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Abstract

We describe and analyse a simple greedy algorithm 2greedy that finds a good 2-matching

M in the random graph G = Gδ≥3
n,cn when c ≥ 10. A 2-matching is a spanning subgraph of

maximum degree two and G is drawn uniformly from graphs with vertex set [n], cn edges and

minimum degree at least three. By good we mean that M has O(log n) components. We then

use this 2-matching to build a Hamilton cycle in O(n1.5+o(1)) time w.h.p..

1 Introduction

There have been many papers written on the existence of Hamilton cycles in random graphs.

Komlós and Szemerédi [18], Bollobás [6], Ajtai, Komlós and Szemerédi [1] showed that the question

is intimately related to the minimum degree. Loosely speaking, if we are considering random graphs

with n vertices and minimum degree at least two then we need Ω(n log n) edges in order that they

are likely to be Hamiltonian.

For sparse random graphs with O(n) random edges, one needs to have minimum degree at least

three. This is to avoid having three vertices of degree two sharing a common neighbor. There are

several models of a random graph in which minimum degree three is satisfied: Random regular

graphs of degree at least three, Robinson and Wormald [22], [23] or the random graph G3−out,

Bohman and Frieze [5]. Bollobás, Cooper, Fenner and Frieze [8] considered the classical random

graph Gn,m with conditioning on the minimum degree k i.e. each graph with vertex set [n] and

m edges and minimum degree at least k is considered to be equally likely. Denote this model of a

random graph by Gδ≥k
n,m. They showed that for every k ≥ 3 there is a ck ≤ (k+1)3 such that if c ≥ ck

then w.h.p. Gδ≥k
n,cn has (k−1)/2 edge disjoint Hamilton cycles, where a perfect matching constitutes

half a Hamilton cycle in the case where k is even. It is reasonable to conjecture that ck = k/2. The

results of this paper and a companion [15] reduce the known value of c3 from 64 to below 10 (below

2 if you accept a “numerical proof“). It can be argued that replacing one incorrect upper bound
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by a smaller incorrect upper bound does not constitute significant progress. However, the main

contribution of this paper is to introduce a new greedy algorithm for finding a large 2-matching in

a random graph and to give a (partial) analysis of its performance and of course to apply it to the

Hamilton cycle problem.

One is interested in the time taken to construct a Hamilton cycle in a random graph. Angluin and

Valiant [2] and Bollobás, Fenner and Frieze [9] give polynomial time algorithms. The algorithm in

[2] is very fast, O(n log2 n) time, but requires Kn log n random edges for sufficiently large K > 0.

The algorithm in [9] is of order n3+o(1) but works w.h.p. at the exact threshold for Hamiltonicity.

Frieze [13] gave an O(n3+o(1)) time algorithm for finding large cycles in sparse random graphs and

this could be adapted to find Hamilton cycles in Gδ≥3
n,cn in this time for sufficiently large c. Another

aim of [15] and this paper is reduce this running time. The results of this paper and its companion

[15] will reduce this to n1.5+o(1) for sufficiently large c, and perhaps in a later paper, we will further

reduce the running time by borrowing ideas from a linear expected time algorithm for matchings

due to Chebolu, Frieze and Melsted [11].

The idea of [11] is to begin the process of constructing a perfect matching by using the Karp-Sipser

algorithm [17] to find a good matching and then build this up to a perfect matching by using

alternating paths. The natural extension of this idea is to find a good 2-matching and then use

extension-rotation arguments to transform it into a Hamilton cycle. A 2-matching M of G is a

spanning subgraph of maximum degree 2. Each component of M is a cycle or a path (possibly

an isolated vertex) and we let κ(M) denote the number of components of M . The time taken to

transform M into a Hamilton cycle depends heavily on κ(M). The aim is to find a 2-matching M

for which κ(M) is small. The main result of this paper is the following:

Theorem 1. There is an absolute constant c0 > 0 and such that if c ≥ c0 then w.h.p. 2greedy

finds a 2-matching M with κ(M) = O(log n). (This paper gives an analytic proof that c0 ≤ 10. We

have a numerical proof that c0 ≤ 1.6).

Given this theorem, we will show how we can use this and the result of [15] to show

Theorem 2. If c ≥ c0 then w.h.p. a Hamilton cycle can be found in O(n1.5+o(1)) time.

Acknowledgement: I would like to thank my colleague Boris Pittel for his help with this paper.

He ought to be a co-author, but he has declined to do so.

2 Outline of the paper

As already indicated, the idea is to use a greedy algorithm to find a good 2-matching and then

transform it into a Hamilton cycle. We will first give an over-view of our greedy algorithm. As

we proceed, we select edges to add to our 2-matching M . Thus M consists of paths and cycles

(and isolated vertices). Vertices of the cycles and vertices interior to the paths get deleted from

the current graph, which we denote by Γ. No more edges can be added incident to these interior

vertices. Thus the paths can usefully be thought of as being contracted to the set of edges of a

matching M∗ on the remaining vertices of Γ. This matching is not part of Γ. We keep track of the

vertices covered by M∗ by using a 0/1 vector b so that for vertex v, b(v) is the indicator that v is
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covered by M∗. Thus when v is still included in Γ and b(v) = 1, it will be the end-point of a path

in the current 2-matching M .

The greedy algorithm first tries to cover vertices of degree at most two that are not covered by

M or vertices of degree one that are covered by M . These choices are forced. When there are no

such vertices, we choose an edge at random. We make sure that one of the end-points u, v of the

chosen edge has b-value zero. The aim here is to try to quickly ensure that b(v) = 1 for all vertices

of Γ. This will essentially reduce the problem to that of finding another (near) perfect matching in

Γ. The first phase of the algorithm finishes when all of the vertices that remain have b-value one.

This necessarily means that the contracted paths form a matching of the graph Γ that remains

at this stage. Furthermore, we will see that Γ is distributed as Gδ≥2
ν,µ for some ν, µ and then we

construct another (near) perfect matching M∗∗ of Γ by using the linear expected time algorithm

of [11]. We put M and M∗∗ together to create a 2-matching along with the cycles that have been

deleted. Note that some vertices may have become isolated during the construction of M and these

will form single components of our 2-matching. The union of two random (near) perfect matchings

is likely to have O(logn) components. Full details of this algorithm are given in Section 4.

Once we have described the algorithm, we can begin its analysis. We first describe the random

graph model that we will use. We call it the Random Sequence model. It was first used in Bollobás

and Frieze [10] and independently in Chvatál [12]. We used it in [3] for our analysis of the Karp-

Sipser algorithm. We prove the truncated Poisson nature of the degree sequence of the graph Γ that

remains at each stage in Section 3. We then, in Section 4, give a detailed description of 2greedy.

In Section 5 we show that the distribution of the evolving graph Γ can be succinctly described

by a 6-component vector v = (y1, y2, z1, y, z, µ) that evolves as a Markov chain. Here yj , j = 1, 2

denotes the number of vertices of degree j that are not incident with M and z1 denotes the number

of vertices of degree one that are incident with M . y denotes the number of vertices of degree at

least three that are not incident with M and z denotes the number of vertices of degree at least two

that are incident with M . µ denotes the number of edges. It is important to keep ζ = y1 + 2y2 + z1
small and 2greedy will deal immediately with low degree vertices when ζ > 0. In this way we keep

ζ small w.h.p. throughout the algorithm and this will mean that the final 2-matching produced

will have few components. Section 6 first describes the (approximate) transition probabilities of

this chain. There are four types of step in 2greedy that depend on which if any of y1, y2, z1 are

positive. Thus there are four sets of transition probabilities. Given the expected changes in v, we

first show that in all cases the expected change in ζ is negative, when ζ is positive. This indicates

that ζ will not get large and a high probability polylog bound is proven.

We are using the differential equation method and Section 7 describes the sets of differential equa-

tions that can be used to track the progress of the algorithm w.h.p.. The parameters for these

equations will be v̂ = (ŷ1, ŷ2, ẑ, ŷ, ẑ, µ̂). There are four sets of equations corresponding to the four

types of step in 2greedy. It is important to know the proportion of each type of step over a small

interval. We thus consider a sliding trajectory i.e. a weighted sum of these four sets of equations.

The weights are chosen so that in the weighted set of equations we have ŷ′1 = ŷ′2 = ẑ′1 = 0. This

is in line with the fact that ŷ, ẑ, µ̂ ≫ ζ for most of the algorithm. We verify that the expressions

for the weights are non-negative. We then verify that w.h.p. the sliding trajectory and the process

parameters remain close.
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Our next aim is to show that w.h.p. there is a time T such that y(T ) = 0, z(T ) = Ω(n). It

would therefore be most natural to show that for the sliding trajectory, there is a time T̂ such

that ŷ(T̂ ) = 0, ẑ(T̂ ) = Ω(n). The equations for the sliding trajectory are complicated and we have

not been able to do this directly. Instead, we have set up an approximate system of equations (in

parameters ỹ, z̃, µ̃) that are close when c ≥ 10. We can prove these parameters stay close to ŷ, ẑ, µ̂

and that there is a time T̃ such that ỹ(T̃ ) = 0, z̃(T̃ ) = Ω(n). The existence of T̂ is deduced from

this and then we can deduce the existence of T . We then in Section 9 show that w.h.p. 2greedy

creates a matching with O(logn) components, completing the proof of Theorem 1.

Section 10 shows how to use an extension-rotation procedure on our graph G to find a Hamilton

cycle within the claimed time bounds. This procedure works by extending paths one edge at a

time and using an operation called a rotation to increase the number of chances of extending a

path. It is not guaranteed to extend a path, even if it is possible some other way. There is the

notion of a booster. This is a non-edge whose addition will allow progress in the extension-rotation

algorithm. The companion paper [15] shows that for c ≥ 2.67 there will w.h.p. always be many

boosters. To get the non-edges we first randomly choose s = n1/2 log−2 n random edges X of G,

none of which are incident with a vertex of degree three. We then write G = G′ + X and argue

in Section 10.1 that the pair (G′, X) can be replaced by (H,Y ) where H = Gδ≥3
n,cn−s and Y is an

independent random set of edges disjoint from E(H). We then argue in Section 10.3 that w.h.p. Y

contains enough boosters to create a Hamilton cycle within the claimed time bound.

Section 11 contains some concluding remarks.

3 Random Sequence Model

A small change of model will simplify the analysis. Given a sequence x = (x1, x2, . . . , x2M ) ∈ [n]2M

of 2M integers between 1 and N we can define a (multi)-graph Gx = Gx(N,M) with vertex set

[N ] and edge set {(x2i−1, x2i) : 1 ≤ i ≤M}. The degree dx(v) of v ∈ [N ] is given by

dx(v) = | {j ∈ [2M ] : xj = v} |.

If x is chosen randomly from [N ]2M then Gx is close in distribution to GN,M . Indeed, conditional

on being simple, Gx is distributed as GN,M . To see this, note that if Gx is simple then it has vertex

set [N ] and M edges. Also, there are M !2M distinct equally likely values of x which yield the same

graph.

Our situation is complicated by there being lower bounds of 2, 3 respectively on the minimum degree

in two disjoint sets J2, J3 ⊆ [N ]. Initially J2 = J3 = ∅ but we will have to consider instances where

they are non-empty, as our 2-matching algorithm progresses. The vertices in J0 = [N ] \ (J2 ∪ J3)
are of fixed bounded degree and the sum of their degrees is D = o(N). So we let

[N ]2MJ2,J3;D = {x ∈ [N ]2M : dx(j) ≥ i for j ∈ Ji, i = 2, 3 and
∑

j∈J0
dx(j) = D}.

Let G = G(N,M, J2, J3;D) be the multi-graph Gx for x chosen uniformly from [N ]2MJ2,J3;D. It is

clear then that conditional on being simple, G(n,m, ∅, [n]; 0) has the same distribution as Gδ≥3
n,m.

It is important therefore to estimate the probability that this graph is simple. For this and other
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reasons, we need to have an understanding of the degree sequence dx when x is drawn uniformly

from [N ]2MJ2,J3;D. Let

fk(λ) = eλ −
k−1∑

i=0

λi

i!

for k ≥ 0.

Lemma 3.1. Let x be chosen randomly from [N ]2MJ2,J3;D. For i = 2, 3 let Zj (j ∈ [Ji]) be independent

copies of a truncated Poisson random variable Pi, where

P(Pi = t) =
λt

t!fi(λ)
, t = i, i+ 1, . . . .

Here λ satisfies
3∑

i=2

λfi−1(λ)

fi(λ)
|Ji| = 2M −D. (1)

For j ∈ J0, Zj = dj is a constant and
∑

j∈J0 dj = D. Then {dx(j)}j∈[N ] is distributed as {Zj}j∈[N ]

conditional on Z =
∑

j∈[n] Zj = 2M .

Proof Note first that the value of λ in (1) is chosen so that

E(Z) = 2M.

Fix J0, J2, J3 and ξ = (ξ1, ξ2, . . . , ξN ) such that ξj = dj for j ∈ J0 and ξj ≥ k for k = 2, 3 and

j ∈ Jk. Then,

P(dx = ξ) =

(
(2M)!

ξ1!ξ2! . . . ξN !

)/



∑

x∈[N ]2MJ2,J3;D

(2M)!

x1!x2! . . . xN !


 .

On the other hand,

P


(Z1, Z2, . . . , ZN ) = ξ

∣∣∣∣
∑

j∈[N ]

Zj = 2M


 =


(2M)!

∏

j∈J0

1

dj !

3∏

i=2

∏

j∈Ji

λξj

fi(λ)ξj !



/



∑

x∈[N ]2MJ2,J3;D

(2M)!
∏

j∈J0

1

dj !

3∏

i=2

∏

j∈Ji

λxj

fi(λ)xj !




=

(∏3
i=2 fi(λ)−|Ji|λ2M−D

ξ1!ξ2! . . . ξN !

)/



∑

x∈[N ]2MJ2,J3;D

∏3
i=2 fi(λ)−|Ji|λ2M−D

x1!x2! . . . xN !




= P(dx = ξ).

�

To use Lemma 3.1 for the approximation of vertex degrees distributions we need to have sharp

estimates of the probability that Z is close to its mean 2M . In particular we need sharp estimates

of P(Z = 2M) and P(Z − Z1 = 2M − k), for k = o(N). These estimates are possible precisely
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because E(Z) = 2M . Using the special properties of Z, we can refine a standard argument to show

(Appendix 1) that where Nℓ = |Jℓ| and N∗ = N2 +N3 and the variances are

σ2ℓ =
fℓ(λ)(λ2fℓ−2(λ) + λfℓ−1(λ)) − λ2fℓ−1(λ)2

fℓ(λ)2
and σ2 =

1

N∗

3∑

ℓ=2

Nℓσ
2
ℓ , (2)

that if N∗σ2 → ∞ and k = O(
√
N∗σ) then

P (Z = 2M − k) =
1

σ
√

2πN∗

(
1 +O

(
k2 + 1

N∗σ2

))
. (3)

A proof for J2 = [N ] was given in the appendix of [3]. We need to modify the proof in a trivial

way. Given (3) and

σ2ℓ = O(λ), ℓ = 2, 3,

we obtain

Lemma 3.2. Let x be chosen randomly from [N ]2MJ2,J3;D.

(a) Assume that logN∗ = O((N∗λ)1/2). For every j ∈ Jℓ and ℓ ≤ k ≤ logN∗,

P(dx(j) = k) =
λk

k!fℓ(λ)

(
1 +O

(
k2 + 1

N∗λ

))
. (4)

Furthermore, for all ℓ1, ℓ2 ∈ {2, 3} and j1 ∈ Jℓ1 , j2 ∈ Jℓ2 , j1 6= j2, and ℓi ≤ ki ≤ logN∗,

P(dx(j1) = k1, dx(j2) = k2) =
λk1

k1!fℓ1(λ)

λk2

k2!fℓ2(λ)

(
1 +O

(
log2N∗

N∗λ

))
. (5)

(b)

dx(j) ≤ logN

(log logN)1/2
q.s.1 (6)

for all j ∈ J2 ∪ J3.

Proof Assume that j = 1 /∈ J0. Then

P(dx(1) = k) =
P

(
Z1 = k and

∑N
i=1 Zi = 2M

)

P

(∑N
i=1 Zi = 2M

)

=
λk

k!fℓ(λ)

P

(∑N
i=2 Zi = 2M − k

)

P

(∑N
i=1 Zi = 2M

) .

Likewise, with j1 = 1, j2 = 2,

P(dx(1) = k1, dx(2) = k2) =
λk1

k1!fℓ1(λ)

λk2

k2!fℓ2(λ)

P

(∑N
i=3 Zi = 2M − k1 − k2

)

P

(∑N
i=1 Zi = 2M

) .

Statement (a) follows immediately from (3) and (b) follows from simple estimations. �

Let νℓx(s) denote the number of vertices in Jℓ, ℓ = 2, 3 of degree s in Gx. Equation (3) and a

standard tail estimate for the binomial distribution shows the following:

1An event E = E(N∗) occurs quite surely (q.s., in short) if P(E) = 1−O(N−a) for any constant a > 0
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Lemma 3.3. Suppose that logN∗ = O((N∗λ)1/2) and Nℓ → ∞ with N . Let x be chosen randomly

from [N ]2MJ2,J3;D. Then q.s.,

D(x) =

{∣∣∣∣ν
ℓ
x(j) − Nℓλ

j

j!f(λ)

∣∣∣∣ ≤
(

1 +

(
Nℓλ

j

j!f(λ)

)1/2
)

log2N, k ≤ j ≤ logN

}
. (7)

�

We can now show Gx, x ∈ [n]2m∅,[n];0 is a good model for Gδ≥3
n,m. For this we only need to show now

that

P(Gx is simple) = Ω(1). (8)

For this we can use a result of McKay [20]. If we fix the degree sequence of x then x itself is

just a random permutation of the multi-graph in which each j ∈ [n] appears dx(j) times. This

in fact is another way of looking at the configuration model of Bollobás [7]. The reference [20]

shows that the probability Gx is simple is asymptotically equal to e−(1+o(1))ρ(ρ+1) where ρ = m2/m

and m2 =
∑

j∈[n] dx(j)(dx(j) − 1). One consequence of the exponential tails in Lemma 3.3 is that

m2 = O(m). This implies that ρ = O(1) and hence that (8) holds. We can thus use the Random

Sequence Model to prove the occurrence of high probability events in Gδ≥3
n,m.

