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We consider the size of the largest induced tree in random graphs, random
regular graphs and random regular digraphs where the average degree is constant.
In all cases we show that with probability | —o(1), such graphs have induced trees
of size order n. In particular, the first result confirms a conjecture of Erdos and
Palka (Discrete Math. 46 (1983), 145-150). ¢ 1987 Academic Press, Inc.

I. INTRODUCTION

This paper is concerned with the order of the largest induced tree in
various models of random graphs (an induced tree being a vertex induced
subgraph which is a tree). Previous research has concentrated on the ran-
dom graph G, , which has vertices V', = {1, 2,.., n} and each of the N = (4)
possible edges are included independently with probability p=p(n) and
excluded with probability g=1—p.

For a graph G let 7(() denote the order of its largest induced tree. Erdds
and Palka [6] showed that if p is constant then

T(Gn.,u] 2
logn  log(l/q)

with probability 1 as # — co. See also Marchetti-Spaccemela and Protasi
[107] and Palka and Rucinski [11].

It was conjectured in [6] that if p=c¢/n, ¢ constant, ¢>1, then there
exists ¢(c) >0, independent of n, such that

(G, =zdlc)n a.s.
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(A property =, will be held to hold almost surely (as.) if
lim, , ., Pr(n,)=1). We give an outline proof of this conjecture plus
detailed proofs of two related results. We prove these by analysing the per-
formance of a simple algorithm. Our current estimate for the largest
possible value of ¢(c) is rather weak. We state what we have proved as

THEOREM 1.1. If p=c/n, ¢ constant, ¢ > 1, then

1(G,,)=c *min{\/e—1,4}n  as.

One of the referees pointed out that Fernandes-de-la-Vega [7] has
independently proved this conjecture. He has shown that as. ©1(G,,)=>a.n
where «,. is the least positive root of cx =log(1+ ¢2x). This gives a stronger
result than Theorem 1.1 as stated. For this reason we only give an outline
of our proof of Theorem 1.1. (The reader may also be interested to learn
that in [8] we have been able to show that G, , a.s. contains an induced
cycle of length B(c)n when p=c/n, ¢ a large enough constant, and §(c)>0
independent of n.)

We can also analyze the performance of or algorithm on other “sparse”
random graphs. In particular we consider random regular graphs and
digraphs.

Let Z(r, n) denote the set of r-regular graphs with vertex set V,,. We turn
A(r,n) into a probability space by giving each graph the probability
1/|2(r, n)|. Let RG(r, n) denote a random graph chosen from %(r, n). Our
second result is

THEOREM 1.2. Let r >3 be constant. Then

©(RG(r, m) > (1 = 0(1) 50 )(l—(r—Z)log,,%) as.

(the o(1) term tends to zero as n tends to oo, naturally).

We shall also consider random digraphs of constant outdegree. Thus let
9(r, n) denote the set of digraphs of regular outdegree r and vertex set V,,.
We turn 92(r, n) into a probability space by giving each digraph the
probability 1/|2(r, n)|. Let D(r, n) denote a random graph chosen from
9(r, n). Our final result is

THEOREM 1.3. Let r =2 be constant. Then

r* ,.Sr*z
©o(D(r,n))=(1— o(l))( 1)( r+l)n a.s.
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where r* is the smallest root of

2
212 _rx
rx=(1 rx)(r r+1)'

(Note that r* <r=2)

Note that the tree found in Theorem 1.3 is an arborescence. We shall
prove our theorems in the order 1.2, 1.3, 1.1 (outline only).

2. THE BAsiC ALGORITHM

We describe an algorithm TF for finding an induced tree in a graph
G =(V,, E). At a general stage we will have a set of vertices T and a subset
L<=T. The set T— L will be known to induce a tree in G. The vertices in L
are unprocessed leaves of a larger tree defined on T. This larger tree may
not be vertex induced. This lack of knowledge comes from not having yet
explored all the edges incident with vertices in L.

