1) in Step 1 has been achieved by
iteration ¢,.
Pass 1. Step 2. The expected number of vertices xe T(1) which
choose out(x) in S(0, 1)u T(1) is

ITCD)IASO, DI +17T(1)]
n

<2n%, (3.11)

Let M={xeT(1):out(x)e V(i¥, 1)} and M,={xeM:Iye M — {x} st.
out( y)=out(x)}. The Markov inequality applied to the expectation in
(3.11) implies Pr(JM|>n"*/2)=1—0(1). But for xe T(1) Pr(xe M,)<
[T(1)|/n and so E(|M,|)<|T(1)|*/n<2n*. Thus Pr(IMllz\/;)=o(1)
and |out(M)| = |M — M| = n"3/3 with probability 1 —o(1).

Pass 2. Step 1. As before,

Pr(Step 1 terminates unsuccessfully at iteration 1 < ¢,) < tze‘”"s/2

which tends to zero as required and thus we achieve the stopping size for
T(2).

Pass 2. Step 2. Let us condition on the set 7(2) and let

Z = |{ve V(i#, 2): there does not exist x e T(2) s.t. out(x) =v}|

then Z is a random variable counting the number of vertices ve V(i¥, 2)
which are not attached to an out edge of 7(2). Let ¢(Z) be the number of
k-subsets of such vertices we can form, then ¢(m)=max{(%), 0} and thus,
as ¢(Z) is nonnegative and monotone nondecreasing we can apply the
generalized Markov inequality

¢(m) Pr(Z>m|T(2))< E(4(2)1 T(2))
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Vi, 2) (n—k T
k n
(%)
k
Putting |T(2)| =[.4n7, |V(i¥, 2)| =.6n— o(n), m=.45n and k =log n gives

Pr(Z = m)=o(1), and thus with probability 1 —o(1) we can choose [n/107]
vertices as required.

giving

Pr(Z=2m|T(2))< for m2k.

Pass 3. Step 1. We see from Lemma 3.4(c),(d), and (e) and
Lemma 3.6(b) that

Pr(Pass 3 Step 1 terminates unsuccessfully) < t;e ~'°8"/18750 = o(1),

and thus we conclude that with probability 1 —o(1) the algorithm can be
successfully completed. ||

Proof of Theorem 3.1. We have thus shown that X', is almost always
sufficiently large. That X _ is almost always sufficiently large follows by

symmetry. [}

4. PROOF OF THEOREM 1

We observe that (2.2) continues to hold in its original form except in the
case where « or f is less than 1. In this case further complications arise as
Lemma 2.1 no longer holds and we can not rely on the components of the
in and out subdigraphs being unicyclic, as some may now lack cycles
altogether. To prove the theorem in the general case we consider the events
in Lemma 2.2 but now define

Ey=E; U Ey,,
where
E; = {é¢g}

Ey,={3v:IN(v)= and v¢ OUT(V,)}
U {3v: OUT(v) = & and v ¢ IN(V,)}
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and define a further event E,=E,, u E,, by

Eqy= {Bv: IN(v) = & but ve OUT(V,)

andveSst. N (S)=, |SI < \/;}

log n

Eyp= {Elv: OUT(v)= but veIN(V,)

and ve Sst. N*(S)=, |S| sﬁ}
logn
and generalize (2.2) to
Pr(E;) < Pr(D, 4(n) is not strongly connected)
QPI‘(EluEZUE}UE.;). (4.1)

Proof of (a). Assume a=1—ow/n and let X={veV,:IN(v)= and
v¢ OUT(V,)}. Now

E(|Xl)=n%(l—-’l;)wj”(l B- L“) ~we™

and

n n

E(IX1(1X] - 1)) = n(n - 1)(%)2 (1 -3)“”" (1-2=Ley

~wle— 2P,
Thus the Chebycheff inequality can be used to show Pr(X # )~ 1 and
(a) follows. For the remainder of the proof we first observe that (lengthy)
calculations similar to those of Lemma 2.3(c) show that Pr(E,) tends to the
claimed limits. Thus to prove the theorem it suffices to prove that
Pr(E, v E,u E,) — 0. We deal with these in reverse order.

Proof that Pr(E,)— 0. We show that Pr(E,)—0 in the case where
o, B<1, and note that the proof follows a fortiori for the other cases.
Consider E,,

S O
x k(k — 1)%(§+(1 +“) ﬁ)knl.
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To see this let |S|=4k in the definition of E,, then (b/n+(1—b/n)
(1 —k/n))y"~* accounts for S~ OUT(V,— S)= @&, k(k — 1)(a/n*) accounts
for a pair v,weS with IN(v)= and out(w)=v and finally (a/n+
(1 — afn)(k/n))*~" accounts for IN(s— {v}) = S. Thus

\/'_'/108” k 2 k—1
PI'(E“)Q Z (E) e'kk_za(’_c.) ea+o(l)

s \Kk n® \n
ﬁ/lognk

= ge®+°) Z n
k=2 1

=o(1)

A similar result holds for E,, and we conclude that Pr(E,) — 0 as required.

Proof that Pr(E,)—0. Toashow Pr(E;) -0 we count the expected
number N;, of cycles in Cj, — C;,. This satisfies

Nin sL\/fgf"J él (:)(IS() (k—1)! (%)"(%)Luu_k,
g ((1 —(x—Lal)) (1 - %))J_k(l _%)L/U(n-s)

x(u—wﬁ—LﬂJ»E)“SEﬁ.

n

This looks more complex than the expression in (2.1) but if we consider
the cases a=1—a/n, a=1, B=1—b/n, f=1 separately and ignore
(1 —(x—Lal)(1 —s/n))* =% when a1 and (1—(B8—_BJ)s/n))"~° when
B =1 then the calculations are much as before and we fond that N;, —0.

a

A similar result holds for C,,, — C,,, and Pr(E,)— 0 as required.

Proof that Pr(E,)—»0. We now have to indicate why Pr(E,) - 0. We
need only consider case (b) for the more edges we have, the more likely
CONNECT is to succeed.

Consider Lemma 3.6(a) and the definition of Z,. If the “otherwise” case
includes IN(v) = & then

TR L)) _a
Priz,= =5 (15)

The effect of this in (3.9) is to replace the s} term in the RHS by
(¢;—a/n)*/(1 —a/n)? and is negligible.
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In Lemma 3.6(b) we now have

o(i, 3) + 2 5(i, 3)
n

Pr(Yv=l)=v—(l_lT

The effect of this on (3.10) is to replace the &3 terms in the RHS by

s,v(i,3)—§s(i,3) 2

2
>e§ (1 —%)
o(i, 3)+ss(i, 3) 25(log n)

which is again negligible.

Consider now Lemma 3.7 and in particular the effect of the changes on
the various paragraphs of Algorithm CONNECT.
Initialise. The probability that we hit a vertex v with OUT(v)=J is at
most ka/n — 0.

Pass 1. Step 1. We have shown that (3.9) is only weakened in an
insignificant manner.

Pass 1. Step 2. (3.11) holds a fortiori, and also Pr(|M,| = \/;)= o(1)
a fortiori. Since E(|{v: OUT(v) = & }|) = a we also have Pr(|M| =n"/2)=
1 —o(1) and the proof goes through.

Pass 2. Step 1. As for Pass 1. Step 1.

Pass 2. Step 2. Put m=.45n—logn to handle the vertices with
OUT(v)=.

Pass 3. Step 1. We have shown that (3.10) is only weakened in an
insignificant manner.

Thus we have shown that Pr(E, u E, U E;) =0 as required in the general
case and applying this to (4.1) completes the proof of Theorem 1. |
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