With this in hand, we can now proceed to describe our 2-matching algorithm.

4 Greedy Algorithm

Our algorithm will be applied to the random graph G = Gδ≥3
n,m and analysed in the context of Gx.

As the algorithm progresses, it makes changes to G and we let Γ denote the current state of G.

The algorithm grows a 2-matching M and for v ∈ [n] we let b(v) be the 0/1 indicator for vertex v

being incident to an edge of M . We let

• µ be the number of edges in Γ,

• Yk = {v ∈ [n] : dΓ(v) = k and b(v) = 0}, k = 0, 1, 2,

• Zk = {v ∈ [n] : dΓ(v) = k and b(v) = 1}, k = 0, 1.

• Y = {v ∈ [n] : dΓ(v) ≥ 3 and b(v) = 0}, This is J3 of Section 3.

• Z = {v ∈ [n] : dΓ(v) ≥ 2 and b(v) = 1}, This is J2 of Section 3.

• M is the set of edges in the current 2-matching.

• M∗ is the matching induced by the path components of M i.e. if P ⊆M is a path from x to

y then (x, y) will be an edge of M∗ and the internal edges of P will have been deleted from

Γ.

Observe that the sequence b = (b(v)) is determined by Y0, Y1, Y2, Z0, Z1, Y, Z. Note that Y0, Z0

play no active role inn the algorithm. They are the vertices that have been removed from Γ.
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If Y1 6= ∅ then we choose v ∈ Y1 and add the edge incident to v to M , because doing so is not a

mistake i.e. there is a maximum size 2-matching of Γ that contains this edge. If Y1 = ∅ and Y2 6= ∅
then we choose v ∈ Y2 and add one of the two edges incident to v to M , because doing so is also

not a mistake i.e. there is a maximum size 2-matching of Γ that contains this edge. We could

immediately take both edges, but curiously enough the differential equations are simpler when we

only take one. The other edge will eventually be picked up by the next case. We move v into Z1.

Similarly, if Y2 = ∅ and Z1 6= ∅ we choose v ∈ Z1 and add the unique edge of Γ incident to v to M .

When we add an edge to M it can cause vertices of Γ to become internal vertices of paths of M and

be deleted from Γ. In particular, this happens to the neighbor of v ∈ Z1 in the case just described.

When Y1 = Y2 = Z1 = ∅ 6= Y we choose a random edge incident to a vertex of Y . In this way we

hope to end up in a situation where Y2 = Z1 = Y = ∅ and |Z| = Ω(n). This has advantages that

will be explained later in Section 9 and we have only managed to prove that this happens w.h.p.

when c ≥ 10. When Y1 = Y2 = Z1 = Y = ∅ we are looking for a maximum matching in the graph

Γ that remains and we can use the results of [11].

We now give details of the steps of

Algorithm 2greedy:

Step 1(a) Y1 6= ∅
Choose a random vertex v from Y1. Suppose that its neighbor in Γ is w. We add (v, w) to

M and move v to Z0.

(i) If b(w) = 0 then we add (v, w) to M∗. If w is currently in Y then move it to Z. If it is

currently in Y1 then move it to Z0. If it is currently in Y2 then move it to Z1. Call this

re-assigning w.

(ii) If b(w) = 1 let u be the other end point of the path P of M that contains w. We remove

(w, u) from M∗ and replace it with (v, u). We move w to Z0 and make the requisite

changes due to the loss of other edges incident with w. Call this tidying up.

Step 1(b): Y1 = ∅ and Y2 6= ∅
Choose a random vertex v from Y2. Suppose that its neighbors in Γ are w1, w2.

If w1 = w2 = v then we simply delete v from Γ. (We are dealing with loops because we are

analysing the algorithm within the context of Gx. This case is of course unnecessary when

the input is simple i.e. for Gδ≥k
n,m).

Continuing with the most likely case, we choose one of the neighbors at random, say w1. We

move v to Z1. We delete the edge (v, w1) from Γ and place it into M . In addition,

(i) If b(w1) = 0 then put b(w1) = 1 and add the edge (v, w1) to M∗. Re-assign w1.

(ii) If b(w1) = 1 let u1 be the other end point of the paths P1 of M that contains w1

respectively. Adding the edge (v, w1) creates a path (u1, P
′
1, w1, v) to M , where P ′

1 is the

reversal of P1. We delete the edge (w1, u1) from M∗ and add (u1, v) in its place. Vertex

w1 is deleted from Γ. Tidy up.

Step 1(c): Y2 = ∅ and Z1 6= ∅
Choose a random vertex v from Z1. Let u be the other endpoint of the path P of M that
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contains v. Let w be the unique neighbor of v in Γ. We delete v from Γ and add the edge

(v, w) to M . In addition there are two cases.

(1) If b(w) = 0 then we delete (v, u) from M∗ and replace it with (w, u) and put b(w) = 1

and re-assign w.

(2) If b(w) = 1 then let u′ be the other end-point of the path containing w in M . If u′ 6= u

then we delete vertex w and the edge (u′, w) from M∗ and replace it with (u, u′). Tidy

up. If u′ = u then we have created a cycle C and we delete it from Γ.

Step 2: Y1 = Y2 = Z1 = ∅ and Y 6= ∅
Choose a random edge (v, w) incident with a vertex v ∈ Y . We delete the edge (v, w) from Γ

and add it to M . We put b(v) = 1 and move it from Y to Z. There are two cases.

(i) If b(w) = 0 then put b(w) = 1 and move it from Y to Z. We add the edge (v, w) to M∗.

(ii) If b(w) = 1 let u be the other end point of the path in M containing w. We delete vertex

w and the edge (u,w) from M∗ and replace it with (u, v). Tidy up.

Step 3: Y1 = Y2 = Z1 = Y = ∅
At this point Γ will be seen to be distributed as Gδ≥2

ν,µ for some ν, µ where µ = O(ν). As such,

it contains a (near) perfect matching M∗∗ [15] and it can be found in O(ν) expected time

[11].

The output of 2greedy is set of edges in M ∪M∗∗.

No explicit mention has been made of vertices contributing to Y0. When we we tidy up after

removing a vertex w, any vertex whose sole neighbor is w will be placed in Y0.

5 Uniformity

In the previous section, we described the action of the algorithm as applied to Γ. In order to prove

a uniformity property, it is as well to consider the changes induced by the algorithm in terms of x.

When an edge is removed we will replace it in x by a pair of ⋆’s. This goes for all of the edges

removed at an iteration, not just the edges of the 2-matching M . Thus at the end of this and

subsequent iterations we will have a sequence in Λ = ([n] ∪ {⋆})2m where for all i, x2i−1 = ⋆ if and

only if x2i = ⋆. We call such sequences proper.

We use the same notation as in Section 3. Let S = S(x) = {i : x2i−1 = x2i = ⋆}. Note that the

number of edges µ in Gx is given by

µ = m− |S|.

For a tuple v = (Y0, Y1, Y2, Z0, Z1, Y, Z, S) we let Λv denote the set of pairs (x,b) where x ∈ Λ is

proper and

• Yk = {v ∈ [n] : dx(v) = k and b(v) = 0}, k = 0, 1, 2,

• Zk = {v ∈ [n] : dx(v) = k and b(v) = 1}, k = 0, 1.

9



• Y = {v ∈ [n] : dx(v) ≥ 3 and b(v) = 0},

• Z = {v ∈ [n] : dx(v) ≥ 2 and b(v) = 1}.

• S = S(x).

(Recall that b is determined by v).

For vectors x,b we define v(x,b) by (x,b) ∈ Λv(x,b). We also use the notation x ∈ Λv(x) when

the second component b is assumed.

Given two sequences x,x′ ∈ Λ, we say that x′ ⊆ x if xj = ⋆ implies x′j = ⋆. In which case we define

y = x− x′ by

yj =

{
xj If xj 6= ⋆ = x′j
⋆ Otherwise

Thus y records the changes in going from x to x′.

Given two sequences x,x′ ∈ Λ we say that x,x′ are disjoint if xj 6= ⋆ implies that x′j = ⋆. In which

case we define y = x + x′ by

yj =





xj If xj 6= ⋆

x′j If x′j 6= ⋆

⋆ Otherwise

Thus,

if x′ ⊆ x then x′ and x− x′ are disjoint and x = x′ + (x− x′). (9)

Suppose now that (x(0),b(0)), (x(1),b(1)), . . . , (x(t),b(t)) is the sequence of pairs representing the

graphs constructed by the algorithm 2greedy. Here x(i− 1) ⊇ x(i) for i ≥ 1 and so we can define

y(i) = x(i− 1)−x(i). Suppose that v(i) = v(x(i)) for 1 ≤ i ≤ t where v(0) = (∅, ∅, ∅, ∅, ∅, [n], ∅, ∅)

and b(0) = 0.

Let

Λv|b = {x : (x,b) ∈ Λv} .

Lemma 5.1. Suppose that x(0) is a random member of Λv(0)|b(0). Then given

v(0),v(1), . . . ,v(t), the vector x(t) is a random member of Λv(t)|b(t) for all t ≥ 0, that is, the

distribution of x(t) is uniform, conditional on the edges deleted in the first t steps. (Note that b(t)

is fixed by v(t) here).

Proof We prove this by induction on t. It is trivially true for t = 0. Fix t ≥ 0,x(t),b(t),x(t+

1),b(t + 1). We define a sequence x(t) = z1, z2, . . . , zs = x(t + 1) where zi+1 is obtained from zi
by a basic step

Basic Step: Given x,b and v = v(x,b) we create new sequences x′ = Aj(x),b′ = Bj(b) and

v′ = v(x′,b′). Let w = x− x′. A basic step corresponds to replacing the edge (w2j−1, w2j) by an

edge of the matching M , for some index j. Let u = w2j−1, v = w2j .

Case 1: Here we assume b(u) = b(v) = 0.

Replace x2j−1, x2j by ⋆’s and put b(u) = b(v) = 1.
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Case 2: Here we assume b(u) = 0, b(v) = 1.

Replace x2k−1, x2k by ⋆’s for every k such that v ∈ {x2k−1, x2k} and put b(u) = 1.

Case 3: Here we assume b(u) = b(v) = 1.

Replace w2k−1, w2k by ⋆’s for every k such that {u, v} ∩ {w2k−1, w2k} 6= ∅.

Claim 2.1. Suppose that x′ = Aj(x) and y = x − x′ and b′ = Bj(b). Then the map φ : z ∈
Λy

v(x,b) 7−→ (z− y,b′) is 1-1 and each (z′,b′) ∈ Λv(x′,b′) is the image under φ of a unique member

of Λy

v(x,b), where Λy

v(x,b) =
{

(z,b) ∈ Λv(x,b) : z ⊇ y
}
.

Proof of Claim 2.1. Equation (9) implies that φ is 1-1 i.e. z∗ − y = z − y implies z∗ = z. Let

v = v(x,b) and v′ = v(x′,b′). Choose (w,b′) ∈ Λv′ . Because S′ is determined by v′, we see that

y and w are necessarily disjoint and we simply have to check that if x∗ = w+y then (x∗,b) ∈ Λv.

But in all cases, v(x∗,b) is determined by v′ and y and this implies that v(x∗,b) = v(x,b).

This statement is the crux of the proof and we should perhaps justify it a little more. Suppose

then that we are given v′ (and hence b′) and y and b. Observe that this determines dx∗(v) for

all v ∈ Y ′
0 ∪ Y ′

1 ∪ Y ′
2 ∪ Z ′

0 ∪ Z ′
1. Together with b(v) this determines the place of v in the partition

defined by v. Now Y ′ ⊆ Y and it only remains to deal with v ∈ Z ′. If dy(v) > 0 then v ∈ Y ∪ Z
and b(v) determines which of the sets v is in. If dy(v) = 0 and b(v) = 1 then v ∈ Z. If dy(v) = 0

and b(v) = 0 then v ∈ Y . This is because b(v) = 0 and b′(v) = 1 implies that we have put one of

the edges incident with v into M .

End of proof of Claim 2.1

The claim implies (inductively) that if x is a uniform random member of Λv|b and we do a sequence

of basic steps involving the “deletion” of y1,y2, . . . ,ys where yi+1 ⊆ x − y1 − · · ·yi, then x′ =

x−y1− · · ·−ys is a uniform random member of Λv′|b′ , where v′ = v(x′,b′) for some b′. This will

imply Lemma 5.1 once we check that a step of 2greedy can be broken into basic steps.

First consider Step 1(a). First we choose a vertex in x ∈ Y1. Then we apply Case 1 or 2 with

probabilities determined by v.

Now consider Step 1(b). First we choose a vertex in x ∈ Y2. We can then replace one of the edges

incident with x by a matching edge. We apply Case 1 or Case 2 with probabilities determined by

v.

For Step 1(c) we apply one of Case 2 or Case 3 with probabilities determined by v.

For Step 2, we apply one of Case 1 or Case 2 with probabilities determined by v.

This completes the proof of Lemma 5.1. �

As a consequence

Lemma 5.2. The random sequence (v(t), t = 0, 1, 2, . . . , ) is a Markov chain.

Proof Slightly abusing notation,

P(v(t+ 1) | v(0), . . . ,v(t))

=
∑

w′∈Λ
v(t+1)

P(w′ | v(0), . . . ,v(t))

11



=
∑

w′∈Λ
v(t+1)

∑

w∈Λ
v(t)

P(w′,w | v(0), . . . ,v(t))

=
∑

x′∈Λ
v(t+1)

∑

w∈Λ
v(t)

P(w′ | v(0), . . . ,v(t− 1),w)P(w | v(0), . . . ,v(t))

=
∑

w′∈Λ
v(t+1)

∑

w∈Λ
v(t)

P(w′ | w)|Λv(t)|−1, using Lemma 5.1.

which depends only on v(t),v(t+ 1). �

We now let

|v| = {|V0,0|, |V0,1|, |Y1|, |Y2|, |Z1|, |Y |, |Z|, |S|} .
Then we let Λ|v| denote the set of (x,b) ∈ Λ with |v(x,b)| = |v| and we let

Λ|v| |b =
{
x : (x,b) ∈ Λ|v|

}
.

It then follows from Lemma 5.2 that by symmetry,

Lemma 5.3. The random sequence |v(t)|, t = 0, 1, 2, . . . , is a Markov chain.

A component of a graph is trivial if it consists of a single isolated vertex.

Lemma 5.4. Whp the number of non-trivial components of the graph induced by M ∪ M∗∗ is

O(logn).

Proof Lemma 3 of Frieze and  Luczak [14] proves that w.h.p. the union of two random (near)

perfect matchings of [n] has at most 3 log n components. Lemma 5.1 implies that at the end of

Phase 1, Γ is a copy of Gδ≥2
ν,µ , independent of M∗. In which case the (near) perfect matching of Γ

is independent of M∗ and we can apply [14]. �

6 Conditional expected changes

We now set up a system of differential equations that closely describe the path taken by the

parameters of Algorithm 2greedy, as applied to Gx where x is chosen randomly from [n]2m∅,[n];0.
We introduce the following notation: At some point in the algorithm, the state of Γ is described

by x ∈ [n]2MJ2,J3;D, together with an indicator vector b. We let yi = |{v : dx(v) = i and b(v) = 0}|
and let zi = |{v : dx(v) = i and b(v) = 1}| for i ≥ 0. We let y =

∑
i≥3 yi and z =

∑
i≥2 zi and let

2µ =
∑

i≥0 i(yi + zi) be the total degree. Thus in the notation of Section 4 we have yi = |Yi|, i =

1, 2, J3 = Y,N3 = y, z1 = |Z1|, J2 = Z,N2 = z,D = y1 + 2y2 + z1,M = µ and N = y + z. The

definition of N is a small departure from the notation of Section 3. Then it follows from Lemma

3.3, that as long as (y + z)λ = Ω(log2 n), we have q.s.,

yk ≈ λk

k!f3(λ)
y, (k ≥ 3); zk ≈ λk

k!f2(λ)
z, (k ≥ 2). (10)

Here λ is the root of

y
λf2(λ)

f3(λ)
+ z

λf1(λ)

f2(λ)
= 2µ− y1 − 2y2 − z1. (11)

�
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Notational Convention: There are a large number of parameters that change as

2greedy progresses. Our convention will be that if we write a parameter ξ then by default it

means ξ(t), the value of ξ after t steps of the algorithm. Thus the initial value of ξ will be ξ(0).

When ξ is evaluated at a different point, we make this explicit.

We now keep track of the expected changes in v = (y1, y2, y, z1, z2, µ) due to one step of 2greedy.

These expectations are conditional on the current values of b and the degree sequence d. In

the following sequence of equations, ξ′ = ξ(t + 1) represents the value of parameter ξ after the

corresponding step of 2greedy.

Lemma 6.1. The following are the expected one step changes in the parameters

(y1, y2, y, z1, z, µ). We will compute them conditional on the degree sequence d and on |v|. We give

both, because the first are more transparent and the second are what is needed. The error terms ε?
are the consequence of multi-edges and we will argue that they are small.

Step 1. y1 + y2 + z1 > 0.

Step 1(a). y1 > 0.