In order to avoid some clumsy statements about the initial position, we
add a vertex 0 and the edge {0, 1} and start with T={0,1} and L= {1}.
The vertices V', — T are partitioned into 2 sets, F and B. The set of free ver-
tices F have not yet been encountered by TF and the set of bad vertices B
have been permanently excluded from T. Initially F={2,3,.,n} and
B=g.

The general step of the algorithm is to choose ve L and examine
its incident edges using the procedure PROCESS(v). Let E(v)=
{eeE:vee}={e;={v,v;}:i=1,2,.,d(v)}, where d(v) is the degree of v in
G. Because we are using the model of Bollobas [1] to examine regular
graphs we will need to allow the existence of loops and multiple edges.

By construction there will be a unique we T— L such that {v,w}eE.
Let w be denoted by p(v) and assume that v, =p(v). PROCESS(v)
examines the edges e,, es,..., e,(v). We use 2 versions of PROCESS:

OPTION | (Regular graphs only)

Jor i=2 to d(v) do

begin
ifvieFthen T:=T+v;; L:=L+v,;; F:=F—v;; p(v;):=v
else ifv,e L then T:=T—v;; L:=L—v;; B:=B+v;
{Remark: observe that we do nothing if v;e B+v.}

end,

L:=L—v.

(Notation: X+a=Xu {a}, X—a=X-{a})
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OPTION 2 (Regular digraphs and G, )
if L {03, 0350y Vyoy} # D then T:=T—v; L:=L—v; B:=B+v
else for i=2 to d(v) do
if v,€ F then begin T:=T+v;; L:=L+v;; F:=F—v; p(v;) :=v end,
L:=L—v.

The 2 options differ in which vertex is deleted when we discover an edge
{v, v;} where v,e L.

ALGORITHM TF.

begin
T:={0,1}; L:={1}; F:={2,3,.,n}; B:=; p(1):=0;
while L # & do
begin

choose ve L; PROCESS(v)

end

end

The following lemma is easy to prove, but it is important that we check
its truth.

LEmMMA 2.1.  Prior to each execution of PROCESS

(@) (T—L)n{vy, 03, Uy} = -

(b) H=(T, E;) is a tree, where E;={(v, p(v)):ve T—0}.
(¢) T—(L+0)is an induced tree of G.

(d) vel implies v is a leaf of H.

Proof. (a) holds because if w=wv;e T— L then either
w # p(v): PROCESS(w) would have put v into B—contradiction

or

w = p(v): PROCESS(w) would first have put v into L and then into B
when a second edge {v, w} was found—contradiction.

(Note that we T— L - PROCESS(w) has already een executed.) We have
only to check that the truth of the remaining statements is unaflected by an
execution of PROCESS.

OPTION 1. We consider the possibilities for v;. It should be clear that
(b) — (d) continue to hold in all cases:
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v;€ F: H grows by the addition of leaf v,e L. T— L is unchanged.
v;€ B+ v: nothing changes.

v;€ L: since v; is a leaf of H we can just delete it. T— L is unchanged.

At the end of PROCESS(v) we put v into T— L. At this stage v is a leaf

of the tree induced by T— L because it was a leaf of H before execution of
process and no new vertices have been added to T— L other than v.

OPTION 2. If L {v,, 03,0y Uy} % & We just delete v from H. This
is justified because v is a leaf of H at this stage. Otherwise we just add the
neighbors of v in F to L as leaves of H. Putting v into T— L at the end does
not affect (b)—(d) by the same argument as in OPTION 1.

3. RaANDOM REGULAR GRAPHS

Let 6, 4 be integer constants satisfying 3<d< 4. Let d=d,d,---d,
satisfy 6 <d,<d fori=1,2,.,n

Let 4(d) denote the set of simple graphs with vertex set V,= {1, 2,.., n}
satisfying d(i) = d;. Thus graphs in %(d) have no loops or multiple edges.
Assume that d is graphic, i.e., ¥(d) # J. We turn %(d) into a probability
space by giving all members of #%(d) the same probability 1/|%(d)|.
Theorem 1.2 follows from Lemma 3.1 when we take =4 =r.

