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Let G, denote a random r-regular graph with vertex set {1,2, .., n} and «(G,)
and x(G,) denote respectively its independence and chromatic numbers. We show
that with probability going to 1 as n — oo respectively

a(G,)—% (logr—loglogr+1—log2) <%

and

r _8rlog|ogr|<8rloglogr
2logr (logr)? |\ {log r)?

G, )—

provided r=o(n’), 0 < 1/3, 0 <& < 1, are constants, and r = r,, where r, depends on
gonly. © 1992 Academic Press, Inc.

This paper is concerned with the independence and chromatic numbers
of random regular graphs. Thus let REG(n, r) denote the set of r-regular
graphs with vertex set [n]={l, 2, .., n}. Let G, denote a random graph
sampled uniformly from REG(n, r). We use « and y for independence and
chromatic numbers, respectively.

In random graph theory, these have been studied by, inter alia, Matula
[13], Grimmett and McDiarmid [9], Bollobas and Erdds [6], Shamir
and Spencer [14], Bollobas [5], Frieze [8], and Luczak [12]. The aim
nof this paper is to extend the results of [8, 12] to G, and prove
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THeEOREM. (a) Let 0<e< 1 be fixed. There exists a constant r, such
that if r=r,, r=o0(n’), 8 <1/3 constant, then

2
a(@)—% (log r—loglogr+1—log2) SsTn

with probability going to 1 as n — o.
(b) Moreover, for some constant ro and ro<r= o(n’), we have

r r 32loglog r)
— <y , < 1
2logr 1(Gr) 2logr ( log r

with probability going to 1 as n - .

(All logarithms are natural.)

Proof of the Theorem. We will first proceed under the assumption that
r is constant. The extension to r growing will then be straightforward. We
shall use the model of Bender and Canfield [2] and Bollobas [4] to study
G, . Specifically, we will adopt the configuration terminology of [4]. We let
W=[rn] and W,={(i—1) r+1,.,ir}, i=1,2,.., n be a partition of W
into n sets of size r. For we W we define y(w)=[w/r’] so that we W,
holds.

A configuration on a set Z, |Z| = 2k, is a partition of Z into k pairs. @,
denotes the set of configurations on Z. If Zc W and Fe @, we let p(F) be
the multigraph with vertex set [n] and k edges {¥/(x)y(y): {x, y}eF}.

We consider @ =@, as a probability space in which each Fe® is
equally likely. Let Q be a property of the graphs in REG(n, r) and let O*
be a property of the configurations in @. Suppose these properties are such
that for G,e REG(n, r) and Fe p~'(G,), G, has Q if and only if F has Q*.
All we shall need from [2,4] is

Pr(G,e Q)< e " Pr(Fe Q*). (0)

In the analysis we only claim that inequalities hold for r and n
sufficiently large and ¢ sufficiently small.

It is well known that the binomial random variable B(n, p) is sharply
concentrated around its expected value np, if this is large.

We will rather loosely refer to the following as the “Chernoff bounds”:

Pr(B(n, p)< (1 —ﬂ)np)ge—ﬂznp/l
Pr(B(n, p)=(1+ ) np) Se-ﬂznp/l

forO<pB<I.



RANDOM REGULAR GRAPHS 125

We will concentrate first on the independence number. The most difficult
task is to bound a(F)=a(u(F)) from below, with high probability. To do
this we will generate a random F in a somewhat complicated way. Our
purpose is to use the result of [8] “halfway” through the construction.

For a multigraph H and vertex v of H we let d(v, H) denote the degree
of v in H, where loops count twice.

Step 1. Let ry =r —[r'?logr] and m, = Lr,n/2), and let X=
(X1, X3, .y X3,,) be a random member of [n]*™; ie., X, X3, .y Xay, are
chosen independently at random from [#]. Let now G, denote the multi-
graph with vertex set [#] and edge set {x,,_,xy:1<i<n}.

Step 2. The next step is to delete edges from G, so that each vertex
has degree at most r and to construct most of F.

Let d;=d(j,G,) and Y,, Y,,.., Y, be a partition of Y=[2m,] with
|Y|=d;for 1<j<n Infactlet Y,=[d,] and ¥,= [Z'_, dI\[XiZ\ d,]

for i 2 2. We construct a configuration F, on Y={J)/_, Y,.

begin
Fii=@; Y;:=Y,for 1 <j<n
for t:=1to m, do
begin
randomly choose p,,_, € Y‘,, Ix Y =Y —{P2_}s
randomly choose p, e Y, ; Y, ==Y, — {pu};

Fy:=F,u {{Pz:-la Pz:}}
end
end

CLAIM 1. F, is a random configuration on Y.

