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Abstract

We study the Hamiltonicity of the following model of a random graph. Suppose that
we partition [n] into V1, V2, . . . , Vk and add edge {x, y} to our graph with probability
p if there exists i such that x, y ∈ Vi. Otherwise, we add the edge with probbability q.
We denote this model by G(n, p, q) and give tight results for Hamiltonicity, including
a critical window analysis, under various conditions.

1 Introduction

The Hamiltonicity of various models of random graphs has been studied for many years. As
far back as 1976, Komlós and Szemerédi announced their solution for the random graph Gn,m,
although the published paper came out later in 1983 [5]. Since that time there have been
many results on Hamiltonicity of random graphs, including but not restricted to, binomial
random graphs, random regular graphs, binomial random graphs restricted to given mini-
mum degrees, random k-out graphs, random percolation on given graphs, random graphs
produced by (various types of) random graph processes, and also random hypergraphs. See
a recent bibliography [3] by the second author which goes into great details.

In this paper we study Hamiltonicity of random graphs from the so-called Stochastic
Block Model. This random graph model has been the subject of much research in the
computer science community. It is a generative model for social networks consisting of
distinct communities. The model generalises the Erdős-Rényi random graphs, where every
pair of vertices is connected by an edge independently with the same probability. In the
stochastic block model, the probability of connecting a pair of vertices depends on which
communities they belong to. Research on the stochastic block model is mainly on inferring
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the community membership given an instance sampled from the model. A recent paper by
Abbe [1] surveys this aspect.

A formal definition of the stochastic block model is given as follows. Let P be a symmetric
k × k matrix with nonnegative entries between 0 and 1, and n = (n1, . . . , nk) be a vector of
positive integers. Let n =

∑n
i=1 ni. Let G(n, P ) be a random graph constructed as follows.

The vertex set is V = ∪ki=1Vi where Vi = {(i, j), j ∈ [ni]}, and any two vertices (i1, j1)
and (i2, j2) are adjacent with probability P (i1, i2) mutually independently. In this paper we
consider the special case where k ≥ 1 is a fixed integer, and P has value p = p(n) on the
diagonal, and has value q = q(n) off the diagonal. We denote G(n, P ) by G(n, p, q) for this
special P .

Unlike the Erdős-Rényi random graph, G(n, p, q) is a non-homogeneous model where the
distribution of the neighbourhood of vertex v depends on which Vi it belongs to. If p = q
then G(n, p, q) reduces to G(n, p). If p = 0 then G(n, p, q) reduces to a random k-partite
graph. The closest previous results to this work are the cases of Hamiltonicity of Erdős-
Rényi graphs by Komlós and Szemerédi [5], and of random bipartite graphs considered by
the second author[2]. The present paper utilises and extends the proofs in these papers in a
significant manner.

2 The main results

We call vertex sets Vi blocks, and an edge is called a block edge if its ends lie in the same
block, and a crossing edge otherwise. Given a vertex u ∈ Vi, we say u has partition index i.
We aim to determine when G(n, p, q) is Hamiltonian.

We will assume the following set of conditions.

(A1) min
1≤i≤k

{pni + (n− ni)q − log ni} = log log n+O(1);

(A2) qn2 = ω(1);

(A3) max
1≤i≤k

ni ≤ n/2, if p = O(1/n).

(A4) min
1≤i≤k

ni = Ω(n).

Note that if G(n, p, q) is Hamiltonian then conditions (A2) and (A3) are necessary in general.
If (A2) fails then with a non-vanishing probability there can be some Vi such that E(Vi, V \
Vi) = ∅. If (A3) fails then G(n, p, q) cannot be Hamiltonian if p = 0. Condition (A4) can
probably be relaxed, but it requires more delicate analysis. We will show that condition
(A1) captures the critical window for Hamiltonicity of G(n, p, q).