LemMMa 3.1. Let G be chosen at random from %(d). Then
. nd 4—1
21— 1 —=(4- — =
”anL Pr(z(G)) = (1 0(1))2(A— l)(l (4—2)log, A—2) 1
where nd=d,+d,+ -+~ +d,.
Proof. In order to study %(d) we consider the model defined in
Bollobas [1]. Let D, D,,.., D, be disjoint sets with |D,| =d; and set

D=

i

D, and 2a=|D|=nd.

=

A configuration C is a partition of D into a pairs, the edges of C. Let @ be
the set of all N(a)=(2a)! 2 “/a! configurations. Turn @ into a probability
space by giving all members of @ the same probability. For Ce @ let ¢(C)
be the multi-graph with vertex set V, in which i is joined to j whenever C
has an edge with one end-vertex in D; and the other in D;. Clearly
4(d)c ¢(P) and

16-(G) = [] 4!

i=1

for every Ge %4(d).
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Let Q be a property of the graphs in %(d) and let Q* be a property of
the configurations in @. Suppose these properties are such that for G € 4(d)
and Ce ¢~ '(G) the configuration C has Q* if and ony if G has Q. All we
shall need from [1] is that if almost every C has Q* then almost every G
has Q.

We shall thus be able to prove the lemma is we can show that TF
applied to a multigraph ¢(C), C chosen randomly from &, almost surely
finds an induced tree of the given size.

The tree produced by TF can contain loops, but will not have multiple
edges. This is no problem, because then by the above, TF a.s. works well
on G(d) where there are no loops.

It is important to realize that we can sample uniformly from & as
follows: Let x, be chosen in any way from D and y, be chosen uniformly
at random from D— {x,}. Having chosen pairs {x,,y,}, {x2, ¥a}ss
{xi> v}, let X=D—{x,, yy, X2, Xypuus Xz» ¥ }- Let x, ., be chosen in any
way from x and then let y,,, be chosen uniformly at random from
X — {x .1} Repeat the whole process a times to produce C.

To prove the lemma we shall apply algorithm TF and construct C in
tandem. At the general point in the algorithm let D,={xeD,:x has
not yet been paired in the construction of C} and for X<V, let
Dy =Y ,cx|D,|. We shall now represent TF as algorithm TF1. We will add
statements updating certain parameters 1, f; b, I, m. The meanings of these
parameters are

t=|T|, f=D}' b=D), [=D);, and misaniterationcount. (3.1)

ALGORITHM TF1.

begin
T:={0,1}; L:={1}; F:={2,3,..,n}; B:=;
t:=1;1:=dQ1); f:=d2)+d3)+ --- +d(n); b:=0;
p(1):=0; m:=0;
while L # & do

choose ve L; PROCESS(v)

end.

procedure PROCESS(v)

begin
let E(v)={{v,v;}:i=1,2,.,d(v)} where v, =p(v);
assume that if there are A loops at vertex v then v;,=v for i 2 d(v)—
20+ 1;
k:=dv)—1;

i=1
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LOOP: repeat
m:=m+1;,i:=i+1;

case of

(a) v;eF: T:=T+v;L:=L+v; Fi=F—v;
t:=t41; 1:=14+dv;,)-2; f:=f—dv,);
p(vi):=v;k:=k—l.

(b) v,;eL—{v}:T:=T—v;; :=L—v;; B:=B+v;;
t:=t—-1; I—I d;); b:=b+dv;)—
k:=k-1.

(c) v;eB: l:=l-1;b:=b—-1;k:=k—1.

(d) v,=uv: l=1-2;k:=k=2;i:=i+1.

end
untilk =0;

L:=L-{v}

end.

When we come to execute PROCESS(v) we will find that one element x
of D, has been paired with an element of D, but the elements in D, — {x}
are as yet unpaired. In an arbitrary execution of the LOOP there will be &
elements of D, which have not been paired. We choose one, say y. We then
randomly choose z from all the unpaired elements of D and pair it with y
to make an edge of C and hence ¢(C). Suppose z€ D,.. We then execute
cases (a), (b), (c), (d) according as we F, L— {v}, B, {v}.