Proof. py, p3, ..., P2m, is @ random permutation of Y since interchanging
Prs Pr+1 yields the same distribution of permutations. Each partition arises
from 2™m,! permutations. |

For se Y let its rank p(s)=s—Y/-! d;, where se Y;, so that Y; has
elements of rank 1,2, .., d;. Let

Fi={{p,q)e F,:max{p(p), p(q)} <r}.
F,={{o(p).a(q)}: {p,q}eF},
where if pe Y}, a(p)=(j—1)r+p(p),and Z=),.f, e.

CLAaM 2. F, is a random configuration on Z.

Proof. F, is a random configuration on Y implies F; is a random con-
figuration on {J,. ., e, since any such configuration has the same number
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of extensions to an F,. Since F, is obtained by a fixed relabelling of
Ucer;, e the result follows. [

We let G, be the multigraph u(F,).

Step 3. We now enlarge F, so that it “covers” the whole of W.
Suppose Z# W, x,,x,e W—2Z, and Z'=Zu {x,, x,}. We define a
function f: @, — @, as follows: let F'e ®,..

(a) If {x,,x,}€F then

f(F')zF'_{{xl,-\'z}},

otherwise
(b) suppose {x,,z,}, {x1, 22} €F, (z, #2,), then

SEF)=(Fo{{z, 2} )= {{x o} {x2, 22}
CLAM 3. If Fe®, then |f~Y(F)|=1|Z| + 1.

Proof. 1f F'e f~'(F) then either
(a) F=Fu{{x,,x,}} or
(b) F'=Fou{{xi,zi}, {x2, 22}} = {21, 2}} for some {z,, zs} e F. |

It follows from Claim 2 and Claim 3 that the following algorithm
generates a random configuration F3 on Z’:

ADD(F,, x,, x,):
begin
With probability (1Z|+1)~"' let Fy=F,u {{x,,x,}} else randomly
choose
{z,,z,} € F, (randomly ordered z,, z,) and then let
Fy=(Fu{{x;, 21}, {x2, 52} = {{z1, 22} }
Output F,
end

Hence if W—Z={x,, x,, .., x,} the following algorithm constructs a
random configuration F on W:

FINISH
begin

F:=F,,

for i=1to s do F:=ADD(F, x5;_,, X3;)
end
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We will now show that with high probability

(i) G,, and hence G,, has an independent set of the required size.
(ii) Algorithm FINISH does not disturb this set too much.

To prove (i) we observe that if G, ,, denotes the standard random graph
with vertex set [n] and m edges then G, ,, can be generated by adding a
random number of extra random edges to the graph obtained by deleting
loops and coalescing multipled edges in G,.

Now it was shown in [8] that if r, >r, then

n An
< .- - —&) < BTSNy
Pr (a(Gn,m,) n (logr,—loglogr, +1—log2 8)) exp { r (log ":)'}

for some “constant” 4 = A(g).
It follows from this and the fact that r, = r(1 — O(log r/r'/?)) that

2 B
Pr(a(G,)saE=—r'—I (logr—loglogr+1 —log2—s))<exp {—m},
(1)
where B = B(¢).
We now show that the transition from F, to F does not create too many
edges contained in a given large independent set of G, and G,.
Now let d/ =d(j, G,) for je[n] and So={j:d/<r—3r'"logr}. Our
next task is to prove
n 3+20
Pr(lsolzm)ge—c’l/r (2)

for some constant C > 0.
Now if ke S, then either

(a) keS,={j:d;<r—2r'?logr} or
(b) keS,={j:d;—d/=r"logr}.

Now
1
Pr(1eS,)=Pr (B (Zm,, ;)Sr, —ri2 Iogr)

(where B(-,-) denotes a binomial random variable)

5
< e—(log ry»/3
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from the Chernoff bound for the tails of the binomial. Thus
E(1S,]) < ne= (873,
Now the events ie S|, je S, for i#j are not independent. But on the

other hand changing any x; can only change |S,| by at most one and so,
by the Hoeffding-Azuma inequality [1]

" 2 2
Pr(|S,| =ne= """ 1 u)y<exp {— rl; } (3)

This inequality implies that if & = ¢(X) is a random variable such that

1E(X)—&(X') <d

whenever X and X’ differ only in one component, then

Pr(E—E(Z)>u)<exp {— 2’721";12}
1

(see, for example, Bollobas [7] or McDiarmid [10]).
To handle S, we define 6,;, ie [m,], je[n] by

1 i (@) Jje{xa_1, xa},
8= (b) max{d,, ,,d

v N2

}>r
0 otherwise.

Then jeS, implies X7, 5, ,2r"?logr. So let Sy={j:Tm™m, ;>

r'?logr} =S, and observe that S5 depends only on X, unlike S: which
depends on p,, ..., pa,, as well. Let now 6 =46, ,. Then

Pr(0=1)<2Pr(x;=1and d,>r)+2Pr(x,=1and d,>r)

2
=’—1 (Pr(d,>r|x,=1)+Pr(d,>r| x,=2))

S%Pr(d,>r|x,=l)

4 1
=-Pr (B (Zm, -1, —)21‘)
n n

<= ¢ Vlosr)4 (using the Chernoff bound).

