ON THE LAGARIAS-ODLYZKO ALGORITHM FOR THE SUBSET SUM PROBLEM*

A. M. FRIEZE†

Abstract. We give a simple analysis of an algorithm for solving subset-sum problems proposed Lagarias and Odlyzko [2].

Key words. complexity, lattice algorithm, random problems

Suppose $e = (e_1, e_2, \dots, e_n) \in \{0, 1\}^n$, B_1, B_2, \dots, B_n are positive integers and $B_0 = \sum_{i=1}^n B_i e_i$. Then clearly e is a solution of

(1)
$$\sum_{i=1}^{n} B_{i}x_{i} = B_{0}, \quad x_{i} = 0 \text{ or } 1, \quad i = 1, 2, \dots, n.$$

The following problem arises in cryptography [4]: given B_0, B_1, \dots, B_n , find e solving (1).

Solving (1) is a well-known NP-complete problem and Lagarias and Odlyzko [2] describe an algorithm which almost surely finds e assuming

 B_1, B_2, \dots, B_n are independently chosen at random from $1, \dots, B = 2^{cn^2}$, c sufficiently large.

In this paper we show that $c = \frac{1}{2} + \varepsilon$, $\varepsilon > 0$ is sufficient. The main point of th paper is to give a simple proof of their result.

In the following analysis e is fixed and B_1, B_2, \dots, B_n are randomly generate We note that we can assume

$$(3) B_0 \geqq \sum_{i=1}^n B_i/2$$

for if not, we can put $y_i = 1 - x_i$ and try to solve

(4)
$$\sum_{i=1}^{n} B_{i} y_{i} = \sum_{i=1}^{n} B_{i} - B_{0}, \qquad y_{i} = 0 \text{ or } 1, \quad i = 1, 2, \dots, n.$$

Now let $p = \lceil n2^{n/2} \rceil$, Z be the set of integers and

$$\mathbf{b}_{0} = (pB_{0}, 0, \cdots, 0) \in Z^{n+1},$$

$$\mathbf{b}_{1} = (-pB_{1}, 1, 0, \cdots, 0),$$

$$\vdots$$

$$\mathbf{b}_{n} = (-pB_{n}, 0, 0, \cdots, 1).$$

Let $L = \{z = \sum_{i=0}^{n} \xi_i \mathbf{b}_i: \xi_i \in \mathbb{Z}, i = 0, 1, \dots, n\}$ be the lattice generated

Let $\hat{\mathbf{e}} = (0, e_1, e_2, \dots, e_n) = \mathbf{b}_0 + \sum_{i=1}^n e_i \mathbf{b}_i \in L$. Note that $\|\hat{\mathbf{e}}\| \le n^{1/2}$, using the euclidean norm. Thus ê is a "short" vector of L.

^{*} Received by the editors April 24, 1985, and in revised form February 15, 1985.

[†] Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pennsylva 15213. Current address, Department of Computer Science and Statistics, Queen Mary College, London 4NS, England.

¹ By almost surely (a.s.) we mean with probability tending to 1.

Let $||x^*|| = \min(||x|| : x \neq 0, x \in L)$. It is not known at present whether it is possible to find a shortest nonzero vector in L, in polynomial time. However, using the Basis Reduction Algorithm (BRA) of Lenstra, Lenstra and Lovász [3], we can in polynomial time find $\hat{x} \in L$, $\hat{x} \neq 0$ satisfying

(5)
$$\|\hat{\mathbf{x}}\| \le 2^{n/2} \|\mathbf{x}^*\| \le 2^{n/2} \|\hat{\mathbf{e}}\| \le m = 2^{n/2} n^{1/2}.$$

Thus we can try to solve (1) by applying BRA to L and seeing if it produces $\pm \hat{\mathbf{e}}$. There is of course the possibility that there is more than one solution to (1); however the analysis below shows this to be unlikely.