We claim (see (3.1)) and the reader can easily verify by induction on m
that the choices for z divide into

fchoices such that we F.
[ — 1 choices such that we L, k — 1 of which are
such that w=v.
b choices such that we B.
We first discuss the probability that TF halts quickly with L = &, which
is equivalent to /=0.

Let E,, denote the event: case (a) occurs at the mth execution of LOOP.
Let X,, be the random variable defined by

0—2 if E,, occurs,
X”l = :
-0 otherwise.

We claim that

when TF halts, X, +X,+ -+ X, <0. (3.2)



188 FRIEZE AND JACKSON

To see this let a, B, 7, 4 denote the number of executions of cases (a), (b),
(c), (d) before termination. Let P = {v: v =v, in some execution of case (a)}
and Q = {v: v=v, in some execution of case (b)}. Note that Q < P. Since
/=0 on termination

y+24+ Y dv)= Y dv)-2a
reQ Y
Thus
y+2i42a= Y dv)=da—p).
veP Q

Hence

of+y+4)=2(6-2)a
and (3.2) follows. Now

Pr(E,)=fI(f+1+b—1).

It is easy to check, by induction on m, that b+ /< (m+1)(4—2)+2
and f2 nd — (m+ 1) 4 throughout. Thus

nd—(m+1)4

Pr(En) 2= =1

regardless of the history of the
algorithm up to this point.  (3.3)

Thus if {Y,,} is a set of independent random variables satisfying

_ _hd—(m+1)4
Pr(¥,=9-2)= nd—2m—1"

_ _(4=2)m+1
Pr(Y,,=—0)= nd—2m—-1"

then
Pr(Y\+ Y+ -« +Y,<0)2Pr(X,+ X, + - + X, <0) for all m.
(3.4)
We note first that
(A4=2)n*?+n'?
nd—2n'”+1
=o(l).

Pr(@m:1<m<n'?  and Y,=—-98)<

(3.5)
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Now let
Up=E(Y,)= ("d_""')(i;_z;; A= (| Lol),  m<nds3,
and
Uu,= i u,,.
i=1

It follows from Theorem 2 of Héeffding [9] (stated as Lemma 3.2 below)
that

Pr(Y,+ Yot - + ¥, <(1—£) U,)Se “Va2mo =17 (3.6)

for any ¢, 0<e< 1.
Now for m large, we can write

x4)(6—2)—4(4—- 2)xd
nd—2x o

U= (1401 [ =

m(AE—2)+5(4—2) nd(d—1)(4—2
=(1+o(1))fo<( );( )_n(nd—)(Zx ))dx

=(1+o(|))(d(5—2)+6(d—Z)m_nd(é—l)(A—-Z)lo ( nd ))

2 2 nd—2m
=(1+o0(1)) Y(m) say. (3.7)
We shall see later on that we will need to have shown that

m almost surely reaches the value m* =[ nd/2(4 — 1) (3.8)

This will follow from (3.4) and (3.6) if we can show that y(m)*/m is suf-
ficiently large for n'> <m < m*. We first note that

m< 6nd implies n/z(m)?m(é—2—206d), 0<1

1-20 2

This follows on using the inequality log.(l+x)<x. By choosing
0=0,=141+264) we obtain

Y(m)=m(d—5/2) if m<Oynd. (3.9)
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Now y’(m) decreases monotonically for 0 <m < nd/2 and so ¥ is concave
in this range. We can thus concentrate on estimating y/(m*),

46-2)+84-2) (-1)N4-2)  (4-1
44-1) 2 °g"(4-2))
= (1 +0(1)) A(8, 4) nd.

w(m*)=(l+o(1))nd(

The reader can easily check that A(3,3), A(3,4), A(4,4) are all strictly
positive. We can thus assume 4>5. We then use log(l1+x)<
x—x%2+x%*3 for 0<x<1 to obtain

4(4—1)A(6,4)= A(6—2)+0(4—-2)

! 1
—2(5—1)(4—1)(1—2(4_2)+3(A_2)2)

1 1
=——2+2(5—l)(d—l)(z(d_z)_3(d—2)2)

1 2
4-2 3(4-2)?