E[y′1 − y1 | b,d] = −1 −


 y1

2µ
+
∑

k≥2

kzk
2µ

(k − 1)
y1
2µ


+

∑

k≥2

kzk
2µ

(k − 1)
2y2
2µ

+ ε12. (12)

E[y′1 − y1 | |v|] = −1 − y1
2µ

− y1z

4µ2
λ2f0(λ)

f2(λ)
+
y2z

2µ2
λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
(13)

E[y′2 − y2 | b,d] = −


2y2

2µ
+
∑

k≥2

kzk
2µ

(k − 1)
2y2
2µ


+

∑

k≥2

kzk
2µ

(k − 1)
3y3
2µ

+ ε14. (14)

E[y′2 − y2 | |v|] = −y2
µ

− y2z

2µ2
λ2f0(λ)

f2(λ)
+

yz

8µ2
λ3

f3(λ)

λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
(15)

E[z′1 − z1 | b,d] = −


 z1

2µ
+
∑

k≥2

kzk
2µ

(k − 1)
z1
2µ


+

∑

k≥2

kzk
2µ

(k − 1)
2z2
2µ

+ ε16. (16)

E[z′1 − z1 | |v|] = − z1
2µ

− z1z

4µ2
λ2f0(λ)

f2(λ)
+

z2

4µ2
λ4f0(λ)

f2(λ)2
+O

(
log2N

λN

)
. (17)

E[y′ − y | b,d] = −


∑

k≥3

kyk
2µ

+
∑

k≥2

kzk
2µ

(k − 1)
3y3
2µ


+ ε18. (18)

E[y′ − y | |v|] = − y

2µ

λf2(λ)

f3(λ)
− yz

8µ2
λ3

f3(λ)

λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
. (19)
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E[z′ − z | b,d] =
∑

k≥3

kyk
2µ

−
∑

k≥2

kzk
2µ

−
∑

k≥2

kzk
2µ

(k − 1)
2z2
2µ

+ ε20. (20)

E[z′ − z | |v|] =
y

2µ

λf2(λ)

f3(λ)
− z

2µ

λf1(λ)

f2(λ)
− z2

4µ2
λ4f0(λ)

f2(λ)2
+O

(
log2N

λN

)
. (21)

E[µ′ − µ | b,d] = −1 −
∑

k≥2

kzk
2µ

(k − 1) + ε22. (22)

E[µ′ − µ | |v|] = −1 − z

2µ

λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
. (23)

Step 1(b). y1 = 0, y2 > 0.

E[y′1 − y1 | b,d] =
∑

k≥2

kzk
2µ

(k − 1)
2y2
2µ

+ ε24. (24)

E[y′1 − y1 | |v|] =
y2z

2µ2
λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
. (25)

E[y′2 − y2 | b,d] = −1 − 2y2
2µ

−
∑

k≥2

kzk
2µ

(k − 1)
2y2
2µ

+
∑

k≥2

kzk
2µ

(k − 1)
3y3
2µ

+ ε26. (26)

E[y′2 − y2 | |v|] = −1 − y2
µ

− y2z

2µ2
λ2f0(λ)

f2(λ)
+

yz

8µ2
λ3

f3(λ)

λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
. (27)

E[z′1 − z1 | b,d] = 1 − z1
2µ

−
∑

k≥2

kzk
2µ

(k − 1)
z1
2µ

+
∑

k≥2

kzk
2µ

(k − 1)
2z2
2µ

+ ε28. (28)

E[z′1 − z1 | |v|] = 1 − z1
2µ

− z1z

4µ2
λ2f0(λ)

f2(λ)
+

z2

4µ2
λ4f0(λ)

f2(λ)2
+O

(
log2N

λN

)
. (29)

E[y′ − y | b,d] = −
∑

k≥3

kyk
2µ

−
∑

k≥2

kzk
2µ

(k − 1)
3y3
2µ

+ ε30. (30)

E[y′ − y | |v|] = − y

2µ

λf2(λ)

f3(λ)
− yz

8µ2
λ3

f3(λ)

λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
. (31)

E[z′ − z | b,d] =
∑

k≥3

kyk
2µ

−
∑

k≥2

kzk
2µ

−
∑

k≥2

kzk
2µ

(k − 1)
2z2
2µ

+ ε32. (32)

E[z′ − z | |v|] =
y

2µ

λf2(λ)

f3(λ)
− z

2µ

λf1(λ)

f2(λ)
− z2

4µ2
λ4f0(λ)

f2(λ)2
+O

(
log2N

λN

)
. (33)
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E[µ′ − µ | b,d] = −1 −
∑

k≥2

kzk
2µ

(k − 1) + ε34. (34)

E[µ′ − µ | |v|] = −1 − z

2µ

λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
. (35)

(36)

Step 1(c). y1 = y2 = 0, z1 > 0.

E[y′1 − y1 | b,d] = O

(
1

N

)
. (37)

E[y′1 − y1 | |v|] = O

(
1

N

)
. (38)

E[y′2 − y2 | b,d] =
∑

k≥2

kzk
2µ

(k − 1)
3y3
2µ

+ ε39. (39)

E[y′2 − y2 | |v|] =
yz

8µ2
λ3

f3(λ)

λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
. (40)

E[z′1 − z1 | b,d] = −1 − z1
2µ

−
∑

k≥2

kzk
2µ

(k − 1)
z1
2µ

+
∑

k≥2

kzk
2µ

(k − 1)
2z2
2µ

+ ε41. (41)

E[z′1 − z1 | |v|] = −1 − z1
2µ

− z1z

4µ2
λ2f0(λ)

f2(λ)
+

z2

4µ2
λ4f0(λ)

f2(λ)2
+O

(
log2N

λN

)
. (42)

E[y′ − y | b,d] = −
∑

k≥3

kyk
2µ

−
∑

k≥2

kzk
2µ

(k − 1)
3y3
2µ

+ ε43. (43)

E[y′ − y | |v|] = − y

2µ

λf2(λ)

f3(λ)
− yz

8µ2
λ3

f3(λ)

λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
. (44)

E[z′ − z | b,d] =
∑

k≥3

kyk
2µ

−
∑

k≥2

kzk
2µ

−
∑

k≥2

kzk
2µ

(k − 1)
2z2
2µ

+ ε45. (45)

E[z′ − z | |v|] =
y

2µ

λf2(λ)

f3(λ)
− z

2µ

λf1(λ)

f2(λ)
− z2

4µ2
λ4f0(λ)

f2(λ)2
+O

(
log2N

λN

)
. (46)

E[µ′ − µ | b,d] = −1 −
∑

k≥2

kzk
2µ

(k − 1) + ε47. (47)

E[µ′ − µ | |v|] = −1 − z

2µ

λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
. (48)
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Step 2. y1 = y2 = z1 = 0.

E[y′1 − y1 | b,d] = O

(
1

N

)
. (49)

E[y′1 − y1 | |v|] = O

(
1

N

)
. (50)

E[y′2 − y2 | b,d] =
∑

k≥2

kzk
2µ

(k − 1)
3y3
2µ

+ ε51. (51)

E[y′2 − y2 | |v|] =
yz

8µ2
λ3

f3(λ)

λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
. (52)

E[z′1 − z1 | b,d] =
∑

k≥2

kzk
2µ

(k − 1)
2z2
2µ

+ ε53. (53)

E[z′1 − z1 | |v|] =
z2

4µ2
λ4f0(λ)

f2(λ)2
+O

(
log2N

λN

)
. (54)

E[y′ − y | b,d] = −1 −
∑

k≥3

kyk
2µ

−
∑

k≥2

kzk
2µ

(k − 1)
3y3
2µ

+ ε55. (55)

E[y′ − y | |v|] = −1 − y

2µ

λf2(λ)

f3(λ)
− yz

8µ2
λ3

f3(λ)

λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
. (56)

E[z′ − z | b,d] = 1 −
∑

k≥2

kzk
2µ

−
∑

k≥2

kzk
2µ

(k − 1)
2z2
2µ

+
∑

k≥3

kyk
2µ

+ ε57. (57)

E[z′ − z | |v|] = 1 − z

2µ

λf1(λ)

f2(λ)
− z2

4µ2
λ4f0(λ)

f2(λ)2
+

y

2µ

λf2(λ)

f3(λ)
+O

(
log2N

λN

)
. (58)

E[µ′ − µ | b,d] = −1 −
∑

k≥2

kzk
2µ

(k − 1) + ε59. (59)

E[µ′ − µ | |v|] = −1 − z

2µ

λ2f0(λ)

f2(λ)
+O

(
log2N

λN

)
. (60)

Proof The verification of (12) – (59) is long but straightforward. We will verify (12) and (13)

and add a few comments and hope that the reader is willing to accept or check the remainder by

him/herself.

Suppose without loss of generality that x is such that x1 = v = 1 ∈ Y1. The remainder of x is a

random permutation of 2m− 2µ ⋆’s and 2µ− 1 values from [n] where the number of times j occurs

is dx(j) for j ∈ [n]. The term -1 accounts for the deletion of v from Γ. There is a probability
y1

2µ−1 = y1
2µ + O

(
1
µ

)
that x2 ∈ Y1 and this accounts for the second term in (12). Observe next
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that there is a probability kzk
2µ−1 that x2 ∈ Zk, k ≥ 2. In which case another k − 1 edges will be

deleted. In expectation, the number of vertices in Y1 lost by the deletion of one such edge is y1−1
2µ−3

and this accounts for the third term. On the other hand, each such edge has a 2y2
2µ−3 probability of

being incident with a vertex in Y2. The deletion of such an edge will create a vertex in Y1 and this

explains the fourth term. We collect the errors from replacing µ by µ − 1 etc. into the last term.

This gives a contribution of order 1/N . The above analysis ignored the extra contributions due to

multiple edges. We can bound this by

η12 =
∑

k≥3

kzk
2µ

∑

ℓ≥3

ℓyℓ
2µ− 1

(
k − 1

ℓ− 1

)(
ℓ

2µ− k

)ℓ−2

. (61)

To explain this, we assume x2 ∈ Zk, which is accounted for by the first sum over k. Now, to create

a vertex in Y1, the removal of x2 must delete ℓ− 1 of the edges incident with some vertex y in Yℓ.

The term ℓyℓ
2µ−1 is the probability that the first of the chosen ℓ− 1 edges is incident with y ∈ Yℓ and

the factor
(

ℓ
2µ−k

)ℓ−2
bounds the probability that the remaining ℓ− 2 edges are incident with y.

To go from conditioning on b,d to conditioning on |v| we need to use the expected values of yk, zl
etc., conditional on v. For this we use (4) and (5).

We have, up to an error term O
(
log2 N
λN

)
,

E


∑

k≥3

kyk

∣∣∣∣|v|


 =

∑

k≥3

k y
λk

k!f3(λ)
=

yλ

f3(λ)

∑

j≥2

λj

j!
= y

λf2(λ)

f3(λ)
, (62)

E


∑

k≥2

kzk

∣∣∣∣|v|


 =

∑

k≥2

k z
λk

k!f2(λ)
=

zλ

f2(λ)

∑

j≥1

λj

j!
= z

λf1(λ)

f2(λ)
, (63)

E


∑

k≥3

k(k − 1)yk

∣∣∣∣|v|


 =

∑

k≥3

k(k − 1) y
λk

k!f3(λ)
=

yλ2

f3(λ)

∑

j≥1

λj

j!
= y

λ2f1(λ)

f3(λ)
, (64)

E


∑

k≥2

k(k − 1)zk

∣∣∣∣|v|


 =

∑

k≥2

k(k − 1) z
λk

k!f2(λ)
=

zλ2

f2(λ)

∑

j≥0

λj

j!
= z

λ2f0(λ)

f2(λ)
. (65)

In particular, using (65) in (12) we get (13). The other terms are obtained in a similar fashion. We

remark that we need to use (5) when we deal with products zkyℓ, k ≥ 2 and ℓ ≥ 3.

Since, k, ℓ ≤ logn in (61) we see, with the aid of (62) – (65) that E[η12 | v] = O(1/N). This bound

is true for all other ε?. �

6.1 Negative drift for y1, y2, z1

Algorithm 2greedy tries to keep y1, y2, z1 small by its selection in Step 1. We now verify that

there is a negative drift in

ζ = ζ(t) = y1 + 2y2 + z1
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in all cases of Step 1. This will enable us to show that w.h.p. ζ remains small throughout the

execution of 2greedy. Let

Q = Q(v) =
yz

4µ2
λ3

f3(λ)

λ2f0(λ)

f2(λ)
+

z2

4µ2
λ4f0(λ)

f2(λ)2
. (66)

Then simple algebra gives us

E[ζ ′ − ζ | |v|] = −(1 −Q) − ζ

(
1

2µ
+
zλ2f0(λ)

4µ2f2(λ)

)
+O

(
log2N

λN

)
Case 1(a) (67)

E[ζ ′ − ζ | |v|] = −(1 −Q) − ζ

(
1

2µ
+
zλ2f0(λ)

4µ2f2(λ)

)
+O

(
log2N

λN

)
Case 1(b) (68)

E[ζ ′ − ζ | |v|] = −(1 −Q) − ζ

(
1

2µ
+
zλ2f0(λ)

4µ2f2(λ)

)
+O

(
log2N

λN

)
Case 1(c) (69)

We will show

Lemma 6.2. [Pittel]

λ > 0 implies Q < 1 (70)

and

1 −Q =

{
1 −O(λ−1), λ→ ∞,

Ω(λ2), λ→ 0.
(71)

Proof Now, by (11), Q < 1 is equivalent to

yz
λ5f0(λ)

f2(λ)f3(λ)
+ z2

λ4f0(λ)

f2(λ)2
<

(
y
λf2(λ)

f3(λ)
+ z

λf1(λ)

f2(λ)

)2

,

or, introducing x = y/z,

F (x, λ) :=
x λ5f0(λ)
f2(λ)f3(λ)

+ λ4f0(λ)
f2(λ)2(

xλf2(λ)
f3(λ)

+ λf1(λ)
f2(λ)

)2 < 1, ∀λ > 0, x ≥ 0. (72)

In particular, F (∞, λ) = 0. Now

Fx(x, λ) =

(
x
λf2(λ)

f3(λ)
+
λf1(λ)

f2(λ)

)−4

G(x, λ),

where

G(x, λ) =
λ5f0(λ)

f2(λ)f3(λ)

(
x
λf2(λ)

f3(λ)
+
λf1(λ)

f2(λ)

)2

− 2

(
x
λf2(λ)

f3(λ)
+
λf1(λ)

f2(λ)

)
λf2(λ)

f3(λ)

(
x

λ5f0(λ)

f2(λ)f3(λ)
+
λ4f0(λ)

f2(λ)2

)
. (73)

Notice that

G(0, λ) = λ6f0(λ)f1(λ)f2(λ)−3f3(λ)−1
(
λf1(λ) − 2f2(λ)

)
> 0,
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as λf1(λ) − 2f2(λ) > 0. Whence Fx(0, λ) > 0 and as a function of x, F (x, λ) attains its maximum

at the root of G(x, λ) = 0, which is

x̄ =
f3(λ)

(
λf1(λ) − 2f2(λ)

)

λf2(λ)2
. (74)

Now, (73) implies that x̄ satisfies

x̄
λ5f0(λ)

f2(λ)f3(λ)
+
λ4f0(λ)

f2(λ)2
=

λ5f0(λ)

f2(λ)f3(λ)

(
x̄
λf2(λ)

f3(λ)
+
λf1(λ)

f2(λ)

)
× f3(λ)

2λf2(λ)
(75)

and (74) implies that

x̄
λf2(λ)

f3(λ)
+
λf1(λ)

f2(λ)
=

2(λf1(λ) − f2(λ))

f2(λ)
. (76)

Substituting (75), (76) into (72), we see that

F (x̄, λ) =

λ5f0(λ)
f2(λ)f3(λ)

f3(λ)
2λf2(λ)(

x̄λf2(λ)
f3(λ)

+ λf1(λ)
f2(λ)

) =
λ4f0(λ)

4f2(λ)
(
λf1(λ) − f2(λ)

) .

Thus,

1 − F (x̄, λ) =
D(λ)

4f2(λ)
(
λf1(λ) − f2(λ)

) , (77)

where

D(λ) =4f2(λ)
(
λf1(λ) − f2(λ)

)
− λ4f0(λ)

= − 4 − 4λ− (λ4 + 4λ2 − 8)eλ + (4λ− 4)e2λ.

In particular,

1 − F (x̄, λ) = 1 −O(λ−1), λ→ ∞. (78)

Expanding eλand e2λ, we obtain after collecting like terms that

D(λ) =
∑

j≥6

dj
j!
λj ,

where

dj = 2j+1(j − 2) − (j)4 − 4(j)2 + 8.

Here dj = 0 for 0 ≤ j ≤ 5 and d6 = 40, d7 = 280, d8 = 1176, d9 = 3864, d10 = 10992 and

dj > 0 for j ≥ 11 is clear. Therefore D(λ) is positive for all λ > 0. Since D(λ) ∼ d6λ
6 and

4f2(λ)
(
λf1(λ) − f2(λ)) ∼ λ4 as λ→ 0, we see that

1 − F (x̄, λ) ∼ d6λ
2, λ→ 0. (79)

This completes the proof of Lemma 6.2. �

It follows from (67), (68), (69) and Lemma 6.2 that, regardless of case,

ζ > 0 implies E[ζ ′ − ζ | |v|] ≤ −c1(1 ∧ λ)2 +O

(
log2N

λN

)
(80)
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for some absolute constant c1 > 0, where 1 ∧ λ = min {1, λ}.

To avoid dealing with the error term in (80) we introduce the stopping time,

Ter = min

{
t : λ2 ≤ log3N

λN

}
.

(This is well defined, since eventually N = 0).

The following stopping time is also used:

T0 = min {t : λ ≤ 1 or N ≤ n/2} < Ter.

So we can replace (80) by

ζ > 0 implies E[ζ ′ − ζ | |v|] ≤ −c1/2, 0 ≤ t < T0, (81)

which holds for n sufficiently large.

There are several places where we need a bound on λ:

Lemma 6.3. Whp λ ≤ 3ce for t ≤ T0.

Proof We will show later that w.h.p. y1 + 2y2 + z1 = o(n) throughout. It follows from (11)

and the inequalities in Section 8.0.2 ((204) in particular), that if λ(t) ≥ Λ then Y ∪Z contains y+z

vertices and at least Λ(y + z)/2 edges and hence has total degree at least Λ(y + z). We argue that

w.h.p. G does not contain such a sub-graph, when Λ = 3ce. We will work in the random sequence

model. We can assume that |Y ∪ Z| ≥ n/2. Now fix a set S ⊆ [n] where s = |S| ≥ n/3. Let D

denote the total degree of vertices in S. Then

P(D = d) ≤ O(n1/2)
∑

d1+···+ds=d
dj≥3

s∏

i=1

λdi

f3(λ)di!
≤ O(n1/2)

λd

d!f3(λ)s

∑

d1+···+ds=d
dj≥0

d!

d1! · · · ds!

