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Abstract

Fix r ≥ 2 and a collection of r-uniform hypergraphs H. What is the minimum
number of edges in an H-free r-uniform hypergraph with chromatic number greater
than k? We investigate this question for various H. Our results include the following:
• An (r, l)-system is an r-uniform hypergraph with every two edges sharing at most
l vertices. For k sufficiently large, there is an (r, l)-system with chromatic number
greater than k and number of edges at most c(kr−1 log k)l/(l−1), where

c = 2
(

100(r)2
l

l!

)1/(l−1)(10(r − 1)
l − 1

)l/(l−1)

.

This improves on the previous best bounds of Kostochka-Mubayi-Rödl-Tetali [10]. The
upper bound is sharp apart from the constant c as shown in [10].
• The minimum number of edges in an r-uniform hypergraph with independent neigh-
borhoods and chromatic number greater than k is of order kr+1/(r−1) logO(1) k as
k → ∞. This generalizes (aside from logarithmic factors) a result of Gimbel and
Thomassen [6] for triangle-free graphs.
• Let T be an r-uniform hypertree of t edges. Then every T -free r-uniform hypergraph
has chromatic number at most 2(r − 1)(t − 1) + 1. This generalizes the well known
fact that every T -free graph has chromatic number at most t.

Several open problems and conjectures are also posed.
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1 Introduction

An r-graph is a hypergraph whose edges all have size r. The chromatic number of an r-

graph is the minimum number of colors required to partition its vertex set so that no edge

is monochromatic. The starting point of our investigations is the following basic question:

What is the minimum number mk(r) of edges in an r-graph with chromatic number

greater than k?

In general this problem is very difficult to solve exactly, and so we seek asymptotic results

as one or both of k, r tend to infinity. It is easy to observe that mk(2) =
(
k+1

2

)
, but already

determining mk(3) is a challenging open question: m2(3) = 7 achieved by the Fano plane,

but m3(3) is unknown. For fixed r and large k, the best known bounds are due to Alon and

are still far apart.

Theorem 1 (Alon [1]) For every k, r ≥ 2,

(r − 1)

⌈
k

r

⌉(
r − 1

r
k

)r−1

< mk(r) <

(
kr + 1

r

)
5 log r

r
.

Note that this implies that for fixed r and k →∞ we have mk(r) = Θ(kr). In the opposite

direction, determining m2(r) is the well known problem concerning the minimum number of

edges in r-graphs of chromatic number greater than two, generally referred to as not having

Property B. The best upper bound follows from an old probabilistic construction of Erdős [4]

while Radhakrishnan and Srinivasan [12] proved the lower bound below (for large r) which

is the best to date.

0.7
√
r/ log r × 2r < m2(r) < r22r.

Here we consider the same question, but we impose a natural restriction on the underlying

r-graph.

Definition 2 Fix r ≥ 2 and a collection of r-graphs H. Let mk(H) be the minimum number

of edges in an H-free r-graph with chromatic number greater than k.

Note that H-free in the definition above refers to not necessarily induced subhypergraphs.

Also, if H = {H}, we will abuse notation by writing mk(H).

Our goal is to determine mk(H) for various H. Special cases of this parameter have al-

ready been studied, and lead to difficult problems. For example, Gimbel and Thomassen [6]

proved that mk(K3) has order of magnitude k3 log2 k as k → ∞. However, determining
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mk(K4) and mk(C4) are open problems. In fact, these problems seem harder than deter-

mining the Ramsey numbers for the corresponding graphs, and the growth rates of these

Ramsey numbers are well-studied and not known. Call a hypergraph nontrivial if it has at

least two edges.

Definition 3 Let H be a nontrivial r-graph. Let

ρ(H) = max
H′⊂H

e′ − 1

v′ − r
,

where H ′ is nontrivial with v′ vertices and e′ edges. For a finite family H of nontrivial

r-graphs, ρ(H) = minH∈H ρ(H).

We say that H is balanced if this maximum occurs for H i.e.

ρ(H) =
e(H)− 1

v(H)− r
.