=2(4-4)/3(4-2)~

2_24.2(4_])( ) as 023

Thus, using (3.9), we can write

U,zpd,ym  n'’<m<m*.

where pu(8, 4)>0. Then putting e=n""" in (3.6) yields (3.8).

Given (3.5) we concentrate on the growth of +=|T| until m=m* We
note that if E,, occurs then ¢ increases by 1 and if £,, does not occur then ¢
decreases by at most 1 on iteration m.

It follows from (3.3) that if ¢, is the value of ¢ at the end of iteration m
then for any ae R

Pr('m>a)>Pr(Zl+Zz+"'+Z,,,>a) (3-10)

where {Z,,} is a set of independent random variables with

nd—md
en =D = w1
Pr(z,,,=—1)—(""2)'”+l

T nd-2m+1°
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Now let

nd—2(4—1)m-1
nd—-2m+1

v”l = E(ZI") =

and
Va=vi+034 - 40,
It follows from Lemma 3.2 that
Pr(Z,+Zy+ - +Z,<(1—¢) V,)Se w2 (3.11)
for any ¢, O<e< 1.

Putting m = m* we see that 7,,. is almost surely at least

mnd =24 —1)
(1=0(1)) Ve = (1 —o() [ =205 g

e d(4—2

o B _(A—Z)nd nd
=(1 o(l))((d 1)ym* 3 ]°g"nd—2m*>
nd 4-1

=(l—o(l))7<l”“(4—2)l°gvm)'

By considering H as a tree rooted at 1 with branching factor at most 4 — 1
at each node we see that H has at least | T|/(4 — 1) non-leaves. But all non-
leaves are in T— L and the result follows from Lemma 2.1(c).

Lemma 3.2. Let X, X;,... X, be independent random variables where
a;€X;<b; for i=1,2,.,m Let X=(X,+Xy+ - +X,)/m and let
u=E(X). Then

PrX<p—1)e 2T b wr (3.12)

(In [9] the inequality is given for X > u+ ¢, but (3.12) can be obtained
by looking at — X, i=1,2,., m).
4. RANDOM OUTREGULAR DIGRAPHS

We now analyze the performance of a modification of TF using
OPTION 2, called TF2, applied to a random digraph D constructed as
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follows: d=d,, d,,..,d, satisfies 2<d<d; <4, i=1,2,.,n Each veV,
independently chooses a set X, of d, vertices at random from V,—v. (The
resulting digraph D has }7_, d, arcs.

ALGORITHM TF2.

begin
T:={1}; L:={1}; F:={2,3,.,n}; B:=(;
while L # & do
begin
choose ve L; PROCESS ((v)
end
end.

Procedure PROCESS(v);
begin
let X,={v,, V25, Uy}
case of
(a) X.nT#.T:=T—v;L:=L—v;B:=B+v.
(b) X,nT=g:fori=1toddo
case of
(NvieFL:=L+v;T:=T+v;; F:==F—v,.
(11) v, € B: do nothing.
end,
L:=L—v
end

A slight modification of the argument of Lemma 2.1 yields

LEMMA 4.1. Throughout the execution of TF2 T—L induces an
arborescence in D and for each we L there is a unique ve T such that (v, w)
is an arc of D. Hence

|IT—L|=[T|/(4-1). (4.1)

We will now prove the main result of this section. Theorem 1.3 will
follow as a corollary when we take 6 =4 =r.

LEMMA 4.2. Let D be chosen at random as above. Then

lim Pr(z(D))> (1 — o(1)) 10" (3 AS?Z)):I

n— o o4d4-1) —-A-l-l
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where £* is the smaller root of

1 _§49
(1 CA)(o A+l) (42)

(Note that £* < 472).