Let an and bn be two sequences of real numbers. We say an = O(bn) if there exists an
absolute constant C > 0 such that |an| ≤ C|bn| for every n ≥ 1. We say an = o(bn) if
bn > 0 for all n ≥ 1 and limn→∞ an/bn = 0. If an > 0 for all n ≥ 1, and bn = O(an) (or
bn = o(an)) then we write an = Ω(bn) (or bn = ω(an) respectively). We will consider a
sequence of random graphs indexed by their order, denoted by n, and all constants in this
paper do not depend on n. All asymptotics refer to n→∞. Given a graph property Γ, we
say G(n, p, q) ∈ Γ asymptotically almost surely (a.a.s.) if limn→∞(G(n, p, q) ∈ Γ) = 1. Let
HAM denote the class of Hamiltonian graphs. Our main result is the following.
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Theorem 1. Assume p and q and n satisfy assumptions (A1)–(A4).

lim
n→∞

P(G(n, p, q) ∈ HAM) = exp

(
−
∑

1≤i≤k

e−ci

)
,

where ci = pni + (n− ni)q − log ni − log log n.

As Hamiltonicity is an increasing property, the following corollary follows immediately.

Corollary 2. Assume p and q and n satisfy assumptions (A2)–(A4).

lim
n→∞

P(G(n, p, q) ∈ HAM) =

{
0 if min1≤i≤k{pni + (n− ni)q − log ni} < log log n− ω(1)
1 if min1≤i≤k{pni + (n− ni)q − log ni} > log log n+ ω(1).

3 Small degrees

Let D2 denote the class of graphs with minimum degree at least 2. Note that G /∈ D2

implies that G /∈ HAM. Thus, the following lemma immediately yields an upper bound on the
probability that G(n, p, q) is Hamiltonian.

Lemma 3. Assume (A1) and (A4). Then,

(a)

lim
n→∞

P(G(n, p, q) ∈ D2) = exp

(
−
∑

1≤i≤k

e−ci

)
,

where ci = pni + (n− ni)q − log ni − log log n.

(b) For constants 0 < α < 1, and β > α+α ln(1/α). A.a.s. G(n, p, q) contains at most nβ

vertices whose degree is at most α log n.

Proof. For part (a), let Xj(i) =
∑

v∈Vi 1{d(v)=j} be the number of vertices in Vi with degree
j. Let W1 and W2 be two independent random variables with W1 ∼ Bin(ni − 1, p) and
W2 ∼ Bin(n − ni, q). Let j = O(log n). By (A1) and (A4) we have p2n = o(1), pj = o(1),
j2 = o(ni), and j2 = o(n− ni). Then,

EXj(i) = niP(W1 +W2 = j)

= ni

j∑
s=0

(
ni − 1

s

)
ps(1− p)ni−1−s

(
n− ni
j − s

)
qj−s(1− q)n−ni−j+s

∼ ni exp(−pni − q(n− ni))
j∑
s=0

nsi (n− ni)j−s
s!(j − s)! psqj−s

= nie
−φi φ

j
i

j!
, (1)

where φi = pni + q(n− ni). By (A1), φi − (log ni + log log n) > C for some constant real C
and for all i ∈ [k]. It follows immediately that a.a.s. X0(i) = 0 for every i.
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Recall that ci = φi− (log ni+log log n). Let X1 =
∑

i∈[k] X1(i). Then, EX1 ∼
∑

i∈[k] e
−ci .

By (A1), EX1 = Θ(1). Using the standard method of moments (we omit the tedious calcu-
lations), it is easy to prove that X1 is asymptotically Poisson. Hence,

P(X1 = 0) ∼ exp

−∑
i∈[k]

e−ci

 . (2)

The lemma follows by (2) and the fact that a.a.s. X0(i) = 0 for every i ∈ [k].
For part (b), from (1) we have∑

j≤α logn

∑
i∈[k]

EXj(i) < (1 + o(1))
∑

j≤α logn

∑
i∈[k]

ni exp(− log ni)
(log ni)

j

j!

< k
∑

j≤α logn

(
e log n

j

)j
= (1 + o(1))knρ(α),

where ρ(α) = α + α log(1/α). Part (b) follows by the Markov inequality.

4 Vertex expansion and connectivity

Let G be a graph and S ⊆ V (G), define

NG(S) = {j ∈ V (G) \ S : ∃i ∈ S, i ∼ j}
NG(S) = |NG(S)|
n1(G) =

∑
i∈V (G)

1{d(i)≤1}.