The parameter ρ appears to be the crucial hypergraph invariant for our problem. Our

main result stated below provides a very general upper bound for mk(H). As we will show,

in many cases this general upper bound seems to give the correct order of magnitude for

fixed r as k →∞.

Theorem 4 Let H = {H1, H2, . . . , H`} be a finite family of nontrivial balanced r-graphs

with vi = v(Hi) and ei = e(Hi). Let ρi = ρ(Hi) and assume that ρi ≤ ρi+1 for 1 ≤ i < `.

Define s by ρ = ρ1 = ρ2 = · · · = ρs < ρs+1 and assume that ρ > 1/(r − 1). For each i and

each edge e ∈ Hi let αi(e) be the number of automorphisms of Hi that map e to itself. Let

αi = mine αi(e).

Suppose that c1 is the solution to
s∑
i=1

e2
ix

ei−1

αi
=

1

50r!
.

and let

c2 = max

{(
αi

5e2
i c
ei−1
1 r!

)1/(r−1)

: i = 1, 2, . . . , s

}
≥ 101/(r−1).

Then for large k,

mk(H) < cH(kr−1 log k)(r−1/ρ)/(r−1−1/ρ)

where

cH = 2

(
r!

c1

)1/(r−1−1/ρ)

c
(r−1)(r−1/ρ)/(r−1−1/ρ))
2

(
r − 1

r − 1− 1/ρ

)(r−1/ρ)/(r−1−1/ρ)

(We can if we wish replace the 2 by a constant arbitrarily close to 1).
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Note that the exponent of k in Theorem 4 is always greater than r.

Remark 1 The restriction to a collection of balanced hypergraphs is not too restrictive. Our

applications will be balanced and in general, if we replace an H by a subhypergraph H ′ that

determines ρ(H) then the upper bound we obtain for mk(H) is valid. After all, a hypergraph

that does not contain H ′ cannot contain H.

1.1 (r, l)-systems

An (r, l)-system is an r-graph with every pair of edges sharing fewer than l vertices. Let

mk(r, l) denote the minimum number of edges in an (r, l)-system with chromatic number

greater than k. Erdős and Lovász [7] studied mk(r, 2), indeed the Local lemma was originally

developed and used to give lower bounds for this parameter. Recently, Kostochka et.al. [10]

proved that mk(r, l) has order of magnitude (kr−1 log k)l/(l−1) as k → ∞. They proved the

upper bound mk(r, l) < br,l(k
r−1 log k)l/(l−1) where

br,l =
2(2r3l)l/(l−1)

(r)l
.

Using Theorem 4 we can substantially improve this constant.

Theorem 5 Fix 2 ≤ l < r and let k be sufficiently large. Then mk(r, l) < cr,l(k
r−1 log k)l/(l−1),

where

cr,l = 2

(
200(r)2

l

l!

)1/(l−1)(
10(r − 1)

l − 1

)l/(l−1)

.

Note that for large r, br,l grows like r2l whereas cr,l grows like r3.

1.2 Independent neighborhoods

A triangle-free graph is one whose neighborhoods are all independent sets. Generaliz-

ing to r-graphs, one can study r-graphs with independent neighborhoods. If S is a set

of vertices in an r-graph G = (V,E) and |S| = r − 1, then its neighborhood NG(S) =

{v ∈ V − S : S ∪ {v} ∈ E}. The degree degG(S) = |NG(S)|.
An r-graph has independent neighborhoods if it contains no copy of Fr, where Fr is the

r-graph comprising r+1 edges {E0, E1, . . . , Er}. Here, if A = ∩ri=1Ei then (i) |A| = r−1 and

(ii) E0 =
⋃r
i=1(Ei \ A). Thus F2 = K3. Gimbel and Thomassen [6] proved that the order

of magnitude of mk(F2) is k3(log k)2. Although we are unable to determine the correct

logarithmic factors, we generalize this result as follows; the upper bound follows directly

from Theorem 4.
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Theorem 6 Fix r ≥ 3 and let k be sufficiently large. The minimum number of edges in an

r-graph with independent neighborhoods and chromatic number greater than k satisfies

bIk
r+1/(r−1) < mk(Fr) < cIk

r+1/(r−1)(log k)1+r/(r−1)2 ,

where

bI =
1

40r22r

cI =

(
r!