= O(n1/2)
λdsd

d!f3(λ)s
. (82)

Here λ = λ(0) and we are using Lemma 3.1. The factor O(n1/2) accounts for the conditioning that

the total degree is 2cn. Now λ(0) ≤ 2c and f3(λ(0)) ≥ 1. It follows that

P(∃S : D = d, d ≥ Λs) ≤ O(n1/2)
∑

s≥n/3

∑

d≥Λs

(
n

s

)
(2c)dsd

d!
≤ O(n1/2)

∑

s≥n/3

∑

d≥Λs

(ne
s

)s (2c)dsd

d!

The terms involving d in the second sum are ud = (2cs)d

d! and for d ≥ Λs large we have ud+1/ud ≤ 2/3

and so we can put d = Λs in the second expression. After substituting d! ≥ (d/e)d this gives

P(∃S : D = d, d ≥ Λs) ≤ O(n1/2)
∑

s≥n/2

(
3e(2ce)Λ

ΛΛ

)s

= o(1)

if Λ ≥ 3ce. �

Our aim now is to give a high probability bound on the maximum value that ζ will take during the

process. We first prove a simple lemma involving the functions φj(x) =
xfj−1(x)
fj(x)

, j = 2, 3.
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Lemma 6.4.

φj(x) is convex and increasing and j ≤ φj(x) and
1

j + 1
≤ φ′j(x) ≤ 1 for j = 2, 3. (83)

Proof Now, if H(x) = xF (x)
G(x) then

H ′(x) =
G(x)(xF ′(x) + F (x)) − xF (x)G′(x)

G(x)2

and

H ′′(x) =

2xF (x)G′(x)2 +G(x)2(2F ′(x) + xF ′′(x)) −G(x)(2xF ′(x)G′(x) + F (x)(2G′(x) + xG′′(x)))

G(x)3
.

Case j = 2:

φ′2(x) =
e2x − (x2 + 2)ex + 1

(ex − 1 − x)2
. (84)

But,

e2x − (x2 + 2)ex + 1 =
∑

j≥4

2j − j(j − 1) − 2

j!
xj

and so φ′2(x) > 0 for x > 0.

φ′′2(x) =
e2x(x2 − 4x+ 2) + ex(x3 + x2 + 4x− 4) + 2

(ex − 1 − x)3
. (85)

But

e2x(x2 − 4x+ 2) + ex(x3 + x2 + 4x− 4) + 2 =

∑

j≥6

2j−2(j(j − 1) − 8j + 8) + j(j − 1)(j − 2) + j(j − 1) + 4j − 4

j!
xj

and so φ′′2(x) > 0 for x > 0.

Case j = 3:

φ′3(x) =
2e2x − ex

(
x3 − x2 + 4x+ 4

)
+ x2 + 4x+ 2

2(ex − 1 − x− x2

2 )2
. (86)

But,

2e2x − ex
(
x3 − x2 + 4x+ 4

)
+ x2 + 4x+ 2 =

∑

j≥6

2j+1 − j(j − 1)(j − 2) + j(j − 1) − 4j − 4

j!
xj

and so φ′3(x) > 0 for x > 0.

φ′′3(x) =
x(e2x(2x2 − 12x+ 12) + ex(x4 + 8x2 − 24) + 2x2 + 12x+ 12)

4(ex − 1 − x− x2

2 )3
. (87)
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But

e2x(2x2 − 12x+ 12) + ex(x4 + 8x2 − 24) + 2x2 + 12x+ 12

∑

j≥9

2j−1(j(j − 1) − 12j + 24) + j(j − 1)(j − 2)(j − 3) + 8j(j − 1) − 24

j!
xj .

and so φ′′3(x) > 0 for x > 0.

So φ2, φ3 are convex and so we only need to check that φ2(0) = 2, φ′2(0) = 1/3, φ3(0) = 3, φ′3(0) =

1/4 and φ′2(∞) = φ′3(∞) = 1. �

Consider λ as a function of v, defined by

yφ3(λ) + zφ2(λ) = Π (88)

where Π = 2µ− y1 − 2y2 − z1.

We now prove a lemma bounding the change in λ as we change v.

Lemma 6.5. Let λi = λ(vi) and Ni = N(vi) for i = 1, 2.

|λ1 − λ2| ≤
4 max {φ3(λ1), φ3(λ2)}

min{N1, N2}
||v1 − v2||1.

Proof We see in fact that λ = λ(w) where w = (y, z,Π), We use w1,w2 to denote the

corresponding vectors at v1,v2. Differentiating and using (83) we obtain

∂λ

∂Π
=

1

yφ′3(λ) + zφ′2(λ)
≤ 4

y + z

∂λ

∂y
= − φ3(λ)

yφ′3(λ) + zφ′2(λ)
≤ 4φ3(λ)

y + z

∂λ

∂z
= − φ2(λ)

yφ′3(λ) + zφ′2(λ)
≤ 4φ2(λ)

y + z

Now by the mean value theorem,

λ(v1) − λ(v2) =

(
∂λ

∂Π
,
∂λ

∂y
,
∂λ

∂z

)
· (w1 −w2)

where the gradient
(

∂λ
∂Π ,

∂λ
∂y ,

∂λ
∂z

)
is evaluated at a point on the line segment between w1 and w2.

To obtain the lemma we use φ2 ≤ φ3 and we use the convexity of φ3 to bound φ3 by its value at

the endpoints. �

Lemma 6.6. If c ≥ 10 then q.s.

6 ∃1 ≤ t < T0 : ζ(t) > log2 n.

Proof Define a sequence

Xi =

{
min {ζ(i+ 1) − ζ(i), log n} 0 ≤ i < T0

−c1/2 T0 ≤ i ≤ n
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The variables X1, X2, . . . , Xn are not independent. On the other hand, conditional on an event

that occurs q.s., we see that

Xs + . . .+Xt−1 = ζ(t) − ζ(s) for 0 ≤ s < t ≤ T0

and

E[Xt | X1, . . . , Xt−1] ≤ −c1/2 for t ≤ n.

Next, for 0 ≤ s ≤ t ≤ T0 let

λ̄(s, t) =
t−1∑

τ=s

λ(τ)2.

Note that

λ̄(s, t) ≥ t− s. (89)

We argue as in the proof of the Azuma-Hoeffding inequality that for any 1 ≤ s < t ≤ n and u ≥ 0,

P(Xs + · · · +Xt−1 ≥ u− c1λ̄(s, t)/2) ≤ exp

{
− 2u2

(t− s) log2 n

}
. (90)

We deduce from this that for 1 ≤ s < t ≤ T0 we have

P(ζ(s) = 0 < ζ(τ), s < τ ≤ t) ≤ exp

{
−2 max

{
0, c1λ̄(s, t)/2 − log n

}2

(t− s) log2 n

}
. (91)

If L1 = log2 n then we see from (91) that q.s.

6 ∃1 ≤ s < t− L1 ≤ T0 − L1 : ζ(s) = 0 < ζ(τ), s < τ ≤ t. (92)

Suppose now that there exists τ ≤ T0 such that ζ(τ) ≥ L1. Then q.s. there exists t1 ≤ τ ≤ t1 +L1

such that ζ(t1) = 0. But then given t1,

P(∃t1 ≤ τ ≤ t1 + L1 : ζ(τ) ≥ L1) ≤ exp

{
−2(c1L1/2 − log n)2

L1 log2 n

}
.

Here we are using the generalisation of Hoeffding-Azuma that deals with maxi≤L1 X1 + · · · +Xi.

And then we get that q.s.

6 ∃t ≤ T0 : ζ(τ) ≥ L1. (93)

We do this in two stages because of the condition ζ > 0 in (81). Remember here that ζ(0) = 0 and

(92) says that ζ cannot stay positive for very long. �

7 Associated Equations.

The expected changes conditional on v lead us to consider the following collection of differential

equations: Note that we do not use any scaling. We will put hats on variables i.e. ŷ1 etc. will be

the deterministic counterpart of y1. Also, as expected, the hatted equivalent of (88) holds:

ŷλ̂f2(λ̂)

f3(λ̂)
+
ẑλf1(λ̂)

f2(λ̂)
= 2µ̂− ŷ1 − 2ŷ2 − ẑ1. (94)
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Step 1(a). ŷ1 > 0.

dŷ1
dt

= − 1 − ŷ1
2µ̂

− ŷ1ẑ

4µ̂2
λ̂2f0(λ̂)

f2(λ̂)
+
ŷ2ẑ

2µ̂2
λ̂2f0(λ̂)

f2(λ̂)
, (95)

dŷ2
dt

= − ŷ2
µ̂

− ŷ2ẑ

2µ̂2
λ̂2f0(λ̂)

f2(λ̂)
+

ŷẑ

8µ̂2
λ̂3

f3(λ̂)

λ̂2f0(λ̂)

f2(λ̂)
, (96)

dẑ1
dt

= − ẑ1
2µ̂

− ẑ1ẑ

4µ̂2
λ̂2f0(λ̂)

f2(λ̂)
+

ẑ2

4µ̂2
λ̂4f0(λ̂)

f2(λ̂)2
, (97)

dŷ

dt
= − ŷ

2µ̂

λ̂f2(λ̂)

f3(λ̂)
− ŷẑ

8µ̂2
λ̂3

f3(λ̂)

λ̂2f0(λ̂)

f2(λ̂)
, (98)

dz

dt
=

ŷ

2µ̂

λ̂f2(λ̂)

f3(λ̂)
− ẑ

2µ̂

λ̂f1(λ̂)

f2(λ̂)
− ẑ2

4µ̂2
λ̂4f0(λ̂)

f2(λ̂)2
, (99)

dµ̂

dt
= − 1 − ẑ

2µ̂

λ̂2f0(λ̂)

f2(λ̂)
. (100)

Step 1(b). ŷ1 = 0, ŷ2 > 0.

dŷ1
dt

=
ŷ2ẑ

2µ̂2
λ̂2f0(λ̂)

f2(λ̂)
, (101)

dŷ2
dt

= − 1 − ŷ2
µ̂

− ŷ2ẑ

2µ̂2
λ̂2f0(λ̂)

f2(λ̂)
+

ŷẑ

8µ̂2
λ̂3

f3(λ̂)

λ̂2f0(λ̂)

f2(λ̂)
, (102)

dẑ1
dt

= 1 − ẑ1
2µ̂

− ẑ1ẑ

4µ̂2
λ̂2f0(λ̂)

f2(λ̂)
+

ẑ2

4µ̂2
λ̂4f0(λ̂)

f2(λ̂)2
, (103)

dŷ

dt
= − ŷ

2µ̂

λ̂f2(λ̂)

f3(λ̂)
− ŷẑ

8µ̂2
λ̂3

f3(λ̂)

λ̂2f0(λ̂)

f2(λ̂)
, (104)

dẑ

dt
=

ŷ

2µ̂

λ̂f2(λ̂)

f3(λ̂)
− ẑ

2µ̂

λ̂f1(λ̂)

f2(λ̂)
− ẑ2

4µ̂2
λ̂4f0(λ̂)

f2(λ̂)2
, (105)

dµ̂

dt
= − 1 − ẑ

2µ̂

λ̂2f0(λ̂)

f2(λ̂)
. (106)

Step 1(c). ŷ1 = ŷ2 = 0, ẑ1 > 0.

dŷ1
dt

=0, (107)

dŷ2
dt

=
ŷẑ

8µ̂2
λ̂3

f3(λ̂)

λ̂2f0(λ̂)

f2(λ̂)
, (108)

dẑ1
dt

=−1 − ẑ1
2µ̂

− ẑ1ẑ

4µ̂2
λ̂2f0(λ̂)

f2(λ̂)
+

ẑ2

4µ̂2
λ̂4f0(λ̂)

f2(λ̂)2
, (109)

dŷ

dt
=− ŷ

2µ̂

λ̂f2(λ̂)

f3(λ̂)
− ŷẑ

8µ̂2
λ̂3

f3(λ̂)

λ̂2f0(λ̂)

f2(λ̂)
, (110)

dẑ

dt
=

ŷ

2µ̂

λ̂f2(λ̂)

f3(λ̂)
− ẑ

2µ̂

λ̂f1(λ̂)

f2(λ̂)
− ẑ2

4µ̂2
λ̂4f0(λ̂)

f2(λ̂)2
, (111)
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dµ̂

dt
= − 1 − ẑ

2µ̂

λ̂2f0(λ̂)

f2(λ̂)
. (112)

Step 2. ŷ1 = ŷ2 = ẑ1 = 0.

dŷ1
dt

=0, (113)

dŷ2
dt

=
ŷẑ

8µ̂2
λ̂3

f3(λ̂)

λ̂2f0(λ̂)

f2(λ̂)
, (114)

dẑ1
dt

=
ẑ2

4µ̂2
λ̂4f0(λ̂)

f2(λ̂)2
, (115)

dŷ

dt
= − 1 − ŷ

2µ̂

λ̂f2(λ̂)

f3(λ̂)
− ŷẑ

8µ̂2
λ̂3

f3(λ̂)

λ̂2f0(λ̂)

f2(λ̂)
, (116)

dẑ

dt
= 1 − ẑ

2µ̂

λ̂f1(λ̂)

f2(λ̂)
− ẑ2

4µ̂2
λ̂4f0(λ̂)

f2(λ̂)2
+

ŷ

2µ̂

λ̂f2(λ̂)

f3(λ̂)
, (117)

dµ̂

dt
= − 1 − ẑ

2µ̂

λ̂2f0(λ̂)

f2(λ̂)
. (118)

We will show that w.h.p. the process defined by 2greedy can be closely modeled by a suitable

weighted sum of the above four sets of equations. Let these weights be θa, θb, θc and 1− θa− θb− θc
respectively. It has been determined that y1, y2, z1 are all O(log2 n) w.h.p.. We will only need to

analyse our process up till the time y = 0 and we will show that at this time, z = Ω(n) w.h.p..

Thus y1, y2, z1 are ”negligible” throughout. In which case ŷ1, ŷ2, ẑ2 should also be negligible. It

makes sense therefore to choose θa = 0. The remaining weights should be chosen so that the

weighted derivatives of ŷ1, ŷ2, ẑ1 are zero. This has all been somewhat heuristic and its validity will

be verified in Section 7.2.

7.1 Sliding trajectory

Conjecturally we need to mix Steps 1(a), 1(b) 1(c) and 2 with nonnegative weights θa = 0, θb, θc,

θ2 = 1− θb − θc respectively, chosen such that the resulting system of differential equations admits

a solution such that ŷ2(t) ≡ 0 and ẑ1(t) ≡ 0.

We will write the multipliers in terms of

Â =
ŷẑλ̂5f0(λ̂)

8µ̂2f2(λ̂)f3(λ̂)
, B̂ =

ẑ2λ̂4f0(λ̂)

4µ̂2f2(λ̂)2
, Ĉ =

ŷλ̂f2(λ̂)

2µ̂f3(λ̂)
, D̂ =

ẑλ̂2f0(λ̂)

2µ̂f2(λ̂)
. (119)

Using, (95), (101), (107) and (113) we see ŷ1(t) ≡ 0 implies that

0 ≡ dŷ1
dt

= θa.

Equivalently

θa = 0. (120)

Using (96), (108) and (114), we see that ŷ2(t) ≡ 0 implies that

0 ≡ dŷ2
dt
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= θb

[
−1 +

ŷẑ

8µ̂2
λ̂3

f3(λ̂)

λ̂2f0(λ̂)

f2(λ̂)

]
+ θc

ŷẑ

8µ̂2
λ̂3

f3(λ̂)

λ̂2f0(λ̂)

f2(λ̂)
+ (1 − θb − θc)

ŷẑ

8µ̂2
λ̂3

f3(λ̂)

λ̂2f0(λ̂)

f2(λ̂)
,

= −θb + Â. (121)

Equivalently

θb = Â. (122)

Likewise, using (97), (109) and (115), z1(t) ≡ 0 implies

0 ≡ dẑ1
dt

= θb

[
1 +

ẑ2

4µ̂2
λ̂4f0(λ̂)

f2(λ̂)2

]
+ θc

[
−1 +

ẑ2

4µ̂2
λ̂4f0(λ̂)

f2(λ̂)2

]
+ (1 − θb − θc)

ẑ2

4µ̂2
λ̂4f0(λ̂)

f2(λ̂)2
,

= θb − θc + B̂. (123)

Equivalently

θc = Â+ B̂. (124)

From (123) and (124) it follows that 1 − θb − θc ≥ 0 iff

2Â+ B̂ ≤ 1. (125)

We conclude from (66) and Lemma 6.2 that θb, θc, 1 − θb − θc ∈ [0, 1].

It may be of some use to picture the equations defining θa, θb, θc, θ2:

θa = 0

θb = Â

−θb θc = B̂

θa +θb +θc +θ2 = 1.

(126)

If in the notation of Lemma 6.6 we let Ω1 = {v : ζ ≤ L1} then we may restrict our attention to v

in (12) – (59) such that v ∈ Ω1. In which case, the terms involving y1, y2, z can be absorbed into

the error term for t ≤ T0. The relevant equations then become, with

A =
yzλ5f0(λ)

8µ2f2(λ)f3(λ)
, B =

z2λ4f0(λ)

4µ2f2(λ)2
, C =

yλf2(λ)

2µf3(λ)
, D =

zλ2f0(λ)

2µf2(λ)
.

Step 1(a). y1 > 0.

E[y′1 − y1 | |v|] = −1 +O

(
log2N

λN

)
(127)

E[y′2 − y2 | |v|] = A+O

(
log2N

λN

)
(128)

E[z′1 − z1 | |v|] = B +O

(
log2N

λN

)
. (129)

E[y′ − y | |v|] = −C −A+O

(
log2N

λN

)
. (130)
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E[z′ − z | |v|] = C − (1 − C) −B +O

(
log2N

λN

)
. (131)

E[µ′ − µ | |v|] = −1 −D +O

(
log2N

λN

)
. (132)

Step 1(b). y1 = 0, y2 > 0.

E[y′1 − y1 | |v|] = O

(
log2N

λN

)
. (133)

E[y′2 − y2 | |v|] = −1 +A+O

(
log2N

λN

)
. (134)

E[z′1 − z1 | |v|] = 1 +B +O

(
log2N

λN

)
. (135)

E[y′ − y | |v|] = −C −A+O

(
log2N

λN

)
. (136)

E[z′ − z | |v|] = C − (1 − C) −B +O

(
log2N

λN

)
. (137)

E[µ′ − µ | |v|] = −1 −D +O

(
log2N

λN

)
. (138)

Step 1(c). y1 = y2 = 0, z1 > 0.