S|



RANDOM REGULAR GRAPHS 129

Hence

"y

i=1

and so

ny
Pr ( Y d,,=r'"log r) <2(r'?/log r) e ~ o84 jeln]
i=1
and 5o E(|S3]) < 2n(r"*/log r) e~ oe 4,
Now changing any x; can change at most 4 4, /s and hence |S5| by at
most 4 and so by the Hoeffding-Azuma inequality

Pr(1S5] > 2n(r'*/log r) e =" 4 ) <exp {'5‘7,1} ' @

Inequality (2) follows from (3) and (4) with u=n/3r'*". So let us now
assume that a(G,)>x, (see (1)) and |S,| < n/r'*?. We consider the effect
of FINISH.

Let T be an independent set of vertices of G, of size [«,]. Assume that
W—Z={x, x5, .., x5} where y(x,)eT ifl je{l,3,5.7,.,2t—1}. We
must estimate the number y of bad edges which (i) are in u(F) and (ii) are
contained in T.

Note that an execution of the statement o;:

F:=ADD(F, x5, X)
can only contribute to 7 if /<t and that

T<r|Sol +3r'? log r |T)

n
<r | —+3r'?log T,

<2n
~ [’0‘

But g; creates a bad edge only if {x,,_,, x,} is not added to F and the pair
{z,,z,} € F satisfies {{(z,), ¥(z.)} n T # &. Hence

Pr(o; creates a bad edge) < |{z),z,} e F: {Y(z)), ¥(z2)} n T# S }/|F

rac_|r$4 log r

<
= [Fs| r

regardless of the outcome of the execution of FINISH to this point.
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Hence y is majorised by B([2n/r’7, 4 log r/r) and so
16n 8n
Pr(y?m)Sexp {—W} (5)

using the Chernoff bound.
Note that a(u(F)) = a(G,) —2y.
Thus (1), (2), and (5) (and a surreptitious doubling of ¢) imply that

Pr(a(F)Saﬁ)ge—o,,/,um (6)
for some D = D(g).
To bound a(F) from above is straightforward.

Let now /=[a_,] and Y be the random variable which counts the
number of independent sets of u(F) of size /. Then

P(a(F)=21)< E(Y)

n\ -1 rl—i
_(1) ,.D, (l_m——2i+l)

<2e™"2,

Hence, the first part of the theorem for constant r follows from (0), (6),
and (7).

Now to the second part of the theorem.

The lower bound is immediate from the first part of the theorem, since
%2(G.) = n/a(G,). For the upper bound we use the fact that the main result
of Luczak [12] implies that for r > r, (=some sufficiently large constant)

30 logl
Pr(G0> ko= 53 (1+ e [)=e0>

G, as in Step 1.
Step 2 can only decrease the chromatic number and (6) shows that
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if G, has a ky-colouring and we use it for u(F) then with probability
1 —o(1) u(F) has at most

16n r 30loglogr\ 10n

1+0° ( 1 ) S
r 2logr log r r
edges with both ends of the same colour. The result (for constant r)
will follow if we show that with probability 1 —o(1), all subgraphs of u(F)
with at most sq=20n/r’ vertices can be (re-)coloured with at most
!/ =rlog log r/(log r)* colours. We prove this by showing that any subgraph
H induced by 5 < s, vertices satisfies §(H) </ and this is in turn implied by
each such H having less than /s/2 edges. This latter statement is easy to
prove.

Pr(3s < s, vertices of u(F) containing >/s edges)

< i (’1)((5))( '.2 )Is/2
=2, \s)\isp2 N\ —rs
50 ne\* s‘.’,e 152 r Is/2
s — — —
() F) G5
0 S\ =21 3p\ Is72
s - —_ =
(@) 7)o

and the whole theorem has been proved, for constant r.

Let us now consider the case r— oo but r=o0(n’). The above proof
shows that u(F) for a random Fe Q,, has its independence and chromatic
numbers in the right range. We have to show that this implies the same for
G,. We rely on the work of McKay and Wormald [11] for this. They give
a procedure DEG which takes as input a random Fe &, and tries to con-
struct an r-regular simple graph by eliminating loops and multiple edges.
The elimination of a loop or multiple edge involves the addition of at most
4 new edges. The procedure succeeds with probability 1 —o(1) and it
produces each member of REG(n, r) with the same probability. Also, it is
easy to see that with probability 1 —o(1) F has O(r*) loops and multiple
edges. Thus we need only show that adding O(r?) edges to a typical F does
not change « or ¥ by much. But now r?=o(n/r) for r = 0(n°), and so part
(a) requires no work. For part (b) we need to be convinced that the
O(r’)=o0(n*") added edges are sufficiently random so that they usually
induce the union of 4 forests which can be 8-coloured. This can be done
fairly straightforwardly but requires a fair amount of detail from [11]
which is inappropriate here.
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