(
50r!(r + 1)2

(r − 1)!2

)1/r
)r/(r−1)2 (

10r

r − 1

)r/(r−1)

.

Note that as r →∞, cI = O(r).

It is hard to even make a conjecture about the correct growth rate of mk(Fr). Most

likely neither the upper nor lower bounds give the correct order of magnitude. However,

improving either bound seems difficult, since the corresponding improvement for the graph

case involved deep results of Kim [9] and Johansson [8] on the independence number and

chromatic number of triangle-free graphs. Currently, hypergraph versions of these two results

do not exist.

1.3 Excluding a hypertree

A cycle of length t ≥ 2 in an r-graph is a collection of t distinct vertices X = {x1, . . . , xt}
and t distinct edges E1, . . . , Et such that {xi, xi+1} ⊂ Ei for each i = 1, . . . , t (indices taken

modulo t). An r-forest is an r-graph with no cycles. It is easy to see that if H contains a

cycle, then ρ(H) > 1/(r− 1) and Theorem 4 applies. On the other hand, if H is an r-forest,

then it is easy to show that every H-free r-graph G has chromatic number at most cH , so

there can be no analogue of the upper bound in Theorem 4. It is an easy exercise to produce

a proper coloring of G where the number of colors is exponential in the size of H. The

next Theorem shows that we can reduce this bound substantially. An r-tree is a connected

r-forest, where connected means that for every two vertices x, y, there is a sequence of edges

E1, . . . El such that x ∈ E1, y ∈ El, and Ei ∩ Ei+1 6= ∅ for all i = 1, 2, . . . , l − 1. The

statement below applies to r-trees, but a similar statement can be proved for r-forests as

well.

Theorem 7 Let T be an r-tree with (r − 1)t+ 1 vertices and suppose that G is an r-graph

not containing T . Then the chromatic number of G is at most 2(r − 1)(t− 1) + 1.
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When r = 2 it is a well-known fact that every T -free graph G has chromatic number at

most t, when T has t edges. Indeed, this follows from the observation that every subgraph

of G has a vertex of degree less than t. For r ≥ 3 such a statement is false. For example,

let T be the 3-tree comprising three edges, not all containing the same vertex. Let G be

the 3-graph on n vertices, n large, all of whose edges contain a fixed vertex. Then clearly

T 6⊂ G and G has minimum degree n− 2, which can be arbitrarily large. This is the reason

that Theorem 7 is not trivial. Nevertheless, the best lower bound on the chromatic number

of a T -free r-graph that we have is t. It would be very interesting to narrow the gap for this

problem, and we believe that Theorem 7 is far from the truth1.

1.4 Graphs vs hypergraphs

Our final result shows the limitations of Theorem 4 in the case r > 2. Let Kr
t be the

complete r-graph on t vertices. Then Theorem 4 implies that mk(K
r
t ) < kr+ε for some

positive ε depending on r and t. However, for r ≥ 3, this can be improved.

Theorem 8 Fix t > r ≥ 3. Then mk(K
r
t ) = kr+o(1), where o(1) → 0 as k → ∞. On the

other hand, for each s ≥ 3, there exists ε = εs > 0 such that mk(Ks) > k2+ε.

Theorem 8 shows an interesting difference between graphs and hypergraphs. In fact, we

conjecture that a similar result holds if we forbid much less than a clique. Call an r-graph

simple if every two of its edges share at most one vertex; in the notation of Section 1.1, an

r-graph is simple if and only if it is an (r, 2)-system. Simple hypergraphs are often studied

due their similarity to graphs. We believe that there exist simple r-graphs H such that

mk(H) = kr+o(1). For r ≥ 4 this follows from recent unpublished results of Rödl-Schacht

and the third author, however, this remains open for r = 3.

Conjecture 9 There exists a simple 3-graph H for which mk(H) = k3+o(1).

Let F be the Fano plane, which is the 3-graph with seven vertices and seven edges

obtained from the points and lines of the projective geometry of dimension two over the

finite field of order two. Perhaps one can even strengthen Conjecture 9 by proving that

mk(F ) = k3+o(1)?