E[y′1 − y1 | |v|] = O

(
1

N

)
. (139)

E[y′2 − y2 | |v|] = A+O

(
log2N

λN

)
. (140)

E[z′1 − z1 | |v|] = −1 +B +O

(
log2N

λN

)
. (141)

E[y′ − y | |v|] = −C −A+O

(
log2N

λN

)
. (142)

E[z′ − z | |v|] = C − (1 − C) −B +O

(
log2N

λN

)
. (143)

E[µ′ − µ | |v|] = −1 −D +O

(
log2N

λN

)
. (144)

Step 2. y1 = y2 = z1 = 0.

E[y′1 − y1 | |v|] = O

(
1

N

)
. (145)

E[y′2 − y2 | |v|] = A+O

(
log2N

λN

)
. (146)

E[z′1 − z1 | |v|] = B +O

(
log2N

λN

)
. (147)

E[y′ − y | |v|] = −1 − C −A+O

(
log2N

λN

)
. (148)
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E[z′ − z | |v|] = 1 + C − (1 − C) −B +O

(
log2N

λN

)
. (149)

E[µ′ − µ | |v|] = −1 −D +O

(
log2N

λN

)
. (150)

7.2 Closeness of the process and the differential equations

We already know that y1, y2, z1 are small w.h.p. up to time T0. We now show that w.h.p. y, z, µ

are closely approximated by ŷ, ẑ, µ̂, which are the solutions to the weighted sum of the sets of

equations labelled Step 1(b), Step 1(c) and Step 2. These equations will be simplified by putting

y1 = y2 = z1 = 0. First some notation. We will use ψη,ξ to denote the expression we have obtained

for the derivative of ξ in Case 1 (η) or Case 2 in the case of η = 2. We are then led to consider the

equations:

Sliding Trajectory:

dŷ

dt
= θbψb,y(ŷ, ẑ, µ̂) + θcψc,y(ŷ, ẑ, µ̂) + (1 − θb − θc)ψ2,y(ŷ, ẑ, µ̂)

= θb(−(Ĉ + Â)) + θc(−(Ĉ + Â)) + (1 − θb − θc)(−(1 + Ĉ + Â))

= −(Ĉ + Â)(θb + θc + 1 − θb − θc) − (1 − θb − θc)

= Â+ B̂ − Ĉ − 1.

dẑ

dt
= θbψb,z(ŷ, ẑ, µ̂) + θcψc,z(ŷ, ẑ, µ̂) + (1 − θb − θc)ψ2,z(ŷ, ẑ, µ̂)

= θb((Ĉ − (1 − Ĉ) − B̂)) + θc(Ĉ − (1 − Ĉ) − B̂) + (1 − θb − θc)(1 + Ĉ − 1 + Ĉ − B̂)

= 2Ĉ − B̂ − 1 + 1 − θb − θc

= 2Ĉ − 2Â− 2B̂.

dµ̂

dt
= θbψb,µ(ŷ, ẑ, µ̂) + θcψc,µ(ŷ, ẑ, µ̂) + (1 − θb − θc)ψ2,µ(ŷ, ẑ, µ̂)

= θb(−(1 + D̂)) + θc(−(1 + D̂)) + (1 − θb − θc)(−(1 + D̂))

= −(1 + D̂)(θb + θc + 1 − θb − θc)

= −1 − D̂.

The initial conditions are

ŷ(0) = n, ẑ(0) = 0, µ̂(0) = cn. (151)

Summarising:

dŷ

dt
= Â+ B̂ − Ĉ − 1;

dẑ

dt
= 2Ĉ − 2Â− 2B̂;

dµ̂

dt
= −1 − D̂. (152)

and
ŷλ̂f2(λ̂)

f3(λ̂)
+
ẑλ̂f1(λ̂)

f2(λ̂)
= 2µ̂. (153)

We remark for future reference that (152) implies that

µ̂ is decreasing with t as long as λ̂ > 0 (154)
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and (153) implies that

ŷ + ẑ ≤ 2µ̂

λ̂
. (155)

Let

T̂0 = min
{
t : λ̂ ≤ 8 or ŷ + ẑ ≤ n/2

}
.

(The 8 is the 8 from Lemma 8.1 below).

Let u = u(t) denote (y(t), z(t), µ(t)) and let û = û(t) denote (ŷ(t), ẑ(t), µ̂(t)). We now show that

u and û remain close:

Lemma 7.1.

||u(t) − û(t)||1 ≤ n8/9, for 1 ≤ t ≤ min
{
T0, T̂0

}
w.h.p..

Proof Let δη(v), η = a, b, c, 2 be the 0/1 indicator for the process 2greedy applying Step 1(η)

for η = a, b, c or Step 2 if η = 2 when the current state is v. For times t1 < t2 we use the notation

∆η(v(t1, t2)) =

t2∑

t=t1

δη(v(t))

Now let ρ = nα where α = 1/4. It follows from Lemma 6.5 and our bound on λ in Lemma 6.3 that

q.s. for t ≤ T0 − ρ,

|λ(t) − λ(t+ ρ)| ≤ φ3(3ce)

n/2
||v(t+ ρ) − v(t)||1 = O

(
ρ log n

n

)
. (156)

Because λ changes very little, simple estimates then give

Claim 2.2.

|A(t) −A(t+ ρ)| = O

(
ρ logn

n

)
|B(t) −B(t+ ρ)| = O

(
ρ logn

n

)
(157)

|C(t) − C(t+ ρ)| = O

(
ρ logn

n

)
|D(t) −D(t+ ρ)| = O

(
ρ logn

n

)
(158)

If ||u(t) − û(t)||1 ≤ n8/9 then

|A(t) − Â(t)| = O

( ||u(t) − û(t)||1
n

)
|B(t) − B̂(t)| = O

( ||u(t) − û(t)||1
n

)
(159)

|C(t) − Ĉ(t)| = O

( ||u(t) − û(t)||1
n

)
|D(t) − D̂(t)| = O

( ||u(t) − û(t)||1
n

)
(160)

Proof The first expressions in (157) and (158) are easy to deal with as the functions fj are

smooth and λ is bounded throughout, see Lemma 6.3. Thus each fj changes by O(ρ logn/n) and

y, z, µ change by O(ρ logn) and y + z = Ω(n).

For (159) and (160) we use Lemma 6.5 to argue that

|λ(t) − λ̂(t)| = O

( ||u(t) − û(t)||1
n

)
.
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Our assumption t ≤ T̂0 implies that ŷ + ẑ = Ω(n) and we get a bound on φ3(λ̂) by using Lemma

8.1. We can then argue as for (157) and (158).

End of proof of Claim 2.2

Now fix t and define for ξ = y1, y2, z1,

Xi(ξ) =




ξ(t+ i+ 1) − ξ(t+ i) t+ i < min

{
T0, T̂0

}

E[ξ(t+ 1) − ξ(t) | v(t)] t+ i ≥ min
{
T0, T̂0

}

Then,

E[Xi(ξ) | v(t+ i)] =
∑

η∈{a,b,c,2}
δη(t+ i)ψη,ξ(u(t+ i)) +O

(
log2 n

n

)
(161)

It follows from (156) – (158) that for all η, ξ and i ≤ ρ,

ψη,ξ(u(t+ i)) = ψη,ξ(u(t)) +O

(
log3 n

n1−α

)
.

It then follows from Lemma 6.6 and (161) that conditional on an event that occurs q.s.

log2 n ≥ E[ξ(t+ ρ) − ξ(t) | u(t)] =
∑

η∈{a,b,c,2}
∆η(u(t, t+ ρ))ψη,ξ(u(t)) +O

(
log3 n

n1−α

)

This can be written as follows: We let ∆a = ∆a(u(t, t+ ρ))/ρ etc. and A = A(t), B = B(t).

∆a = O(ρ−1 log2 n)

∆b = A+O(ρ−1 log2 n)

−∆b +∆c = B +O(ρ−1 log2 n)

∆a +∆b +∆c +∆2 = 1.

(162)

In comparison with (126) we see, using (159), (160) that

|θξ(û(t)) − ∆ξ| = O

(
ρ−1 log2 n+

||u(t) − û(t)||1
n

)
for ξ = a, b, c, 2. (163)

We now consider the difference between û and u at times ρ, 2ρ, . . .. We write

ξ(iρ) − ξ̂(iρ) = ξ((i− 1)ρ) − ξ̂((i− 1)ρ) +

iρ∑

t=(i−1)ρ+1

([ξ(t) − ξ(t− 1)] − [ξ̂(t) − ξ̂(t− 1)]) (164)

where ξ = y, z, µ and ξ̂ = ŷ, ẑ, µ̂ in turn. Then we write

ξ(t) − ξ(t− 1) = αt + βt and ξ̂(t) − ξ̂(t− 1) = α̂t + β̂t (165)

where

αt =
∑

η∈{a,b,c,2}
δη,ξ(u(t− 1))ψη,ξ(u(t− 1)) and βt = ξ(t) − ξ(t− 1) − αt

and

α̂t =
∑

η∈{a,b,c,2}
θη,ξ̂(û(t− 1))ψη,ξ̂(û(t− 1)) and β̂t = ξ̂(t) − ξ̂(t− 1) − α̂t.
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It follows from (130), (131) etc. and Claim 2.2 that

E[βt | u(t− 1)] = O

(
log2 n

n

)
.

An easy bound, which is a consequence of the Azuma-Hoeffding inequality, is that

P




iρ∑

t=(i−1)ρ+1

βt ≥ ρ1/2 log2 n


 ≤ e−Ω(log2 n). (166)

We see furthermore that

iρ∑

t=(i−1)ρ+1

β̂t =

=

iρ∑

t=(i−1)ρ+1


ξ̂′(û(t− 1 + ςt)) −

∑

η∈{a,b,c,2}
θη,ξ̂(û(t− 1))ξ̂′η(û(t− 1))




=

iρ∑

t=(i−1)ρ+1


ξ̂′(û(t− 1)) +O

(
log n

n

)
−

∑

η∈{a,b,c,2}
θη,ξ̂(û(t− 1))ξ̂′η(û(t− 1))




= O

(
ρ log2 n

n

)
= o(ρ1/2 log2 n), (167)

where 0 ≤ ςt ≤ 1 and ξ̂′η(t) is the derivative of ξ̂ in Case η.

Now write

iρ∑

t=(i−1)ρ+1

αt =

iρ∑

t=(i−1)ρ+1

∑

η∈{a,b,c,2}
δη,ξ(u(t))

(
ψη,ξ(u((i− 1)ρ) +O

(
ρ log2 n

n

))

=
∑

η∈{a,b,c,2}
∆ξ(u((i− 1)ρ+ 1, iρ))ψη,ξ(u((i− 1)ρ) +O

(
ρ2 log2 n

n

)
(168)

and

iρ∑

t=(i−1)ρ+1

α̂t =

iρ∑

t=(i−1)ρ+1

∑

η∈{a,b,c,2}

(
θη,ξ(û((i− 1)ρ)) +O

(ρ
n

))(
ψη,ξ(û((i− 1)ρ) +O

(ρ
n

))

=
∑

η∈{a,b,c,2}
ρθη,ξ(û((i− 1)ρ))ψη,ξ(û((i− 1)ρ) +O

(
ρ2

n

)
. (169)

It follows that
iρ∑

t=(i−1)ρ+1

(α̂t − αt) = A1 +A2 + o
(
ρ1/2 log2 n

)
(170)
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where

A1 =
∑

η∈{a,b,c,2}
(∆ξ(u((i− 1)ρ+ 1, iρ)) − ρθη,ξ(û((i− 1)ρ)))ψη,ξ(u((i− 1)ρ)

= O

(
log2 n+

ρ||u((i− 1)ρ) − û((i− 1)ρ)||1
n

)
. (171)

A2 = ρ
∑

η∈{a,b,c,2}
ψη,ξ(u((i− 1)ρ)(ψη,ξ(u((i− 1)ρ) − ψη,ξ(û((i− 1)ρ))

= O

(
ρ||u((i− 1)ρ) − û((i− 1)ρ)||1

n

)
. (172)

It follows from (164) to (172) that w.h.p., iρ ≤ T0 implies that with

ai = ||u(iρ) − û(iρ)||1 (173)

that for some C1 > 0,

ai ≤ ai−1

(
1 +

C1ρ

n

)
+ 2ρ1/2 log2 n.

Putting

Πi =
i∏

j=0

(
1 +

C1ρ

n

)
≤ eC1iρ/n

we see by induction that

ai ≤ 2ρ1/2 log2 n

i∑

j=0

Πi

Πj
≤ 2ρ1/2 log2 n(i+ 1)eC1iρ/n. (174)

Since i ≤ n/ρ we have

||u(iρ) − û(iρ)||1 = O(nρ−1/2 log2 n).

Going from ρ⌊T0/ρ⌋ to T0 adds at most ρ logn to the gap and the lemma follows. �

8 Approximate equations

The equations (152) are rather complicated and we have not made much progress in solving them.

Nevertheless, we can obtain information about them from a simpler set of equations that closely

approximate them when c is sufficiently large. The important observation is that when λ̂ is large,

Â≪ 1; B̂ ≪ 1; Ĉ ≈ ŷλ̂

2µ̂
; D̂ ≈ ẑλ̂2

2µ̂
; λ̂ ≈ 2µ̂

ŷ + ẑ
. (175)

We will therefore approximate equations (152) by the following equations in variables ỹ, z̃, µ̃, λ̃:

ỹ′ = − ỹ

ỹ + z̃
− 1 (176)

z̃′ =
2ỹ

ỹ + z̃
(177)
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µ̃′ = −1 − 2z̃µ̃

(ỹ + z̃)2
(178)

λ̃ =
2µ̃

ỹ + z̃
. (179)

The initial conditions for ỹ, z̃, µ̃, λ̃ are that they start out equal to ŷ, ẑ, µ̂, λ̂ at time t = 0 i.e.

ỹ(0) = n; z̃(0) = 0; µ̃(0) = cn; λ̃ = 2c. (180)

8.0.1 Analysis of the approximate equations

The first two approximate equations imply (ỹ + z̃/2)′ = −1, so that

ỹ +
z̃

2
= n− t.

Using the second approximate equation and ỹ = n− t− z̃/2, we obtain

z̃′ =
2(n− t− z̃/2)

n− t+ z̃/2
,

or, introducing τ = n− t and

X =
z̃

2(n− t)
=

z̃

2τ
,

we get
X + 1

X2 + 1
dX = −1

τ
dτ. (181)

Integrating,
1

2
ln(X2 + 1) + arctanX = − ln τ + C.

Now, at t = 0 we have τ = n and X = 0. So C = lnn, i.e.

1

2
ln(X2 + 1) + arctanX = − ln(τ/n).

Let T̃ satisfy ỹ(T̃ ) = 0. At t = T̃ , we have X = 1, so

lnn− ln(n− T̃ ) =
1

2
ln 2 +

π

4

which implies

T̃ =

(
1 − 1

21/2
e−π/4

)
n ≈ 0.677603n. (182)

Note that

λ̃′ =
2µ̃′

ỹ + z̃
− 2µ̃(ỹ′ + z̃′)

(ỹ + z̃)2

= − 2

ỹ + z̃
− 4z̃µ̃

(ỹ + z̃)3
− 2µ̃

(ỹ + z̃)2

(
ỹ

ỹ + z̃
− 1

)

= − 2

ỹ + z̃
− 2z̃µ̃

(ỹ + z̃)3
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= − 2

ỹ + z̃
− z̃λ̃

(ỹ + z̃)2
,

which implies that λ̃ is decreasing with t, at least as long as ỹ, z̃, λ̃ > 0. (183)

Here

z̃

(ỹ + z̃)2
=

z̃

(n− t+ z̃/2)2

=
z̃

(n− t)2(1 +X)2

=
2X

(n− t)(1 +X)2
.

Likewise

− 2

ỹ + z̃
= − 2

(n− t)(1 +X)
.

So λ̃ satisfies

λ̃′ = − 2

(n− t)(1 +X)
− 2X

(n− t)(1 +X)2
λ̃, λ̃(0) = 2c.

Using (181), we obtain

dλ̃

dX
= − 2

1 +X2
− 2X

(1 +X)(1 +X2)
λ̃, λ̃(X)

∣∣∣
X=0

= 2c.

Integrating this first-order, linear ODE, we obtain

λ̃(X) =
(1 +X)e− arctanX

√
1 +X2

[
2c−

∫ X

0

2earctanx

(1 + x)
√

1 + x2
dx

]
. (184)

In which case

λ̃(T̃ ) = α1c− α2 ≈ 1.53c− 1.418. (185)

We have seen that λ̃ decreases with t, (unfortunately) we also need to verify that λ̂ decreases with

t, at least for λ̂ sufficiently large.

Lemma 8.1. [Pittel]

dλ̂

dt
< 0 when λ̂ ≥ 8.

Proof Recall that

ŷ
λ̂f2(λ̂)

f3(λ̂)
+ ẑ

λ̂f1(λ̂)

f2(λ̂)
= 2µ̂. (186)

Therefore taking derivative with respect to t we have

ŷ′
λ̂f2(λ̂)

f3(λ̂)
+ ẑ′

λ̂f1(λ̂)

f2(λ̂)
+

(
ŷ
d

dλ̂

λ̂f2
f3

+ ẑ
d

dλ̂

λ̂f1
f2

)
λ̂′ = 2µ̂′.