I.e. NG(S) is the set of vertices not in S which are adjacent to some vertex in S in graph G.
We may drop G from the subscript if the underlying graph G is clear from the context.

Definition 4. A vertex in G is called small, if its degree is less than log n/10. A vertex with
degree at least log n/10 is called large.

We say G has property EXPN, if: there exists a constant ε0 > 0 such that

for every S ⊆ V (G) where |S| ≤ ε0n, |NG(S)| ≥ 2|S| · 1{n1(G)=0}.

If F is a subset of edges in G, we use G−F to denote the subgraph of G obtained by deleting
edges in F . We say G has property SEXPN, if the following holds: For any F ⊆ E(G), such
that |F ∩NG(v)| = 0 if v is small, and is at most log n/100 if v is large, we have that G−F
is connected and G− F ∈ EXPN.

Lemma 5. Assume (A1), (A2) and (A4). Then a.a.s. G(n, p, q) ∈ SEXPN.

Its technical proof is postponed till Section 9.
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5 Overview of the proof of Theorem 1

Since G /∈ D2 implies that G /∈ HAM, the upper bound of P(G(n, p, q) ∈ HAM) is implied by
Lemma 3(a). Next we prove the lower bound. Let LC denote the set of graphs where a
longest path contains the same number of vertices as in a longest cycle, and let CNT denote
the class of connected graphs. Note that if G ∈ LC∩ CNT then G must be Hamiltonian, since
otherwise, by connectivity it is always possible to extend a longest cycle into a path which
contains more vertices than the cycle we start with, contradicting with G ∈ LC. It follows
then that

P(G(n, p, q) ∈ HAM) ≥ P(G(n, p, q) ∈ LC ∩ CNT) ≥ P(G(n, p, q) ∈ LC ∩ CNT ∩ D2). (3)

Our goal is to prove that P(G(n, p, q) ∈ LC ∩ CNT ∩ D2) ∼ P(G(n, p, q) ∈ D2), which then
yields the asymptotic probability desired by Theorem 1. The proof of the lower bound of
P(G(n, p, q) ∈ HAM) will be split into three cases: (1) p, q = ω(1/n); (2) p = O(1/n); and (3)
q = O(1/n). In all three cases, we will use a multi-round exposure technique of G(n, p, q).
Roughly speaking, we will expose a subgraph Gb ⊆ G where G ∼ G(n, p, q) and Gb contains
most edges of G. Case 1 is the simplest case, in which we will define graph property TPCL

which consists of a set of properties that hold a.a.s. for G(n, p, q). Then we will define COL

to be a set of properties that edges in G \Gb must satisfy. Then, we will prove that

P({G ∈ LC ∩ CNT ∩ D2 ∩ TPCL} ∩ COL)� P(COL | G ∈ LC ∩ CNT ∩ D2 ∩ TPCL).

This implies that P(G ∈ LC ∩ CNT ∩ D2 ∩ TPCL) = o(1), which will lead us to derive the
asymptotic probability for P(G ∈ LC∩ CNT∩ D2). While obtaining a lower bound for P(COL |
G ∈ LC∩ CNT∩ D2∩ TPCL) is rather straightforward, an upper bound for P({G ∈ LC∩ CNT∩
D2 ∩ TPCL} ∩ COL) is obtained by using Pósa rotations and bounding the probability that
the longest path does not get extended by the edges exposed in the second stage. This is a
standard technique for proving Hamiltonicity in random graphs.

In Case 2, G(n, p, q) is similar to the random k-partite graph G(n, 0, q). Two complica-
tions arise in this case. Firstly, we cannot totally ignore block edges in G(n, p, q) as they
contribute to degree 2 vertices in G(n, p, q) with a non-varnishing probability. More specif-
ically, P(G(n, p, q) ∈ HAM) > P(G(n, 0, q) ∈ HAM) when p = Θ(1/n) and thus, the proof
cannot be obtained by simply extending the proof for random bipartite graphs to random
k-partite graphs. Secondly, due to the asymmetry between p and q, the edges exposed in
later stages will not be uniformly distributed and we need to take care of the multipartition
of the vertices. This is similar to the case of the random bipartite graphs.