In the next section we present the proof of Theorem 4. Sections 3, 4, 5 and 6 contain

the proofs of Theorems 5, 6, 7 and 8 respectively. The last section has several concluding

remarks and open problems.

1Recently Po-Shen Loh has proved optimal results for this problem
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2 General upper bound: Proof of Theorem 4

In this section we prove Theorem 4. Our proof uses the method developed by Krivelevich

[11] to obtain bounds for off diagonal Ramsey numbers. The main idea is to take a random

hypergraph with appropriate edge probability and judiciously delete all copies of H from it.

The additional requirement for us is to keep track of the total number of edges.

Proof of Theorem 4. Let

p = c1n
−1/ρ

and let Gp be the random r-graph on n vertices with edge probability p. Let Ep = |E(Gp)|.
Then

Ep ≤
2c1n

r−1/ρ

r!
whp. (1)

Next let

t = c2

(
r! log n

p

)1/(r−1)

= c2

(
r! log n

c1

n1/ρ

)1/(r−1)

.

Now, using the Chernoff bounds to get the first inequality below, we have

P

(
∃S : |S| = t and |E(S)| ≤ E0 =

(
t

r

)
p/2

)
≤

(
n

t

)
exp

{
−1

8

(
t

r

)
p

}
≤

(
ne

t
exp

{
− t

r−1

10r!
p

})t
=

(
ne

t
exp

{
− 1

10
cr−1

2 log n

})t
= o(1).

So, whp:

Every t-set contains at least E0 edges. (2)

Now, for |S| = t let YS,i be the number of edges in copies of Hi containing at least one edge

of S. Let ZS,i be the number of edges in a maximal collection of pair-wise edge-disjoint

copies of Hi, each containing at least one edge of S.

Clearly,

ZS,i ≤ YS,i.

Let

µi = e2
i

(
t

r

)(
n

vi − r

)
pei
r!(vi − r)!

αi
.
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Then

E(YS,i) ≤ µi.

Explanation: We choose an edge e of Hi and an r-subset R of S to fix an edge that will be

e in a copy of Hi. Then we choose vi − r other vertices for the remainder of our copy. This

accounts for ei
(
t
r

)(
n

vi−r

)
choices. We then choose a copy of Hi in these vi vertices for which

R is an edge. The number of ways of doing this is r!(vi−r)!
αi(e)

≤ r!(vi−r)!
αi

. Then we multiply by

ei to count the edges in this copy of Hi. Finally, we multiply by pei , the probability that

the ei edges chosen actually exist.

Now for A > 0,

P(ZS,i ≥ Aµi) ≤
E(ZS,i)

Aµi

(Aµi)!
≤ µAµi

i

(Aµi)!
≤
( e
A

)Aµi

.

(Here we are using an inequality of Erdős and Tetali [5], see for example Lemma 8.4.1 of

[3]).

Suppose now that

Ai =


9 i = 1

10 2 ≤ i ≤ s

1
2i−s i > s

.

Then

P(∃S : ZS,i ≥ Aiµi) ≤
(
n

t

)(
e

Ai

)Aiµi

. (3)

Since n is sufficiently large, we have for some 9
10
≤ θi ≤ 1,

µi =
θie

2
i c
ei
1 t

rnvi−r−ei/ρ

αi

=
θie

2
i c
ei−1
1 cr−1

2 r!nvi−r−(ei−1)/ρ log n

αi
t

=
θie

2
i c
ei−1
1 cr−1

2 r!n(vi−r)(1−ρi/ρ) log n

αi
t (4)

If i ≤ s then from the definition of c2 we see that µi ≥ 1
5
θit log n. Hence,

P(∃S : ZS,i ≥ Aiµi) ≤
(
ne

t

(e
9

)9 logn/5
)t

= o(1). (5)

Now for i > s, and because ρ1 = ρ,

Aiµ1

µi
≥ n(vi−r)(ρi/ρ−1)−o(1).
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So,

P(∃S : ZS,i ≥ Aiµ1) ≤
(
n

t

)(
eµi
Aiµ1

)Aiµ1

≤
(
n

t

)
n−Ω(t logn) = o(1). (6)

It follows from (5), (6) that whp

∑̀
i=1

ZS,i ≤ 10
s∑
i=1

µi, ∀|S| = t. (7)

If we remove every edge from a maximal collection of edge disjoint copies of Hi, i = 1, 2, . . . , `

then we destroy all copies of Hi, i = 1, 2, . . . , `. Furthermore, no t-set will be independent if

E0 > 10
s∑
i=1

µi.