Now λ̂fi−1(λ̂)/fi(λ̂) are strictly increasing with λ̂; so if λ̂′(t) ≥ 0 for some t, then it follows that

ŷ′
λ̂f2(λ̂)

f3(λ̂)
+ ẑ′

λ̂f1(λ̂)

f2(λ̂)
≤ 2µ̂′. (187)
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Here ŷ′, ẑ′, µ̂′ are given by (152). Plugging their values into (187), and writing fi instead of fi(λ̂),

and re-arranging, we obtain

ŷ

2µ̂


 λ̂f1
f2

λ̂f2
f3

−
(
λ̂f2
f3

)2

+

ẑ

2µ̂


2
λ̂2f0
f2

−
(
λ̂f1
f2

)2

+

ŷẑ

8µ̂2
λ̂5f0
f2f3

(
λ̂f1
f2

− λ̂f2
f3

)

≤ λ̂f2
f3

− λ̂f1
f2

− 2 +

(
2
λ̂f1
f2

− λ̂f2
f3

)(
ŷẑ

8µ̂2
λ̂5f0
f2f3

+
ẑ2

4µ̂2
λ̂4f0
f22

)
.

Since (ŷ/2µ̂)λ̂f2/f3 + (ẑ/2µ̂)λ̂f1/f2 ≡ 1, we can multiply (λ̂f2/f3 − λ̂f1/f2 − 2) by this linear

combination of ŷ/2µ̂ and ẑ/2µ̂ and re-arrange to obtain an equivalent inequality

ŷ

2µ̂

2λ̂f2
f3

(
λ̂f1
f2

+ 1 − λ̂f2
f3

)
+

ẑ

2µ̂

λ̂f1
f2

(
2
λ̂f0
f1

+ 2 − λ̂f2
f3

)
+

ŷẑ

8µ̂2
λ̂5f0
f2f3

(
λ̂f1
f2

− λ̂f2
f3

)

≤
(

2
λ̂f1
f2

− λ̂f2
f3

)(
ŷẑ

8µ̂2
λ̂5f0
f2f3

+
ẑ2

4µ̂2
λ̂4f0
f22

)
.

Multiplying the first two terms on the LHS by (ŷ/2µ̂)λ̂f2/f3 + (ẑ/2µ̂)λ̂f1/f2, and introducing

x = ŷ/ẑ, we obtain a quadratic inequality Φ(x, λ̂) = A1x
2 +A2x+A3 ≤ 0, where

A1 =
2λ̂2f22
f23

(
λ̂f1
f2

+ 1 − λ̂f2
f3

)
.

A2 =
2λ̂2f1
f3

(
λ̂f1
f2

+ 1 − λ̂f2
f3

)
+
λ̂f2
f3

(
2λ̂f0
f1

+ 2 − λ̂f2
f3

)
− λ̂6f0f1

2f22 f3
.

A3 =
λ̂f1
f2

(
2
λ̂f0
f1

+ 2 − λ̂f2
f3

)
− λ̂4f0

f22

(
2
λ̂f1
f2

− λ̂f2
f3

)
.

If we show that Φ(x, λ̂) > 0 for all x ≥ 0, and λ̂ ≥ 8, we will be able to conclude that dλ̂/dt < 0

for λ̂ ≥ 8. This will follow from the fact that A1, A2, A3 > 0 when λ̂ ≥ 8.

For this observe that fi−1(x)/fi(x) decreases monotonically to one, for all i and for all i, k > 0,

λ̂k/fi(λ̂) decreases for λ̂ ≥ k. We have

f0(8)

f1(8)
≈ 1.00034;

f1(8)

f2(8)
≈ 1.00269;

f1(8)

f2(8)
≈ 1.01088;

84

f2(8)
≈ 1.37822;

86

2f3(8)
≈ 44.583.

With these values, it is easy to see that A1, A2, A3 > 0 for λ̂ ≥ 8. �

It is of course likely that the condition λ̂ ≥ 8 is unnecessary in the above lemma. We do not need

to consider λ̂ < 8 in the subsequent calculations and we do not deem it worthwhile at present to

sharpen the lemma.

8.0.2 Simple Inequalities

We will use the following to quantify (175):

1 ≤ f2(λ̂)

f3(λ̂)
= 1 + ε1, 1 ≤ f0(λ̂)

f2(λ̂)
= 1 + ε2, 1 ≤ f0(λ̂)

f3(λ̂)
= 1 + ε3.
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where

ε1 =
λ̂2

2f3(λ̂)
, ε2 =

1 + λ̂

f2(λ̂)
, ε3 =

λ̂2 + 2λ̂+ 2

2f3(λ̂)
.

Note that ε2 < ε1 for λ̂ ≥ 3 which follows from f2(λ̂) > f3(λ̂) and λ̂2 > 2(1 + λ̂) for λ̂ ≥ 3.

We use the above to verify the following sequence of inequalities for ŷ, ẑ, µ̂, λ̂:

2µ̂

ŷ + ẑ
· 1

1 + ε1
≤ λ̂ ≤ 2µ̂

ŷ + ẑ
. (188)

0 ≤ Â ≤ εA

0 ≤ B̂ ≤ εB

ŷλ̂

2µ̂
≤ Ĉ =

yλ̂

2µ̂
(1 + ε1).

zλ̂2

2µ̂
≤ D̂ =

ẑλ̂2

2µ̂
(1 + ε2).

where

εA =
(1 + ε2)(1 + ε3)λ̂

3

8f0(λ̂)
, εB =

λ̂2(1 + ε2)
2

f0(λ̂)
.

(We use (155) to get ŷẑ ≤ µ̂2/λ̂2 for use in defining εA).

For (188) we use

λ̂(ŷ + ẑ)

2µ̂
≥ 1

max
{

f2(λ̂)

f3(λ̂)
, f1(λ̂)
f2(λ̂)

} =
f3(λ̂)

f2(λ̂)
=

1

1 + ε1
.

It follows from (188) that the initial value λ̂0 of λ̂ satisfies

2c

1 + ε1
≤ λ̂0 ≤ 2c.

Now λ̂0 is the solution to λ̂f2(λ̂)/f3(λ̂) = 2c. It follows that λ̂0 > 17 for c ≥ 10. Furthermore,

ε1 ≤ .0001 for λ̂ ≥ 17 and so

2c(1 − .001) ≤ λ̂0 ≤ 2c. (189)

for c ≥ 10.

8.0.3 Main Goal

Lemma 8.2 (below) in conjunction with Lemma 7.1, will enable us to argue that w.h.p. in the

process 2greedy, at some time T ≤ min
{
T0, T̂0

}
we will have

y(T ) = 0, z(T ) = Ω(n) and λ(t) = Ω(1) for t ≤ T. (190)

Define

T+ = min {t > 0 : ŷ(t) ≤ 0 or ẑ(t) ≤ 0 or ỹ(t) ≤ 0 or z̃(t) ≤ 0} .
We can bound this from below by a small constant as follows: Initially Â, B̂ are small Ĉ is close to

one for c ≥ 10 and so (152) implies that ẑ is strictly increasing at the beginning. Also, ŷ, ỹ start

out large (= n) and so remain positive initially.
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Next define

T1 = min
{
T+,max

{
t : λ̂(τ)) ≥ λ∗ and min {ỹ(τ) + z̃(τ), ŷ(τ) + ẑ(τ)} ≥ βn for τ ≤ t

}}
(191)

where

β = −.01 + z̃(T̃ )/n = −.01 + 2(n− T̃ )/n ≈ .63

and

8.8513 < λ∗ < 8.8514 (192)

is defined to be the solution to

2λ̂ε1 =
1

10
.

(This definition of λ∗ means that µ̂ can easily be seen to be a decreasing function for λ ≥ λ∗, see

(205).)

Comparing (185) and (189) we see that if c ≥ 10 then λ̂0 > λ∗.

Note that

T1 ≤ T+ ≤ T̃ . (193)

which follows from ỹ(T̃ ) = 0.

Lemma 8.2. For c ≥ 10,

ŷ(T1) = 0 < ẑ(T1) = Ω(n) and λ̂(T1) = Ω(1). (194)

Proof It follows from (152) and Section 8.0.2 that

ŷ′ ≤ εA + εB − ŷλ̂

2µ̂
− 1 ≤ − ŷ

ŷ + ẑ
− 1 +

(
ε1

1 + ε1
+ εA + εB

)

ŷ′ ≥ − ŷλ̂
2µ̂

(1 + ε1) − 1 ≥ − ŷ

ŷ + ẑ
− 1 − ε1. (195)

ẑ′ ≤ 2ŷλ̂

2µ̂
(1 + ε1) ≤

2ŷ

ŷ + ẑ
+ 2ε1.

ẑ′ ≥ 2ŷ

ŷ + ẑ
− (2εA + 2εB) (196)

λ̂ ≤ 2µ̂

ŷ + ẑ
(197)

λ̂ ≥ 2µ̂

ŷ + ẑ
· 1

1 + ε1
≥ 2µ̂

ŷ + ẑ
− λ̂ε1 (198)

µ̂′ = −1 − ẑλ̂2

2µ̂
≤ −1 − 2ẑµ̂

(ŷ + ẑ)2
· 1

(1 + ε1)2
≤ −1 − 2ẑµ̂

(ŷ + ẑ)2
+ 2λ̂ε1.

µ̂′ ≥ −1 − ẑλ̂2

2µ̂
(1 + ε2) ≥ −1 − 2ẑµ̂

(ŷ + ẑ)2
− λ̂ε2. (199)
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When t = 0 we have ŷ = n, ẑ = 0, µ̂ = cn and λ̂ satisfying (189), we see that T1 > 0 for c ≥ 10.

We can write ŷ(0) = n, ẑ(0) = 0, µ̂(0) = cn and

ŷ′ = − ŷ

ŷ + ẑ
− 1 + θ1 where θ1 ∈

[
−ε1,

ε1
1 + ε1

+ εA + εB

]
. (200)

ẑ′ =
2ŷ

ŷ + ẑ
+ θ2 where θ2 ∈ [−2εA − 2εB, 2ε1]. (201)

µ̂′ = −1 − 2ẑµ̂

(ŷ + ẑ)2
+ θ3 where θ3 ∈

[
−λ̂ε2, 2λ̂ε1

]
(202)

λ̂ =
2µ̂

ŷ + ẑ
+ θ4 where θ4 ∈ [−λ̂ε1, 0]. (203)

Next let

δ∗ = δ∗(λ̂) = max

{
ε1, εA + εB +

ε1
1 + ε1

, εA + εB

}

so that we have

|θ1| ≤ δ∗ and |θ2| ≤ 2δ∗.

It can easily be checked that the functions ε1, ε2, ε3, εA, εB are all monotone decreasing for λ̂ ≥ λ∗.
Also,

λ̂ ≥ 10 implies δ∗ ≤ .011. (204)

It follows from (178) and (202) that

µ̂, µ̃ both decrease for t ≤ T1, since θ3 < 1 for λ̂ ≥ λ∗. (205)

The ensuing calculations involve many constants and expressions that are tedious to justify. It is

unrealistic to expect the reader to check these calculations. Instead, we have provided mathematica

output in an appendix that will be seen to justify our claims.

The reader will notice the similarity between these equations and the approximation (176) – (179).

We will now refer to the equations (200) – (203) as the true equations and (176) – (179) as the

approximate equations.

8.0.4 ỹ, z̃ and ŷ, ẑ are close

We claim next that

max {|ŷ(t) − ỹ(t)|, |ẑ(t) − z̃(t)|} ≤ δ∗F1(t/n)n for 0 ≤ t ≤ T1. (206)

where δ∗ = δ∗(λ̂(t)) and

Fa(x) = β(e2ax/β − 1) for x ≤ T̃

n
. (207)

for a > 0.

Note that

F ′
a(t) = 2a(Fa(t)/β + 1).
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In the proof of (206), think of n as fixed and h as a parameter that tends to zero. Think of ε as

small, but fixed until the end of the proof. In the display beginning with equation (209), only h is

the quantity going to zero. Let

ûi = ŷ(ih), v̂i = ẑ(ih), ũi = ỹ(ih), ṽi = z̃(ih) for 0 ≤ i ≤ n/h.

Assume inductively that for i < i0 = T1/h

|ûi − ũi|, |v̂i − ṽi| ≤ δ∗F1+ε(ih/n)n. (208)

This is true for i = 0.

Suppose that

F1+ε((i+ 1)h/n) = F1+ε(ih/n) +
h

n
F ′
1+ε((i+ θ)h/n)

for some 0 ≤ θ ≤ 1.

Then by the inductive assumption and the Taylor expansion and uniform boundedness of second

derivatives,

v̂i+1 − ṽi+1 = v̂i − ṽi + h

(
2ûi

ûi + v̂i
− 2ũi
ũi + ṽi

+ θ2(ih)

)
+O(h2) (209)

= v̂i − ṽi + h

(
2ûi(ṽi − v̂i) − 2v̂i(ũi − ûi)

(ûi + v̂i)(ũi + ṽi)
+ θ2(ih)

)
+O(h2)

≤ v̂i − ṽi + h

(
2(ûi + v̂i) max {|v̂i − ṽi|, |ûi − ũi|}

(ûi + v̂i)(ũi + ṽi)
+ θ2(ih)

)
+O(h2)

≤ δ∗F1+ε(ih/n)n+ 2δ∗h (F1+ε(ih/n)/β + 1) +O(h2)

Here we have used Lemma 8.1 to replace θ2(λ̂(ih)) by 2δ∗. We see from (191) and (192) and

induction on i that λ̂(ih) ≥ λ̂(T1) > 8.

= δ∗(F1+ε(ih/n)n+ hF ′
1+ε(ih/n) − 2hε(F1+ε(ih/n)/β + 1)) +O(h2)

≤ δ∗(F1+ε((i+ 1)h/n)n+ h(F ′
1+ε(ih/n) − F ′

1+ε((i+ θ)h/n)) − ε) +O(h2)

≤ δ∗(F1+ε((i+ 1)h/n)n,

completing the induction, for small enough h.

The remaining three cases are proved similarly. This completes the inductive proof of (208). Letting

ε→ 0 we see for example that ŷ(t) − ỹ(t) ≤ δ∗F1(t) for t ≤ T1. This completes the proof of (206).

Let

α0 = F1(T̃ /n).

Observe next that

(ỹ + z̃)′ =
ỹ

ỹ + z̃
− 1 ≤ 0. (210)

So for t ≤ T1 we have

ỹ + z̃ ≥ ỹ(T̃ ) + z̃(T̃ ) = z̃(T̃ ) = 2(n− T̃ ) = (β + .01)n. (211)
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8.0.5 Lower bounding λ̂

We now show that λ̃− λ̂ is small. We now use (202) and (206) to write for t ≤ T1,

|µ̃′ − µ̂′|

≤ |θ3| +

∣∣∣∣
2µ̂ẑ((ŷ + ẑ)2 + 4δ∗F1(t/n)(ŷ + ẑ)n+ 4δ∗2F1(t/n)2n2) − 2µ̃(ŷ + ẑ)2(ẑ − δ∗F1(t/n)n)

(ŷ + ẑ)2(ỹ + z̃)2

∣∣∣∣

≤ 2λ̂δ∗ +

∣∣∣∣
2ẑ(ŷ + ẑ)2(µ̂− µ̃) + 2δ∗F1(t/n)n(ŷ + ẑ)(4µ̂ẑ + µ̃(ŷ + ẑ)) + 8µ̂ẑδ∗2F1(t/n)2n2

(ŷ + ẑ)2(ỹ + z̃)2

∣∣∣∣ .

Now, using (205),
4µ̂ẑ + µ̃(ŷ + ẑ)

(ŷ + ẑ)(ỹ + z̃)2
≤ 4µ̂+ µ̃

(ỹ + z̃)2
≤ 5c

β2n

and
8µ̂ẑ

(ŷ + ẑ)2(ỹ + z̃)2
≤ 8c

β3n2
.

So,

|µ̃′ − µ̂′| ≤ 2|µ̂− µ̃|
βn

+ α3δ
∗

where

α3 = α3(c, λ̂) =
10α0c

β2
+

8cα2
0δ

∗

β3
+

4c

β
,

where the third term follows from λ̂ ≤ 2c/β, see (197).

Integrating, we get that if γ = µ̂− µ̃ then

γ′ − 2|γ|
βn

≤ α3δ
∗.

Let f be the solution to

f(0) = 0 and f ′(x) =
2f(x)

βn
+ α3δ

∗.

Then we have

γ(t) ≤ f(t) = α3δ
∗e2t/βn

∫ t

τ=0
e−2τ/βndτ = α3δ

∗βn
2

(e2t/βn − 1) ≤ α4δ
∗n.

for t ≤ T1, where

α4 = α4(c, λ̂) = α0α3/2.

The same inequality will hold for −γ and so we have |γ(t)| ≤ α4δ
∗n for t ≤ T1.

It then follows that as long as t ≤ T1,

λ̃− λ̂ = −θ4 +
2µ̃(ŷ + ẑ) − 2µ̂(ỹ + z̃)

(ŷ + ẑ)(ỹ + z̃)

≤ λ̂ε1 +
2(µ̂+ α4δ

∗n)(ŷ + ẑ) − 2µ̂(ŷ + ẑ − 2α0δ
∗n)

(ŷ + ẑ)(ỹ + z̃)

≤ λ̂ε1 +
2α4δ

∗

β
+

4cα0δ
∗

β2
.
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It follows from (183) that for t ≤ T1 we have

λ̂(t) ≥ λ̃(T1) − α5δ
∗ (212)

where

α5 = α5(c, λ̂) =
2c

β
+

2α4

β
+

4cα0

β2
.

We now argue that ŷ(T1) = 0 and λ̂(T1) ≥ λ∗. This proves Lemma 8.2, since ŷ(T1) + ẑ(T1) ≥ βn.

Suppose then to the contrary that ŷ(T1) > 0. Recall that T1 ≤ T̃ (see (193)) and suppose first that

T1 < T̃ . Now let

T2 = min
{
T1 + εn, (T1 + T̃ )/2

}

where 0 < ε < 10−10 is such that

max
{
τ ∈ [T1, T2] : εmax

{
|λ̂′(τ)|, |ŷ′(τ)|, |ẑ′(τ)|

}
≤ 10−10

}
. (213)

The existence of such an ε follows by elementary propositions in real analysis.

We will argue that τ ∈ [T1, T2] implies

λ̂(τ) ≥ λ∗ and min {ŷ(τ) + ẑ(τ), ỹ(τ) + z̃(τ)} ≥ βn and min {ŷ(τ), ẑ(τ), ỹ(τ), z̃(τ)} > 0, (214)

which contradicts the definition of T1.