So let $\hat{\mathbf{x}}$ be the shortest vector produced by BRA and assume that B_1, B_2, \dots, B_n are distributed as in (2). We will show

(6)
$$\Pr(\hat{\mathbf{x}} \neq \pm \hat{\mathbf{e}}) \leq (4m+1)(2m+1)^n/B = O(2^{-\epsilon n^2/2}) \quad \text{if } B \geq 2^{(1/2+\epsilon)n^2}.$$

If $\mathbf{x} = (x_0, x_1, \dots, x_n) \in L$, then we have

$$\mathbf{x} = x_0' \mathbf{b}_0 + x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n$$
 where $x_0 = p \left(B_0 x_0' - \sum_{i=1}^n B_i x_i \right)$.

Let $L_0 = \{x \in L: x_0 = 0\}$. It follows that

(7)
$$\mathbf{x} \in L - L_0 \text{ implies } \|\mathbf{x}\| \ge p.$$

Thus (5) and (7) imply that $\hat{x} \in L_0$. The lattice used in [2] has p = 1. Taking p large allows us to restrict our attention to L_0 . It also allows us to solve one lattice problem in place of the two solved in [2]. We can prove (6) by showing

(8)
$$\Pr(A_0 \neq \emptyset) \leq (4m+1)(2m+1)^n / B$$

where $A_0 = \{x \in L_0: ||x|| \le m, x \ne k\hat{e} \text{ for any } k \in Z\}$. (Note that $\hat{x} = k\hat{e} \text{ for } k \in Z \text{ implies } k = \pm 1 \text{ if } \hat{x} \text{ is part of a basis.})$

But if $x \in A_0$ then

(9)
$$|B_0 x_0'| = \left| \sum_{i=1}^n B_i x_i \right| \le \sum_{i=1}^n B_i ||x||$$

and so $|\mathbf{x}_0'| \le 2||x|| \le 2m$, using (3). So if $A_0 \ne \emptyset$ there exist $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{Z}^n$ and $y \in \mathbb{Z}$ satisfying

$$||\mathbf{x}|| \le m, \quad |\mathbf{y}| \le 2m,$$

(10b)
$$x \neq ke \text{ for any } k \in Z$$
,

$$(10c) \qquad \qquad \sum_{i=1}^{n} B_i x_i = y B_0.$$

Consider now a fixed x, y satisfying (10a) and (10b) and let $A_1 = \{x \in Z^n : ||x|| \le m\}$. We will prove that

(11)
$$\Pr(x, y \text{ satisfy } (10c)) \le 1/B$$

and then

Pr
$$(\exists x, y \text{ satisfying } (10)) \le (4m+1)|A_1|/B \le (4m+1)(2m+1)^n/B$$

and (8) follows.

To prove (11), note that (10c) is equivalent to $\sum_{i=1}^{n} B_i z_i = 0$ where $z_i = x_i - ye_i$. Since (10b) holds, we can assume, without loss of generality, that $z_1 \neq 0$. Letting ξ

01

R

T

denote $-(\sum_{i=2}^n B_i z_i/z_1)$,

$$\Pr\left(\sum_{i=1}^{n} B_{i}z_{i} = 0\right) = \Pr\left(B_{1} = \xi\right) = \sum_{j=1}^{B} \Pr\left(B_{1} = j | \xi = j\right) \Pr\left(\xi = j\right)$$

$$= \sum_{j=1}^{B} \frac{1}{B} \Pr\left(\xi = j\right) \quad \text{as } B_{1} \text{ and } \xi \text{ are independent}$$

$$\leq \frac{1}{B}.$$

This completes the proof of the main result.

Schnorr [5] has recently built on the ideas in [3] and Kannan [1] to construct a family of basis reduction algorithms, so that for any $\sigma > 1$ there is an algorithm BRA in the family which runs in polynomial time (the degree of the polynomial depends on σ) which guaranteed to find a vector of length no more than $\sigma^{n-1} \| \mathbf{x}^* \|$. Using BRA in place of BRA means that we can take $c = \sigma + \varepsilon$ in (2) and still a.s. solve the problem.