This is equivalent to

10
s∑
i=1

(
t

r

)(
n

vi − r

)
e2
i p
ei
r!(vi − r)!

αi
<

1

2

(
t

r

)
p

or
s∑
i=1

(
n

vi − r

)
e2
i p
ei−1 r!(vi − r)!

αi
<

1

20

and this is implied by
s∑
i=1

e2
i c
ei−1
1

αi
<

1

20r!
.

This follows from the definition of c1 and so

after removal of edges, α(G) ≤ t. (8)

Thus the chromatic number is at least

k =
n

t
.

We re-express things to eliminate n. We have

k =
1

c2

(
c1

r! log n

)1/(r−1)

n1−1/(ρ(r−1)),

k(r−1)/(r−1−1/ρ) =
1

c
(r−1)/(r−1−1/ρ)
2

(
c1

r! log n

)1/(r−1−1/ρ)

n.
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Now we see from this that
r − 1

r − 1− 1/ρ
log k ∼ log n.

(Here ∼ denotes = (1 + o(1)) as k, n→∞.)

So,

n ∼ k(r−1)/(r−1−1/ρ)c
(r−1)/(r−1−1/ρ)
2

(
r!(r − 1) log k

c1(r − 1− 1/ρ)

)1/(r−1−1/ρ)

.

Substituting in (1), this gives

Ep ≤
2c1

r!

(
k(r−1)/(r−1−1/ρ)c

(r−1)/(r−1−1/ρ)
2

(
r!(r − 1) log k

c1(r − 1− 1/ρ)

)1/(r−1−1/ρ)
)r−1/ρ

= 2

(
r!

c1

)1/(r−1−1/ρ)

c
(r−1)(r−1/ρ)/(r−1−1/ρ))
2

(
r − 1

r − 1− 1/ρ

)(r−1/ρ)/(r−1−1/ρ)

× k(r−1)(r−1/ρ)/(r−1−1/ρ)(log k)(r−1/ρ)/(r−1−1/ρ).

Note that n→∞ implies k →∞ and so this completes the proof of Theorem 4. 2

3 (r, `)-systems

In this section we give the short poof of Theorem 5. The only observation we need, which

is very simple, is that an (r, `)-system is one where a particular finite list of hypergraphs is

forbidden.

Proof of Theorem 5. We use Theorem 4. Let Hi, i = 1, 2, . . . , r − ` be the hypergraph

consisting of two edges intersecting in `+ i− 1 vertices. Then an (r, `)-system is one which

is H-free, where H = {H1, . . . , Hr−`}. Using the notation of the previous section we have

ρ =
1

r − `
s = 1

α1 = `!(r − `)!2

c1 =
`!(r − `)!2

200r!
c2 = 101/(r−1).

Plugging these values into the expression for cH in Theorem 4 gives us our expression for

cr,l. This completes the proof of Theorem 5. 2
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4 Independent neighborhoods

In this section we prove Theorem 6. We need the following three Lemmas. The first was

proved in [7] and follows immediately from the Local Lemma.

Lemma 10 ([7]) Let r ≥ 2 and let G be an r-graph with maximum degree at most kr−1/4r.

Then the chromatic number of G is at most k.

The next Lemma has been proved by several researchers. In the form below it essentially

appears in [10].

Lemma 11 Let 0 < α ≤ 1/2 and let G be a hypergraph on n vertices. Suppose that every

subhypergraph P of G (including G itself) with m vertices has an independent set of size

mα. Then G has chromatic number at most 2n1−α.

Our final Lemma is fairly straightforward, and generalizes the easy argument that an n

vertex triangle-free graph has an independent set of size at least
√
n (actually, much more

is guaranteed for graphs).