Proof. Consider the mth execution of the procedure PROCESS. Let
t=|T|, I=|L], f=|F], and b=|B| at the start. We note that X, will be
chosen independently of 7, L, F, B as we will not have examined any arcs
leaving v. Hence we have
ma?

At
Pr(case (a) occurs) € — < ——.
n—1 n—1

The first inequality follows as A4t/(n— 1) bounds the expected value of
|X.n T|. The second is obvious, as t <md.
We note next that

Pr(there are k executions of case (bl) | case (b)) = ({)(dfk)/(b :f)

Hence

E(number of executions of case (bl) | case (b))

_ f (_ am
- +f (4+1)n

The latter inequality follows from d>6, b+f=n—1t, and (4+1)b+1<
Am, this being easily confirmable by induction. We want next to show that
m a.s. reaches m* = &*n where &* is the smaller root of (4.2). Now if case
(a) occurs then / decreases by 1, and if case (b) occurs then the expected
increase in / is at last 6(1 — dm/(4 + 1)n)— 1. Thus let X, X,,..., X,, be a
sequence of independent random variables satisfying —1 < X;< 4 and

—ma? mda? Am
= s =220+ (175 o () )

The techniques used in § 3 show that provided U,,=u, +u>+ -~ +u,, is
sufficiently large for m < m* then m will a.s. reach m*. (The case of small m
is handled separately, as before.) Now

2x A*x 04X
(I_T)(é_]_(d+l)n))dx
1

54 54%\  A’m*
((A T)m T) MER 1)n2)' (4.3)

) for m<n/4.

U,"=(1+o(|))j"'<—

—(1+o(l))((5—l)m
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Now for & < &¥,

s _ﬂ)
g <1 ¢A)<6 =) (4.4)

Putting m = ¢n into (4.3) and using (4.4) yields

1 3426 54383

=(1—o(l))n((%é—1)54'52"2(3_%)/6)

=¢e(d,d)n

for some (8, 4) since =2 and £* < 1/4%

Thus m a.s. reaches m*. We now consider how large |7] will be at this
time. We note that if case (a) occurs then |T] decreases by 1 and that if
case (b) occurs then the expected increase in |7| is at least
6(1 — Am/(4 + 1) n). Thus the expected increase in |T| at the mth iteration

is at least
md? md? Adm
- P P Y SR LU |
Om n—l+( n—l) ( (A+l)n)

The lemma follows by computing v, +v,+ -** +v,,. and simplifying
with (4.2).

5. SPARSE RANDOM GRAPHS

We now come to the Erdés-Palka conjecture for G, ,, p=c/n, c> 1 con-
stant. We note that either of Theorems 1.2 or 1.3 can be used to prove this
conjecture for large c. We simply construct a.s. a large subgraph of G,,
with the required distribution. For details as to how this can be done, see
Bollobas [2] or Bollobas, Fenner, and Frieze [3]. The method discussed
here will demonstrate the existence of a large induced tree for all ¢> 1.

We shall be using a modification of TF using OPTION 2. Let us first
note one problem about applying the algorithm naively. There is a substan-
tial probability that vertex 1 is in a component of G, , of size O(log n)!. We
can get round this by applying TF again, using only vertices that have not
been looked at before and so on. With probability tending to 1 we even-
tually grow a large tree. This is one way around the problem. We follow a
path with a simpler analysis. We break the algorithm up into stages.
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Stage 1. Let £¢>0 be fixed an small, and let n, =[en7]. First consider
the subgraph H, of G, , induced by {n—n, + 1, n—n, +2,.., n}. It has the
same distribution as G, ,. Since n, p~ ec we know from Erdds and Renyi
[4] that H, as. contains a component T, of size at least a log n which is a
tree. Here a = a(e, ¢) is independent of n and its exact value is irrelevant to
us.

Thus in Stage 1 we select the largest tree component T, of H,.

Stage 2. We throw away the vertices in H,— T, and then apply
algorithm TF starting with L= {ve V,: v>n, and v is adjacent to exactly
one vertex in T,} and T=T,uL. The analysis is similar to before
although there are some minor technical difficulties.
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