Now Lagarias and Odlyzko also show that if $B = 2^{cn}$, where $c > c_0 = 1.54725$, then

(12)
$$\hat{\mathbf{e}}$$
 is a.s. the shortest vector of L .

It is not difficult to see first that $B=2^{cn}$ gives (12) for some c>0 assuming we proceed exactly as above. Let $m=n^{1/2}$ and x^* be the shortest vector of L. If $x^* \neq \pm \hat{\mathbf{e}}$ then (10) again holds. It is easy to show that $|A_1| \leq 2^{cn}$ for some c>0 and this c will suffice.

To get c as small as c_0 , we have to assume that $\sum_{i=1}^{n} e_i \le n/2$. This is true for one of the problems (1) and (4) and so, as in [2], we solve *both* of these. We can now take $m = (n/2)^{1/2}$ in our analysis.

We cannot assume (3) for the problem in which $\sum_{i=1}^{n} e_i \le n/2$ but as $B_0 \ge \min\{B_i: i=1,2,\cdots,n\} \ge B/n^2$ a.s. we can assume this instead. Using this in (9) gives $|x_0| \le n^2 m$ and so we take $|y| \le n^2 m$ in (10a). Theorem 3.2 of [2] is that $|A_1| \le 2^{c_0 n}$ and so (12) holds as

$$Pr((12) \text{ fails}) \le Pr((10) \text{ holds}) + Pr(B_0 < B/n^2).$$

- (i) Problems with r > 1 constraints. Here one replaces c by c/r in the theorems. By multiplying the *i*th constraint by B^{i-1} and then adding all these constraints together we have a subset sum problem in which the coefficients are very close to being randomly chosen uniformly from $1, \dots, B^r$.
- (ii) B_0 an independent random variable. Suppose that instead of e being an a priori solution, B_0 is randomly generated in $1, \dots, \lceil \lambda nB \rceil$ where $0 < \lambda \le 1$ is some constant. It is not difficult to show for $B = 2^{cn^2}$, $c > \frac{1}{2}$, that if (1) has a solution then it is a.s. unique and this approach a.s. finds it.

Acknowledgment. I am grateful to Ravi Kannan for interesting discussions on this topic.

REFERENCES

- [1] R. KANNAN, Improved algorithms for integer programming and related problems, in Proc. 24th IEEE Symposium on Foundations of Computer Science, 1983.
- [2] J. C. LAGARIAS AND A. M. ODLYZKO, Solving low density subset sum problems, Proc. 25th Annual IEEE Symposium on Foundations of Computer Science, 1983, pp. 1-10.

[3] A. K. LENSTRA, H. W. LENSTRA, JR. AND L. LOVÁSZ, Factoring polynomials with rational coefficients, Math. Ann., 26 (1982), pp. 515-534.

[4] R. C. MERKLE AND M. E. HELLMAN, Hiding information and signatures in trap-door knapsacks, IEEE Trans. Inform. Theory, IT-24 (1978), pp. 525-530.

[5] C. P. Shnorr, A hierarchy of polynomial time basis reduction algorithms, Proc. Symposium on the Theory of Algorithms, Pe'cs, Hungary, 1984, to appear.

independent

Tinis we needs of malysis o

openditudes.

topiled by

X Isl

ond a should dischool Air

is 2 bon see

[1] to construct a algorithm BRA lynomial depends $\|\mathbf{x}^*\|$. Using BRA olve the problem $\mathbf{c}_0 = 1.54725$, then

ming we proceed $x^* \neq \pm \hat{e}$ then (10) c will suffice, is is true for one We can now take

a/2 but as $B_0 \ge$ g this in (9) gives at $|A_1| \le 2^{6^n}$ and

in the theorems.
nstraints together
o being randomly

ASSE

being an a priori is some constant. on then it is a.s.

iscussions on this

and then

(11)

in Proc. 24th IEEE

Proc. 25th Annual