Lemma 12 Let r ≥ 3 and let G be an n-vertex r-graph with independent neighborhoods.

Then G has an independent set of size at least n1/r.

Proof. Let ∆ be the maximum size of a neighborhood of an (r − 1)-set of vertices. Then∑
v∈V (G)

d(v) =
∑
|S|=r−1

d(S) ≤
(

n

r − 1

)
∆ <

∆nr−1

2
.

Consequently, the average degree d of G satisfies d ≤ ∆nr−2/2. Now by Turán’s theorem,

G has an independent set of size at least (1 − 1/r)n/d1/(r−1). Therefore, we have an inde-

pendent set of size at least max{∆, (1− 1/r)n/d1/(r−1)} ≥ n1/r. 2

Proof of Theorem 6. For the upper bound, we apply Theorem 4 with H = {Fr}. In the

notation of the proof of Theorem 4, we have

ρ =
r

r − 1
s = 1

α1 = (r − 1)!2

c1 =

(
(r − 1)!2

50r!(r + 1)2

)1/r

c2 = 101/(r−1).
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Plugging these values into the expression for cH in Theorem 4 gives us our expression for

cI . For the lower bound, suppose that G is an r-graph with independent neighborhoods

and |G| = bkr+1/(r−1) where b = 1/(40r22r). Let k be sufficiently large and even (a similar

argument works for odd k) and let A be the set of vertices in G with degree less than

d = kr−1/(2r2r). By Lemma 10, we can color the induced subhypergraph G[A] properly by

k/2 colors. Let G′ ⊂ G be the r-graph induced by the uncolored vertices. Since every vertex

of G′ has degree (in G) at least d, the number of vertices n of G′ satisfies n ≤ rbkr+1/(r−1)/d <

kr/(r−1)/20. Applying Lemmas 12 and 11, we conclude that G′ has a proper coloring where

the number of colors is at most

2n1−1/r < (2/5)k < k/2.

Putting these two colorings together yields a proper coloring of G with at most k colors. 2

5 Excluding a hypertree

In this section we prove Theorem 7. Recall that an r-tree is a connected r-forest, where

connected means that for every two vertices x, y, there is a sequence of edges E1, . . . , El such

that x ∈ E1, y ∈ El, and Ei ∩ Ei+1 6= ∅ for all i = 1, 2, . . . , l − 1. If T is an r-tree, then an

edge e ∈ T is a leaf if e contains at most one vertex of degree greater than one.

Proof of Theorem 7. We begin by inductively defining a sequence of collections of r-trees.

Set F0 = {T}. For i = 1, . . . , t − 1 let Fi be the collection of r-trees given by deleting a

leaf from some r-tree in Fi−1. Given an r-tree T ∈ Fi with i ≥ 1, say that a vertex v of T

is a connector if adding a leaf to v results in a tree T ′ ∈ Fi−1. Such a connector exists by

the way we have defined the sequence {Fi}. Note that each r-tree in Fi has t− i edges and

spans (r − 1)(t− i) + 1 vertices.

Let V be the vertex set of the r-graph G that does not contain a copy of T . We use

the sets F1, . . . ,Ft−1 to define a collection of disjoint subsets of V . Set G1 = G and let A1

be the set of vertices v ∈ V with the property that there exists some r-tree T ′ ∈ F1 such

that G contains a copy of T ′ with v as a connector. For each such vertex v let Xv be the

set of vertices (other than v) spanned by one of these r-trees T ′ ∈ F1 that contain v as a

connector. Note that G2 := G [V \ A1] does not contain any copies of any r-tree in F1 (such

a copy would include a connector and all such vertices were gathered into A1).

Now, suppose disjoint sets A1, . . . , Ai ⊆ V have been defined with the following proper-

ties:
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(i) If v ∈ Aj then there is a copy of an r-tree T ′ ∈ Fj in Gj with v as a connector. The

set of vertices (other than v) spanned by one such r-tree is Xv.

(ii) The graph

Gi+1 = G
[
V \ ∪ij=1Aj

]
does not contain any copy of an r-tree in Fi.