Fix τ ∈ [T1, T2]. Now τ < T̃ implies that ỹ(τ) > 0. Together with (177) we see that z̃ increases for

t ≤ T̃ and hence z̃(τ) > 0. We have ỹ′(t) ≥ −2 (see (176)) and z̃′(t) ≥ 0 for t ≤ T2 (see (177)) and

so for some τ1, τ2 ∈ [T1, T2]

ỹ(τ) = ỹ(T1) + (τ − T1)ỹ
′(τ1) ≥ ỹ(T1) − 2εn.

z̃(τ) = z̃(T1) + (τ − T1)z̃
′(τ2) ≥ z̃(T1).

It follows that

ỹ(τ) + z̃(τ) ≥ ỹ(T1) + z̃(T1) − 2εn ≥ ỹ(T̃ ) + z̃(T̃ ) − 2εn > βn. (215)

We have, for some τ3, τ4 ∈ [T1, T2],

ŷ(τ) + ẑ(τ) = ŷ(T1) + ẑ(T1) + (τ − T1)(ŷ(τ3) + ẑ(τ4))
′

≥ ỹ(T1) + z̃(T1) − 2F1(T̃ /n)δ∗n− 2 × 10−10n

≥
(
β + .01 − 2

(
α0δ

∗ + 10−10)
))
n

≥ βn. (216)

We now argue that ẑ(τ) > 0. Equation (177) shows that z̃ is strictly increasing initially. Also, if

λ̂ ≥ λ∗ then θ3 ≤ 1/10. From (201) we see that ẑ is strictly increasing at least until a time τ0 when

ŷ(τ0) ≤ βδ∗. On the other hand, we see from (216) that if ŷ(τ) ≤ βδ∗ then ẑ(τ) > 0. So,

min {ŷ(τ), ẑ(τ), ỹ(τ), z̃(τ)} > 0. (217)
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Now we write

λ̂(τ) = λ̂(T1) + (τ − T1)λ̂
′(τ3)

≥ λ̃(T1) − (λ̃(T1) − λ̂(T1)) − 10−10, using (213).

≥ λ̃(T̃ ) − α5δ
∗ − 10−10,

≥ α1c− α2 − α5δ
∗ − 10−10, where α5 = α5(c, λ̂(T̃ )) and δ∗ = δ∗(λ̂(T̃ )). (218)

Now,

α1 ≥ 1.531 and α2 ≤ 1.419 and so α1c− α2 ≥ 13.5 for c ≥ 10. (219)

Furthermore,

α5(10, 13.5) ≤ 9800 and δ∗(13.5) ≤ .0005 (220)

and so the RHS of (218) is at least 8.9 > λ̂∗, see (192), when c = 10. We claim next that

α5(c, λ̂(T̃ )) × δ∗(λ̂(T̃ )) decreases monotonically with c. This follows from the fact that cδ∗(λ̂(T̃ ))

is monotonically decreasing. For this note that λ̂(T̃ ) ≥ c for c ≥ 10 and it is easy to check that

cδ∗(c) decreases for c ≥ 10. This verifies (214).

We must now deal with the case where T1 = T̃ . Here we can just use (206) to argue that ẑ(T1) >

z̃(T1) − α0δ
∗n > 0 and ŷ(T1) + ẑ(T1) > ỹ(T1) + z̃(T1) − α0δ

∗n > (β + .01 − α0δ
∗)n > βn and

λ̂(T̃ ) ≥ λ̃(T̃ ) − α5δ
∗ > λ∗.

The above calculations imply that T1 < T̂0, justifying the use of Lemma 7.1.

This completes the proof of Lemma 8.2. �

It follows from Lemma 7.1 that w.h.p. y(T1) ≤ n8/9, z(T1) ≥ βn− n8/9 and λ(T1) ≥ λ∗. We claim

that q.s., y becomes zero within the next ν = n9/10 steps of 2greedy. Suppose not. It follows

from Lemma 6.5 that λ changes by o(1) and by (6) that z changes by o(n) during these ν steps.

Thus T1 +ν ≤ T0. It follows from (92) that q.s. at least ν log−2 n of these steps will be of type Step

2. But each such step reduces y by at least one, contradiction.

This verifies (190).

9 The number of components in the output of the algorithm

We will tighten our bound on ζ from Lemma 6.6.

Lemma 9.1. If c ≥ 10 then for every positive constant K there exists a constant c2 = c2(K) such

that

P (∃1 ≤ t ≤ T1 : ζ(t) > c2 logn) ≤ n−K .

Proof We now need to use a sharper inequality than (90) to replace L1 by what is claimed in

the statement of the lemma. This sharper inequality uses higher moments of the Xt’s and we can

estimate them now that we have the estimate of the maximum of ζ(t) given in (90). So, we now

have to estimate terms of the form

Ψj(ξ | η) = E[ |(ξ′ − ξ) − E[(ξ′ − ξ) | η]|j | η).

42



for ξ = y1, y2, z2, 2 ≤ j ≤ log n and η = v or b,d.

We use the inequality

(a+ b+ c+ d)j ≤ 4j(|a|j + |b|j + |c|j + |d|j)
for j ≥ 1.

We will also need to estimate, for 2 ≤ j ≤ log n,

∑

k≥2

k(k − 1)jλk

k!
= λ2

∑

k≥0

(k + 1)j−1λk

k!
< 2jλ2

∑

k≥0

kjλk

k!
= 2jλ2

∑

k≥0

j∑

ℓ=0

{
j

ℓ

}
(k)ℓλ

k

k!

= 2jλ2
j∑

ℓ=0

{
j

ℓ

}
λℓ
∑

k≥ℓ

λk−ℓ

(k − ℓ)!
≤ 2jλj+2eλ

j∑

ℓ=0

{
j

ℓ

}
≤ 2jj!λj+2eλ.

Here
{
j
ℓ

}
is a Stirling number of the second kind and it is easy to verify by induction on j that the

Bell number
∑j

ℓ=0

{
j
ℓ

}
≤ j!.

Step 1. y1 + y2 + z1 > 0.

Step 1(a). y1 > 0.

Ψj(y1 | b,d) ≤ 4j


 y1

2µ
+
∑

k≥2

kzk
2µ

(k − 1)j
y1
2µ

+
∑

k≥2

kzk
2µ

(k − 1)j
2y2
2µ

+ ε221


 . (221)

Ψj(yi | v) = O

(
23jλjeλj!

(
ζ

N
+

log2N

λN

))
. (222)

Ψ(y2 | b,d) ≤ 4j


2y2

2µ
+
∑

k≥2

kzk
2µ

(k − 1)j
2y2
2µ

+
∑

k≥2

kzk
2µ

(k − 1)j
3y3
2µ

+ ε223


 . (223)

Ψj(y2 | |v|) = O

(
23jλjeλj!

(
ζ

N
+

log2N

λN

))
. (224)

Ψ(z1 | b,d) ≤ 4j


 z1

2µ
+
∑

k≥2

kzk
2µ

(k − 1)j
z1
2µ

+
∑

k≥2

kzk
2µ

(k − 1)j
2z2
2µ

+ ε225


 . (225)

Ψ(z1 | |v|) = O

(
23jλjeλj!

(
ζ

N
+

log2N

λN

))
. (226)

(227)

Step 1(b). y1 = 0, y2 > 0.

Ψj(y1 | b,d) ≤ 4j


2
∑

k≥2

kzk
2µ

(k − 1)j
2y2
2µ

+ ε228


 . (228)

Ψj(y1 | |v|) = O

(
23jλjeλj!

(
ζ

N
+

log2N

λN

))
. (229)
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Ψj(y2 | b,d) ≤ 4j


2y2

2µ
+ 2

∑

k≥2

kzk
2µ

(k − 1)j
2y2
2µ

+ 2
∑

k≥2

kzk
2µ

(k − 1)j
3y3
2µ

+ ε230


 . (230)

Ψj(y2 | |v|) = O

(
23jλjeλj!

(
ζ

N
+

log2N

λN

))
. (231)

Ψj(z1 | b,d) ≤ 4j


z1
µ

+ 2
∑

k≥2

kzk
2µ

(k − 1)j
z1
2µ

+ 2
∑

k≥2

kzk
2µ

(k − 1)j
2z2
2µ

+ ε232


 . (232)

Ψj(z1 | |v|) = O

(
23jλjeλj!

(
ζ

N
+

log2N

λN

))
. (233)

(234)

Step 1(c). y1 = y2 = 0, z1 > 0.

Ψj(y1 | b,d) = ε235. (235)

Ψj(y1 | |v|) = ε236. (236)

Ψj(y2 | b,d) ≤ 2j


∑

k≥2

kzk
2µ

(k − 1)j
3y3
2µ

+ ε237


 . (237)

Ψj(y2 | |v|) = O

(
23jλjeλj!

(
ζ

N
+

log2N

λN

))
. (238)

Ψj(z1 | b,d) ≤ 4j


 z1

2µ
+
∑

k≥2

kzk
2µ

(k − 1)j
z1
2µ

+
∑

k≥2

kzk
2µ

(k − 1)j
2z2
2µ

+ ε239


 . (239)

Ψj(z1 | |v|) = O

(
23jλjeλj!

(
ζ

N
+

log2N

λN

))
. (240)

Now let Et =
{
ζ(τ) ≤ log2 n : 1 ≤ τ ≤ t

}
. Then let

Yi =

{
(ζ(i+ 1) − ζ(i))1(Ei) 0 ≤ i ≤ T1

−c1/2 T1 < i ≤ n

where c1 is from (81).

Then, q.s.

Ys+1 + . . .+ Yt = ζ(t) − ζ(s) for 0 ≤ s < t ≤ T1.

44



For some absolute constant c2, and with θ = c1
100ce3ce+1(3ce)3

and i ≤ L1,

E[eθYs+i | Ys+1, . . . , Ys+i−1] =
∞∑

k=0

θkE

[
Y k
s+i

k!

∣∣∣∣Ys+1, . . . , Ys+i−1

]

≤ 1 − θc1/2 + c2

∞∑

k=2

θk23kλ(i)keλ(i) ≤ e−θc1/3,

where we have used (81) and we have used Lemma 6.3 to bound λ(i).

It follows that for t− s ≤ L1 and real u > 0

P(Ys+1 + · · · + Yt ≥ u) ≤ e−θ(u+c1(t−s)/3) (241)

Suppose now that there exists τ ≤ T0 such that ζ(τ) ≥ L2 = 6K log n
c1

. Now q.s. there exists

t1 ≤ τ ≤ t1 + L1 such that ζ(t1) = 0. But then putting u = − logn in (241) we see that given t1,

P(∃t1 ≤ τ ≤ t1 + L1 : ζ(τ) ≥ L2) ≤ P

(
¬
⋂

t

Et
)

+ e−θ(c1L2/3−log n) ≤ n−K .

�

The number of paths in the output is bounded by the sum of the increases in y0 + y1 + z1. If we

look at equations (12) etc., then we see that the expected number added to y0 + y1 + z1 at step t

is O(ζ(t)/µ(t)). So if ZP (t) is the number of increases at time t and ZP =
∑T3

t=0 ZP (t), where T3
is the time at the beginning of Step 3, then

E[ZP ] = O

(
E

(
log n

T3∑

t=0

1

µ(t)

))
= O

(
log n E

[
log

(
µ(0)

µ(T3)

)])
. (242)

Now in our case µ(T3) = Ω(n) with probability 1 − o(n−2) in which case E[ZP ] = O(log n). We

will apply the Chebyshev inequality to show concentration around the mean. We will condition

on ||u(t) − û(t)||1 ≤ n8/9 for t ≤ T1 (see Lemma 7.1). With this conditioning, the expected value

of ZP (t) is determined up to a factor 1 − O(n−1/9 log2 n) by the value of û(t). In which case,

E[ZP (t) | ZP (s)] = (1 + o(1))E[ZP (t)] and we can apply the Chebychev inequality to show that

w.h.p. ZP = O(logn). We combine this with Lemma 5.4 to obtain Theorem 1.

10 Hamilton cycles

We will now show how we can use Theorem 1(a) to prove the existence and construction of Hamilton

cycles. We will first need to remove a few random edges X from G = Gδ≥3
n,cn in such a way that the

pair (G −X,X) is distributed very close to (H = Gδ≥3
n,cn−|X|, Y ) where Y is a random set of edges

disjoint from E(H). In which case we can apply Theorem 1 to H and then we can use the edges of

Y to close cycles in the extension-rotation procedure.
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10.1 Removing a random set of edges

Let

s = n1/2 log−2 n

and let

Ω =

{
(H,Y ) : H ∈ Gδ≥3

n,cn−s, Y ⊆
(

[n]

2

)
, |Y | = s and E(H) ∩ Y = ∅

}

where Gδ≥3
n,m =

{
Gδ≥3

n,m

}
.

We consider two ways of randomly choosing an element of Ω.

(a) First choose G uniformly from Gδ≥3
n,cn and then choose an s-set X uniformly from E(G)\E3(G),

where E3(G) is the set of edges of G that are incident with a vertex of degree 3. This produces

a pair (G−X,X). We let Pa denote the induced probability measure on Ω.

(b) Choose H uniformly from Gδ≥3
n,cn−s and then choose an s-set Y uniformly from

(
[n]
2

)
\ E(H).

This produces a pair (H,Y ). We let Pb denote the induced probability measure on Ω.

The following lemma implies that as far as properties that happen w.h.p. in G, we can use Method

(b), just as well as Method (a) to generate our pair (H,Y ).

Lemma 10.1. There exists Ω1 ⊆ Ω such that

(i) Pa(Ω1) = 1 − o(1).

(ii) ω = (H,Y ) ∈ Ω1 implies that Pa(ω) = (1 + o(1))Pb(ω).

Proof We first compute the expectation of the number µ3 = µ3(G) of edges incident to a

vertex of degree 3 in G chosen uniformly from Gδ≥3
n,cn. We will use the random sequence model of

Section 3. We will show that µ3 is highly concentrated in this model and then we can transfer this

result to our graph model. Observe first that if ν3 is the number of vertices of degree 3 in Gx then

Lemma 3.3 implies that ∣∣∣∣ν3 −
λ3

3!f3(λ)
n

∣∣∣∣ = O(n1/2 log n), q.s..

Here λ is the solution to λf2(λ)/f3(λ) = 2cn.

To see how many edges are incident to these ν3 vertices we consider the following experiment:

Condition on ν3 = ρn where ρ will be taken to be close to ρ3 = λ3

3!f3(λ)
. We take a random

permutation π of [2cn] and compute the number Z of i ≤ cn such that {π(2i− 1), π(2i)}∩[3ν3] 6= ∅.

This will give us the number of edges in Gx that are incident with a vertex of degree 3. Now

E[Z] = cn

(
1 − 2cn− 3ρn

2cn

2cn− 3ρn− 2

2cn− 1

)
= cn

(
1 −

(
1 − 3ρ

2c

)2

+O(1/n)

)
.

Now interchanging two positions in π can change Z by at most one and so applying the Azuma-

Hoeffding inequality for permutations (see for example Lemma 11 of Frieze and Pittel [16] or Section

3.2 of McDiarmid [19]) we see that

P(|Z − E[Z]| ≥ u) ≤ e−u2/(cn) for any u ≥ 0.
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Putting this all together we see that with u = Kn1/2 logn, for sufficiently large K,

P(|µ3(G) − ρ3(2 − ρ3)cn| ≥ u) ≤ e−u2/2cn.

Now let

Ĝδ≥3
n,cn =

{
G ∈ Gδ≥3

n,cn :

∣∣∣∣∣µ3(G) − cn

(
1 −

(
1 − 3ρ3

2c

)2
)∣∣∣∣∣ ≤ Kn1/2 log n

}

and

Ωa =
{

(H,Y ) ∈ Ω : H + Y ∈ Ĝδ≥3
n,cn

}
.

This satisfies requirement (a) of the lemma.

Suppose next that ω ∈ Ωa. Then

Pa(ω) =
1

|Gδ≥3
n,cn|

· 1
(
cn(1−3ρ3/2c)2±Kn1/2 logn

s

) =
1 +O(log−1 n)

|Gδ≥3
n,cn| ·

(
cn(1−3ρ3/2c)2

s

) (243)

Pb(ω) =
1

|Gδ≥3
n,cn−s|

· 1
((n2)−cn

s

) (244)

One can see from this that one has to estimate the ratio |Gδ≥3
n,cn|/|Gδ≥3

n,cn−s|. For this we make estimates

of

M = |
{

(G1, G2) ∈ Gδ≥3
n,cn × Gδ≥3

n,cn−s : E(G1) ⊇ E(G2)
}
|.

We have the following inequalities:

|Ĝδ≥3
n,cn|

(
cn(1 − 3ρ3/2c)

2 −Kn1/2 log n

s

)
≤M ≤ |Ĝδ≥3

n,cn|
(
cn(1 − 3ρ3/2c)

2 +Kn1/2 log n

s

)
+

|Gδ≥3
n,cn|

∑

|u|≥Kn1/2 logn

(
cn(1 − 3ρ3/2c)

2 + u

s

)
e−u2/2cn

(245)

M = |Gδ≥3
n,cn−s|

((n
2

)
− cn

s

)
. (246)

We get (245) by summing µ3(G1) over G1 ∈ Gδ≥3
n,cn and bounding µ3(G1) according to whether or

not G is in Ĝδ≥3
n,cn. Equation (246) is obtained by summing over G2 ∈ Gδ≥3

n,cn−s, the number of ways

of adding s edges to G2.

Now

∑

|u|≥Kn1/2 logn

(
cn(1 − 3ρ3/2c)

2 + u

s

)
e−u2/2cn ≤ 2

∑

u≥Kn1/2 logn

(
cn(1 − 3ρ3/2c)

2

s

)
eO(us/n)e−u2/2cn

≤ 2

(
cn(1 − 3ρ3/2c)

2

s

) ∑

u≥Kn1/2 logn

e−u2/3cn = O

((
cn(1 − 3ρ3/2c)

2

s

)
e−Ω(log2 n)

)
.

It follows from this and (245) that

M = |Gδ≥3
n,cn|

(
cn(1 − 3ρ3/2c)

2

s

)(
1 +O(log−1 n)

)
.
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By comparing with (246) we see that

|Gδ≥3
n,cn|

|Gδ≥3
n,cn−s|

= (1 + o(1))

((n2)−cn
s

)
(
cn(1−3ρ3/2c)2

s

) .

