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ON THE LAGARIAS-ODLYZKO ALGORITHM FOR THE
SUBSET SUM PROBLEM*

A. M. FRIEZEY

Abstract. We give a simple analysis of an algorithm for solving subset-sum problems proposed
Lagarias and Odlyzko [2].
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Supposee=(e,, e,,* * -, €,) €{0, 1}", By, By, - - -, B, are positive integers and B, =
¥ i, Bie. Then clearly e is a solution of

(1) Z B,‘X,-:BU, x‘-=00r 1' i=1,2,"'!n,
i=1 ‘

The following problem arises in cryptography [4]: given By, By, -+ -, B,, find e |
solving (1).

Solving (1) is a well-known NP-complete problem and Lagarias and Odlyzko [2}
describe an algorithm which almost surely' finds e assuming

(2) B,, B,,- - -, B, are independently chosen at random from 1,---, B =2"'2,
¢ sufficiently large.

In this paper we show that c=3+¢, £>0 is sufficient. The main point of th
paper is to give a simple proof of their result.

In the following analysis e is fixed and B,, B, - - -, B, are randomly generate
We note that we can assume

(3) By= E B;/2

i=1

for if not, we can put y;=1-x; and try to solve

(4) XBL"I': Bi_Bﬂa yizoorlv i=152;-..sn'
i=1 =1

Now let p=[n2"?], Z be the set of integers and
b0= (PBO, 0’ = ,0)EZ“+1,
b1=(_pBla .1101 e -10)1

bn=(_an1-0,03' ik ’ 1)'

Let L={z=Y, ,&bi:&€Z,i=0,1,---,n} be the lattice generated
b01 bls S bn'
Let é=(0,e,e,---,e,)=by+Y,  eb,e L. Note that |&]|=n'"? using the

euclidean norm. Thus & is a “short” vector of L.
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' By almost surely (a.s.) we mean with probability tending to 1.
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Let ||x*|| = min ([|x||:x# 0, x € L). It is not known at present whether it is possible
to find a shortest nonzero vector in L, in polynomial time. However, using the Basis
Reduction Algorithm (BRA) of Lenstra, Lenstra and Lovész [3], we can in polynomial
time find X€ L, X #0 satisfying

() I%]) = 2°72x*[| = 2728l < m = 2"/2n"/2.

Thus we can try to solve (1) by applying BRA to L and seeing if it produces +8.
There is of course the possibility that there is more than one solution to (1); however
the analysis below shows this to be unlikely.

So let X be the shortest vector produced by BRA and assume that B,, By, -
are distributed as in (2). We will show

(6) Pr(X#+8)=(4m+1)2m+1)"/B=0(2"*"/?) if Bz (/2+e)"

B

I n

If x=(xo, X, -+, X,) € L, then we have
X = xgbg+ x;b;+- - -+x,b, where x°=p(Box{,— Y Bix,-).
i=1

Let Lo={xe€ L: x,=0}. It follows that
(7) ' xe€ L— L, implies x| = p.

Thus (5) and (7) imply that X € L,. The lattice used in [2] has p =1. Taking p large
allows us to restrict our attention to L,. It also allows us to solve one lattice problem
in place of the two solved in [2]. We can prove (6) by showing

(8) Pr(As=@)=(4m+1)2m+1)"/B

where Ag={x€ Lo: ||x|| = m, x# k& for any k € Z}. (Note that X = ké for ke Z implies
k=+£1if X is part of a basis.)
But if x€ A, then

©) | Boxtl=| % Bix| = 5 Bl
i=1 I =

and so |xg| =2|x||=2m, using (3). So if Ag# D there exist x=(x,,x3," -, x,)€Z"
and y € Z satisfying
(10a) Ixl=m, — |y|=2m,
(10b) x# ke foranykeZ,
(10c) Y. Bx;=yB,.

i=1

Consider now a fixed x, y satisfying (10a) and (10b) and let A, ={x€ Z": ||x| = m}.
We will prove that

(11) Pr (x, y satisfy (10¢))=1/B
and then
Pr (3x, y satisfying (10)) = (4dm +1)|A,|/B=(4m+1)2m+1)"/B

and (8) follows.
To prove (11), note that (10c) is equivalent to ¥ ;., Biz;=0 where z, = x; — ye.
Since (10b) holds, we can assume, without loss of generality, that z, # 0. Letting £
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denote —(Y;_, B:z:/z,),

Pr(vn B.'z;':O) =Pr(B,=¢§)= § Pr(Bl—_—jIE:j) Pr(£=j)

Il
Nl

% Pr(£=j) as B, and ¢ are independent
1

J

[IA

& | —

This completes the proof of the main result.

Schnorr [5] has recently built on the ideas in [3] and Kannan [1] to construct a ‘8
family of basis reduction algorithms, so that for any o> 1 there is an algorithm BRA ¢

in the family which runs in polynomial time (the degree of the polynomial depends ¢

on o) which guaranteed to find a vector of length no more than o"7'||x*|. Using BRA,,
in place of BRA means that we can take ¢ = o+ ¢ in (2) and still a.s. solve the problem. . &
Now Lagarias and Odlyzko also show that if B =2, where ¢> ¢,= 1.54725, then

(12) € is a.s. the shortest vector of L.

It is not difficult to see first that B =2 gives (12) for some ¢ >0 assuming we proceed
exactly as above. Let m = n'/? and x* be the shortest vector of L. If x* # +& then (10)
again holds. It is easy to show that |A,| =2 for some ¢>0 and this ¢ will suffice.

To get ¢ as small as c,, we have to assume that Y., e=n/2. This is true for one -
of the problems (1) and (4) and so, as in [2], we solve both of these. We can now take |

m=(n/2)""? in our analysis.

We cannot assume (3) for the problem in which Z:"==I e&;=n/2 but as B,=
min{B;:i=1,2,---,n}= B/n®a.s. we can assume this instead. Using this in (9) gives
[xo| = n’m and so we take |y| = n*m in (10a). Theorem 3.2 of [2] is that |A,| =2%" and
so (12) holds as

Pr ((12) fails) = Pr ((10) holds) + Pr (B, < B/ n?).

(i) Problems with r>1 constraints. Here one replaces ¢ by ¢/r in the theorems.
By multiplying the ith constraint by B and then adding all these constraints together
we have a subset sum problem in which the coefficients are very close to being randomly
chosen uniformly from 1,-- -, B".

(ii) By an independent random variable. Suppose that instead of e being an a priori
solution, B, is randomly generated in 1, +,[AnB] where 0< A =1 is some constant,
It is not difficult to show for B :2"'2, ¢ >3, that if (1) has a solution then it is a.s.
unique and this approach a.s. finds it.

Acknowledgment. I am grateful to Ravi Kannan for interesting discussions on this
topic.
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