Let Ai+1 be the set of connectors of copies of r-trees in Fi+1 in Gi+1. For each v ∈ Ai+1 let

Xv ∪ {v} be the vertex set of one of the r-trees T ′ ∈ Fi+1 that lies in Gi+1 and contains v

as a connector. Note that V − ∪t−1
i=1Ai contains no edges of G, since Ft−1 is the tree with

one edge.

Now consider the graph HG with vertex set V and edge set⋃
v∈V

{{u, v} : u ∈ Xv} .

In words we put an edge between each vertex v and every vertex in the set Xv. Note that

every induced subgraph of HG has average degree bounded above 2(r − 1)(t − 1) (as all

edges in the subgraph induced by Y are ‘generated’ by one of the vertices in Y and each

such vertex ‘generates’ at most (t− 1)(r − 1) edges). It follows that GH is 2(r − 1)(t− 1)-

degenerate and can be colored with 2(r− 1)(t− 1) + 1 colors. Let f be a proper coloring of

HG with 2(r − 1)(t− 1) + 1 colors.

We claim that f is also a proper coloring of G. Let e be an edge in G. Then we have

observed above that e must intersect some Aj. Let v ∈ e ∩ Ai where i is the smallest index

such that e ∩ Ai 6= ∅. Consider the r-tree T ′ ∈ Fi that contains v as a connector and spans

{v} ∪ Xv. If e ∩ Xv = ∅ then Xv ∪ e spans a copy of an r-tree in Fi−1, which contra-

dicts the properties of the sets A1, . . . , At−1. Therefore e contains some vertex u ∈ Xv. As

{u, v} ∈ E(HG), f assigns u and v different colors. 2

6 Cliques

In this section we prove Theorem 8. The lower bound follows immediately from the lower

bound in Theorem 1 which puts no restriction on the hypergraph to be colored. For the

upper bound, we must provide a construction that has fewer edges than the one in Theorem

4 when r ≥ 3. It is motivated by similar constructions in Ramsey-Turán theory.
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Construction. Fix r ≥ 3. Let G be the r-graph with vertex set V = [n] obtained by the

following random process. For each i ∈ [n], randomly partition {i+ 1, . . . , n} into r− 1 sets

V i
1 , . . . , V

i
r−1, each of size dn−i

r−1
e or bn−i

r−1
c. Now add all edges of the form {i, v1, . . . , vr−1},

where i < vj and vj ∈ V i
j for all j. 2

Proof of Theorem 8. Let us first observe that G contains no copy of Kr
r+1. Indeed, if

K is such a copy, let i denote its smallest vertex. Since there are r other vertices in K, by

the pigeonhole principle, two of these, say w and y lie in V i
j for some j. But this means

that there is no edge of G containing all three of i, w, y, and in particular, at least one

(in fact many) edge of K is missing in G. This contradiction implies that G contains no

(r + 1)-clique.

If |G| denotes the number of edges in G, then by counting edges from their leftmost

endpoint we see that

|G| ≤
n−r+1∑
i=1

(
n− i
r − 1

+ 1

)r−1

<
1

(r − 1)r−1

n+r−2∑
j=1

jr−1 <
nr

(r − 1)r−1
.

Let us obtain an upper bound on the independence number of G. For any r-tuple f =

{i1, . . . , ir} with i1 < · · · < ir, let Ef be the event that f ∈ G. If f = {i1, . . . , ir} and

f ′ = {i′1, . . . , i′r} with i1 < i2 < · · · < ir and i′1 < i′2 < · · · i′r, then

Ef and Ef ′ are independent if and only if i1 6= i′1. (9)

Now pick a set S = {v1, . . . , vs} ⊂ V with v1 < v2 < · · · < vs. Let Gi be the set of edges in

G[S] whose smallest vertex is vi. Then

P(S is independent) = P(Gi = ∅ for all i = 1, . . . , s)

<

s/2∏
i=1

P(Gi = ∅)

=

s/2∏
i=1

P(∃j : V vi
j ∩ {vi+1, . . . , vs} = ∅)

<

s/2∏
i=1

(r − 1)
(d(n−vi)/(r−1)e

s−i

)(
n−vi

s−i

) (10)