The lemma follows by using this in conjunction with (243) and (244). �

10.2 Connectivity of Gδ≥3
n,cn

Lemma 10.2. Gδ≥3
n,cn is connected, w.h.p..

Proof It follows from Lemma 10.1 that we can replace Gδ≥3
n,cn by Gδ≥3

n,cn−s plus s random edges.

We use the random sequence model to deal with Gδ≥3
n,cn−s. Let Fix 4 ≤ k ≤ n/ log20 n. For K ⊆ [n],

e(K) denotes the number of edges of Gx contained in K. Let ℓ0 = log n/(log log n)1/2. Then with

λ the solution to λf2(λ)/f3(λ) = 2c,

P(∃K ⊆ [n] : e(K) ≥ 5k/4) ≤ o(1) + δk

(
n

k

) ℓ0k∑

d=3k/2

λdkd

d!f3(λ)k

(
cn

5k/4

)(
d

cn

)5k/2

(247)

≤ δk

ℓ0k∑

d=3k/2

(
λek

d

)d
(

e9/4ℓ
5/2
0 k1/4

(5c/4)5/4f3(λ)n1/4

)k

≤ δkℓ0k

(
e9/4ℓ

5/2
0 k1/4eλ

(5c/4)5/4f3(λ)n1/4

)k

. (248)

Explanation of (247): Here δk = 1 + o(1) for k ≤ log2 n and O(n1/2) for larger k. The term
λdkd

d!f3(λ)k
bounds the probability that the total degree of K is d, see (82). Given the degree sequence

we take a random permutation π of the multi-set {dx(j) × j : j ∈ [n]} and bound the probability

that there is a set of 5k/4 indices i such that π(2i − 1), π(2i) ∈ K. This expression assumes that

vertex degrees are independent random variables. We can always inflate the estimate by O(n1/2)

to account for the degree sum being fixed. This is what δk does for k > log2 n. For smaller k we

use (3). The bound of d ≤ ℓ0k arises from Lemma 3.2(b).

Let σk denote the RHS of (248). Then, we have
∑n/ log20 n

k=4 σk = o(1) and we can assume that there

is no set of size 4 ≤ k ≤ n/ log20 n containing at least 5k/4 edges.

But if G has minimum degree at least 3 and a set K contains at most 5|K|/4 edges then there must

be edges with one end in K. So, we see that w.h.p. the minimum component size in G will be at

least n/ log20 n. We now use the result of Section 10.1. If we take H = Gδ≥3
n,cn−s, s = n1/2 log−2 n

then we know by the above that w.h.p. it only has components of size at least n/ log20 n. Now add

s random edges Y . Then

P(H + Y is not connected) = o(1) + log40 n

(
1 − 1

log40 n

)s

= o(1).

Now apply Lemma 10.1. �

10.3 Extension-Rotation Argument

We will as in Section 10.2 replace Gδ≥3
n,cn by Gδ≥3

n,cn−s plus s random edges Y . Having run 2greedy

we will w.h.p. have a 2-matching M0 say such that M0 has O(logn) components.
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The main idea now of course is that of a rotation. Given a path P = (u1, u2, . . . , uk) and an

edge (uk, ui) where i ≤ k − 2 we say that the path P ′ = (u1, . . . , ui, uk, uk−1, . . . , ui+1) is obtained

from P by a rotation. u1 is the fixed endpoint of this rotation. We now describe an algorithm,

extend-rotate that w.h.p. converts M0 into a Hamilton cycle in O(n1.5+o(1)) time.

Given a path P with endpoints a, b we define a restricted rotation search RRS(ν) as follows: Suppose

that we have a path P with endpoints a, b. We start by doing a sequence of rotations with a as the

fixed endpoint. Furthermore

R1 We only do a rotation if the endpoint of the path created is not an endpoint of the paths that

have been created so far.

R2 We stop this process when we have either (i) created ν endpoints or (ii) we have found a path

Q with an endpoint that has a neighbor outside Q. We say that we have found an extension.

Let END(a) be the set of endpoints, other than a, produced by this procedure. The main result

of [15] is that w.h.p., regardless of our choice of path P , either (i) we find an extension or (ii) we

are able to generate n1−o(1) endpoints. We will run this procedure with ν = n3/4 log3 n.

Assuming that we did not find an extension and having constructed END(a), we take each x ∈
END(a) in turn and starting with the path Px that we have found from a to x, we carry out R1,R2

above with x as the fixed endpoint and either find an extension or create a set of ν paths with x

as one endpoint and the other endpoints comprising a set END(x) of size ν.

It follows from [2] that the above construction RSS(ν) can be carried out in O(ν2 log n) time.

Algorithm extend-rotate

Step 1 Choose a path component P of the current 2-matching M , with endpoints a, b or if M is

not a Hamilton cycle, choose a cycle C of M and delete an edge to create P . We choose P

as large as possible here and note that P will have length Ω(n/ log n).

Step 2 Carry out RSS(ν) until either an extension is found or we have constructed ν + 1 endpoint

sets.

Case a: We find an extension. Suppose that we construct a path Q with endpoints x, y

such that y has a neighbor z /∈ Q.

(i) If z lies in a cycle C then let R be a path obtained from C by deleting one of the

edges of C incident with z. Let now P = x,Q, y, z, R and go to Step 1.

(ii) If z = uj lies on a path R = (u1, u2, . . . , uk) where the numbering is chosen so that

j ≥ k/2 then we let P = x,Q, y, z, uj−1, . . . , u1 and go to Step 1.

Case b: If there is no extension then we search for an edge e = (p, q) ∈ Y such that

p ∈ END(a) and q ∈ END(p). if there is no such edge then the algorithm fails. If

there is such an edge, consider the cycle P + e. Now either C is a Hamilton cycle and

we are done, or else there is a vertex u ∈ C and a vertex v /∈ C such that (u, v) is an

edge of H, assuming that H is connected, see Lemma 10.2. We now delete one of the

edges, (u,w) say, of C incident with u to create a path Q from w to u and treat e as

an extension of this path. We can now proceed as in Case a.
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10.3.1 Analysis of extend-rotate

We first bound the number of executions of RSS(ν). Suppose that M0 has κ ≤ K1 log n components

for some K1 > 0. Each time we execute Step 2, we either reduce the number of components by one

or we halve the size of one of the components not on the current path. So if the component sizes

of M0 are n1, n2, . . . , nκ then the number of executions of Step 2 can be bounded by

κ+
κ∑

i=1

log2 ni = O(log2 n).

An execution of Step 2 takes O(ν2 logn) time and so we are within the time bound claimed by

Theorem 2.

We next argue that extend-rotate succeeds w.h.p.. Suppose that the edges of Y are e1, e2, . . . , es.

We can allow the algorithm to access these edges in order, never going back to a previously examined

edge. The probability that an ei can be used in Case b is always at least
(ν2)−s

(n2)
≥ log6 n

2n1/2 (we have

subtracted s because some of the useful edges might have been seen before the current edge in the

order). So the probability of failure is bounded by the probability that the binomial Bin
(
s, log

6 n
2n1/2

)

is less than K2 log2 n for some K2 > 0. And this tends to zero. This completes the proof of Theorem

2.

11 Concluding remarks

The main open question concerns what happens when c < 10. Is it true that (194) holds all the

way down to c > 3/2? We have done some numerical experiments and here are some results from

these experiments:
c yfinal zfinal µfinal λfinal
3.0 0.000009 0.401133 0.626647 2.351035

2.5 0.000010 0.271633 0.362381 1.563165

2.0 0.000010 0.114914 0.131391 0.761156

1.9 0.000010 0.085062 0.094501 0.604995

1.8 0.000010 0.057356 0.061974 0.451806

1.7 0.000010 0.031910 0.033543 0.298630

1.6 0.000010 0.033080 0.034737 0.292363

1.55 0.000008 0.213928 0.264772 0.372103

These are the results of running Euler’s method with step length 10−5 on the sliding trajectory

(152). They indicate that (194) holds down to somewhere close to 2.0. The increase in zfinal
towards the end may just be due to numerical errors? Could there be some sort of phase transition

in the performance of 2greedy at around this point. There is one for the Karp-Sipser matching

algorithm and so we are led to conjecture there is one here too.

Can we prove anything for c < 10? At the moment we can not even show that at the completion

of 2greedy the 2-matching M has o(n) components. This will be the subject of further research.

We recently showed that 2greedy only produces O(n1/5+o(1)) components w.h.p. when run on a

random cubic graph, see Bal, Bennet, Bohman and Frieze [4].
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Finally, we mention once again, the possible use of the ideas of [11] to reduce the running time of

our Hamilton cycle algorithm to O(n1+o(1)) time.

Our list of problems/conjectures arising from this research can thus be summarised:

(a) Find a threshold c1 such that 2greedy produces a 2-matching in Gδ≥3
n,cn with O(logn) compo-

nents w.h.p. iff c > c1. Is c1 = 3/2?

(b) If c1 > 3/2 then show that when c ∈ (3/2, c1), the number of components in the 2-matching

produced is O(nα) for some constant α < 1. The value of α should be 1/5 + o(1)?

(c) Analyse the performance of 2greedy on the random graph Gn,cn i.e. do not condition on

degree at least three. Is there a threshold c2 such that if c ≤ c2 then w.h.p. only Steps 1a,1b,1c

are needed, making the matching produced optimal.

(d) Can 2greedy be used to find a Hamilton cycle w.h.p. in O(n1+o(1)) time when applied to

Gδ≥3
n,cn and c sufficiently large?

(e) How much of this can be extended to find edge disjoint Hamilton cycles in Gδ≥k
n,cn for k ≥ 4.
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A Proof of (3)

To find a sharp estimate for the probabilities in (3) we have to refine a bit the proof of the local

limit theorem, since in our case the variance of the Zj are not always bounded away from zero.
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However it is enough to consider the case where Nσ2 → ∞. There is little loss of generality in

assuming that D = 0 here. As usual, we start with the inversion formula

P




N∑

j=1

Zj = τ


 =

1

2π

∫ π

−π
e−iτx

E

(
eix

∑N
j=1 Zj

)
dx

=
1

2π

∫ π

−π
e−iτx

3∏

ℓ=2

[
E(eixPℓ)

]Nℓ dx, (249)

where τ = 2M − k. Consider first |x| ≥ (Nλ)−5/12. Using an inequality (see Pittel [21])

|fℓ(η)| ≤ e(Reη−|η|)/(ℓ+1)fℓ(|η|),

we estimate

1

2π

∫

|x|≥(Nλ)−5/12

∣∣∣∣∣e
−iτx

3∏

ℓ=2

(
fℓ(e

ixλ)

fℓ(λ)

)Nℓ
∣∣∣∣∣ dx

≤ 1

2π

∫

|x|≥(Nλ)−5/12

eNλ(cosx−1)/4 dx

≤ eNλ[(cos((Nλ)−5/12)−1)/4]

≤ e−(Nλ)1/6/9. (250)

For |x| ≤ (Nλ)−5/12, putting η = λeix and using

3∑

ℓ=2

Nℓλf
′
ℓ(λ)

fℓ(λ)
= 2M and d/dx = iηd/dη

we expand
∑3

ℓ=2Nℓ log
(
fℓ(η)
fℓ(λ)

)
as a Taylor series around x = 0 to obtain

−iτx+
3∑

ℓ=2

Nℓ log

(
fℓ(e

ixλ)

fℓ(λ)

)
= ikx− x2

2
D
(

3∑

ℓ=2

Nℓ
ηf ′ℓ(η)

fℓ(η)

)∣∣∣∣∣
η=λ

− ix
3

3!
D2

(
3∑

ℓ=2

Nℓ
ηf ′ℓ(η)

fℓ(η)

)∣∣∣∣∣
η=λ

+O


x4 D3

(
3∑

ℓ=2

Nℓ
ηf ′ℓ(η)

fℓ(η)

)∣∣∣∣∣
η=η̃


 . (251)

Here η̃ = λeix̃, with x̃ being between 0 and x, and D = η(d/dη). Now, the coefficients of x2/2, x3/3!

and x4 are Nσ2, O(Nσ2), O(Nσ2) respectively, and σ2 is of order λ. (Use (2) and consider the

effect of D on a power of η.) So the second and the third terms in (251) are o(1) uniformly for

|x| ≤ (Nλ)−5/12. Therefore
1

2π

∫

|x|≤(Nλ)−5/12

=

∫

1
+

∫

2
+

∫

3
, (252)
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where
∫

1
=

1

2π

∫

|x|≤(Nλ)−5/12

eikx−Nσ2x2/2 dx

=
1√

2πNσ2
+O

(
k2 + 1

(λN)3/2

)
, (253)

∫

2
= O

(
D2

(
3∑

ℓ=2

Nℓ
λf ′ℓ(λ)

fℓ(λ)

)∫

|x|≤(Nλ)−5/12

x3e−Nσ2x2/2 dx

)

= O

(
Nλ

∫

|x|≤(Nλ)−5/12

|x|3e−Nσ2x2/2 dx

)

= O(e−α(Nλ)1/6), (254)

(α > 0 is an absolute constant), and∫

3
= O

(
Nλ

∫

|x|≤(Nλ)−5/12

x4e−Nσ2x2/2 dx

)

= o

(∫

2

)
. (255)

Using (249)-(255), we arrive at

P

(
∑

ℓ

Zℓ = τ

)
=

1√
2πNσ2

×
(

1 +O

(
k2 + 1

Nλ

))
.

B Mathematica Output

In the computations below, εp(λ̂) is represented by ep[x] and αp is represented by Ap and β is

represented by B. The computation C1 is the evaluation of the RHS of (218).

f0[x ]:=Exp[x]f0[x ]:=Exp[x]f0[x ]:=Exp[x]

f1[x ]:=f0[x] − 1f1[x ]:=f0[x] − 1f1[x ]:=f0[x] − 1

f2[x ]:=f1[x] − xf2[x ]:=f1[x] − xf2[x ]:=f1[x] − x

f3[x ]:=f2[x] − x2

2
f3[x ]:=f2[x] − x2

2f3[x ]:=f2[x] − x2

2

e1[x ]:= f2[x]
f3[x] − 1e1[x ]:= f2[x]
f3[x] − 1e1[x ]:= f2[x]
f3[x] − 1

e2[x ]:= f0[x]
f2[x] − 1e2[x ]:= f0[x]
f2[x] − 1e2[x ]:= f0[x]
f2[x] − 1

e3[x ]:= f0[x]
f3[x] − 1e3[x ]:= f0[x]
f3[x] − 1e3[x ]:= f0[x]
f3[x] − 1

eA[x ]:= (1+e2[x])(1+e3[x])x3

8f0[x]
eA[x ]:= (1+e2[x])(1+e3[x])x3

8f0[x]eA[x ]:= (1+e2[x])(1+e3[x])x3

8f0[x]

eB[x ]:=x2(1+e2[x])2

f0[x]
eB[x ]:=x2(1+e2[x])2

f0[x]eB[x ]:=x2(1+e2[x])2

f0[x]

f [x ]:=Max
[
e1[x], eA[x] + eB[x] + e1[x]

1+e1[x] , eB[x] + eA[x]
]

f [x ]:=Max
[
e1[x], eA[x] + eB[x] + e1[x]

1+e1[x] , eB[x] + eA[x]
]

f [x ]:=Max
[
e1[x], eA[x] + eB[x] + e1[x]

1+e1[x] , eB[x] + eA[x]
]

T = 1 − 1
21/2Exp[Pi/4]

T = 1 − 1
21/2Exp[Pi/4]

T = 1 − 1
21/2Exp[Pi/4]

1 − e−π/4√
2
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B = −.01 + 2(1 − T )B = −.01 + 2(1 − T )B = −.01 + 2(1 − T )

0.634794

A0 = B(Exp[2T/B] − 1)A0 = B(Exp[2T/B] − 1)A0 = B(Exp[2T/B] − 1)

4.73302

A1 = N
[
2(1+T )Exp[−ArcTan[T ]]

(1+T 2)1/2

]
A1 = N

[
2(1+T )Exp[−ArcTan[T ]]

(1+T 2)1/2

]
A1 = N

[
2(1+T )Exp[−ArcTan[T ]]

(1+T 2)1/2

]

1.5312

A2 = N
[
(1+T )Exp[−ArcTan[T ]]

(1+T 2)1/2
Integrate

[
2Exp[ArcTan[x]]

(1+x)(1+x2)1/2
, {x, 0, 1}

]]
A2 = N

[
(1+T )Exp[−ArcTan[T ]]

(1+T 2)1/2
Integrate

[
2Exp[ArcTan[x]]

(1+x)(1+x2)1/2
, {x, 0, 1}

]]
A2 = N

[
(1+T )Exp[−ArcTan[T ]]

(1+T 2)1/2
Integrate

[
2Exp[ArcTan[x]]

(1+x)(1+x2)1/2
, {x, 0, 1}

]]

1.41846

M [c ]:=Abs[A1c− A2]M [c ]:=Abs[A1c− A2]M [c ]:=Abs[A1c− A2]

A3[c , x ]:=10A0c
B2 + 8A02cf [x]

B3 + 4c
B

A3[c , x ]:=10A0c
B2 + 8A02cf [x]

B3 + 4c
BA3[c , x ]:=10A0c

B2 + 8A02cf [x]
B3 + 4c

B

A4[c , x ]:=A0A3[c, x]/2A4[c , x ]:=A0A3[c, x]/2A4[c , x ]:=A0A3[c, x]/2

A5[c , x ]:=2c
B + 2A4[c,x]

B + 4cA0
B2A5[c , x ]:=2c

B + 2A4[c,x]
B + 4cA0

B2A5[c , x ]:=2c
B + 2A4[c,x]

B + 4cA0
B2

A5[10, 13.5]A5[10, 13.5]A5[10, 13.5]

9770.23

f [13.5]f [13.5]f [13.5]

0.000796502

C1[c , x ]:=M [c] − A5[c, x]f [x]C1[c , x ]:=M [c] − A5[c, x]f [x]C1[c , x ]:=M [c] − A5[c, x]f [x]

C1[10,M [10]]C1[10,M [10]]C1[10,M [10]]

8.25371
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