<

s/2∏
i=1

1

(r − 1)s−i−1

(
1 +

r − 1

n− vi

)s−i
14



<

s/2∏
i=1

1

(r − 1)s−i−1
exp

(
(s− i)(r − 1)

s/2

)

<

s/2∏
i=1

e2r−2

(r − 1)s/2−1

<

(
er−1

(r − 1)s/4−1/2

)s
.

where the first inequality holds due to (9). While v1, . . . , vs are considered fixed and V vi
j is

random, we can instead compute the probability by thinking of V vi
j as fixed and v1, . . . , vs

as random. The fact that these probabilities are the same boils down to a binomial identity

such as
(
a
b

)(
a−b
c

)
=
(
a
c

)(
a−c
b

)
. In this way we obtain (10).

Consequently, the expected number of independent sets of size s in G is at most(
n

s

)
·
(

er−1

(r − 1)s/4−1/2

)s
<

(
ner

s(r − 1)s/4−1/2

)s
< 1

as long as s > 5 logr−1 n. This shows that there exists such a G with chromatic number k

at least n/(5 logr−1 n). Since the number of edges in G is at most nr

(r−1)r−1 , this construction

gives

mk(K
r
r+1) < dr(k log k)r

where dr < (10r/ log r)r/(r − 1)r−1.

Now we prove the statement about graphs. By standard results in Ramsey theory, every

Ks-free graph on n vertices has an independent set of size at least nδs , where δs > 0. Now

choose ε = εs such that 0 < ε < 1/(1 − δs) − 1. Suppose that G is a Ks-free graph with

k2+ε edges, where k is sufficiently large. Let A be the set of vertices in G with degree less

than k/2− 1. We can greedily color the induced subgraph G[A] properly by k/2 colors. Let

G′ ⊂ G be the subgraph induced by the uncolored vertices. Since every vertex of G′ has

degree (in G) at least k/2, the number of vertices n of G′ satisfies n ≤ 4k1+ε. By the choice

of δs, every m-vertex subgraph of G′ has an independent set of size at least mδs . Hence by

Lemma 11, we conclude that G′ has a proper coloring where the number of colors is at most

2n1−δs < 2(4k1+ε)1−δs < k/2,

where the last inequality holds by the choice of ε and the fact that k is sufficiently large.

Putting these two colorings together yields a proper coloring of G with at most k colors. 2
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7 Concluding remarks and open problems

In this section we repeat some of the open questions mentioned throughout the paper and

state a couple of new ones as well.

• Attempts to improve the lower bound in Theorem 6 lead to the following question which

is independently interesting. Suppose that G is an r-graph with independent neighborhoods

and maximum degree ∆. What are the best upper bounds one can obtain on the chromatic

number of G? The Local lemma gives O(∆1/(r−1)), but the results for the graph case (r = 2)

suggest that one should be able to improve this to O((∆/ log ∆)1/(r−1)). The r = 2 case, that

triangle-free graphs with maximum degree ∆ have chromatic number at most O(∆/ log ∆),

is a deep result due to Johansson, but those ideas do not extend to r > 2. When r = 3 we

pose the following weaker statement.

Problem. Let G be a 3-graph with independent neighborhoods and maximum degree ∆.

Prove that the chromatic number of G is o(
√

∆).

A much stronger statement for graphs has been conjectured by Alon-Krivelevich-Sudakov [2].

As we mentioned earlier, we do not believe that the order of magnitude of the upper

bound in Theorem 6 is correct either. Perhaps some generalization of Kim’s construction

for R(3, t) would improve the log factors.

• Let T be an r-tree with t edges and G be an r-graph containing no copy of T . When r = 2,

it is well-known that the chromatic number of G is at most t, and this is sharp. Theorem

7 gives an upper bound of about 2rt, but again the best lower bound we have is roughly

t. It would be very interesting to narrow this gap, in particular to determine whether the

coefficient of t depends on r in an essential way2.

• Our final question is perhaps too ambitious given the current state of knowledge, and

pertains to Theorem 8.

Problem. Characterize all 3-graphs H such that mk(H) = k3+o(1).

Acknowledgement. We thank the referees for their comments.

2Recently Po-Shen Loh has proved optimal results for this problem
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