In Case 3, G(n, p, q) looks like a collection of Gi ∼ G(n, p) plus a set of random edges
between every pair of Gi, Gj, 1 ≤ i < j ≤ k. A tempting approach would be to find a
Hamilton cycle in each Gi and then somehow connect these cycles by using a few crossing
edges to form a Hamilton cycle in G(n, p, q). This approach would succeed if q = o(1/n).
However, when q = Θ(1/n), similar to Case 2, the crossing edges are contributing, with
a non-negligible probability, to the degree 2 vertices in G(n, p, q). Thus, we cannot purely
focus on structures in Gi. Instead, inside each Gi, we will take particular care of the vertices
with degree less than 2, and we will look for a small number of vertex disjoint paths covering
all vertices in Gi. These paths have specified end vertices. Then we will stitch these paths
together with some crossing edges to form a Hamilton cycle in G(n, p, q).
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As part of the overview of the proof, we define TPCL and COL. They will be used in the
proof of the first case, and in the second case as well with some minor modifications. In Case
3, their definitions will be significantly modified.

5.1 TPCL

We say G ∈ TPCL if G satisfies the following set of properties.

(T1) G ∈ SEXPN.

(T2) There are at most n0.4 small vertices.

(T3) If p = o(log n/n) then every vertex is incident with at most log n/200 block edges. If
q = o(log n/n) then every vertex is incident with at most log n/200 crossing edges.

(T4) The maximum degree is at most C log n for some sufficiently large constant C > 0.

Lemma 6. A.a.s. G ∈ TPCL.

Proof. (T1) follows by Lemma 5. (T2) follows by Lemma 3(b). (T3) and (T4) follow by a
standard first moment argument similar to the proof of Lemma 3. We omit the details.

5.2 COL

Let L(G) denote the length of a longest path in G. Assume G′ ⊆ G. Let F = E(G \ G′).
We say (G,G′) ∈ COL if

(a) |F ∩NG(v)| is 0 if v is small in G, and is at most log n/100 if v is large in G;

(b) L(G) = L(G′) if L(G′) < n− 1, and G /∈ HAM if L(G′) = n− 1.

In the proof of Theorem 1, we will use COL to denote the event that (G,Gb) ∈ COL, although
G and Gb are defined differently in the three cases. We will recall the definition of COL when
we proceed to the proof in each case.

6 Proof of Theorem 1: when p, q = ω(1/n)

We first define Gb.

6.1 Gb

Let p̄ = a/n log n, where a = 1. We will choose similar parameters for multi-round exposures
in Cases 2 and 3 with different values of a. We keep a in the definition of p̄ for the ease of
comparison. Define

p1 = 1− 1− p
1− p̄ ; q1 = 1− 1− q

1− p̄ .

In case 1, both p1 and q1 are real numbers between 0 and 1. We will run a two stage
exposure of the edges in G(n, p, q). First, generate Gb ∼ G(n, p1, q1), then independently for
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every non-edge x in Gb, add x to the graph with probability p̄. Call the resulting graph G.
It is straightforward to verify that G ∼ G(n, p, q). For convenience, colour the edges in Gb

blue and the edges in E(G \Gb) red.
By our definition of p1 and q1 it is easy to see that (A1) and (A2) are satisfied with p

and q replaced by p1 and q1. Recall that COL denotes the event that (G,Gb) ∈ COL.
The next two lemmas bound P(COL | G ∈ LC∩D2∩TPCL) and P({G ∈ LC∩D2∩TPCL}∩COL).

Lemma 7. There exists a function f = f(n)→∞ as n→∞ such that

P(COL | G ∈ LC ∩ D2 ∩ TPCL) ≥ exp(−an/f log n).

Lemma 8.
P({G ∈ LC ∩ D2 ∩ TPCL} ∩ COL) ≤ exp(−Ω(an/ log n)).

Now we are ready to prove Theorem 1 in case 1.
Proof of Theorem 1 (case 1). By Lemmas 7 and 8,

P(G ∈ LC ∩ D2 ∩ TPCL) ≤ exp(−Ω(an/ log n))

exp(−an/f log n)
.

As f → ∞ as n → ∞, the above probability is o(1). By Lemmas 5 and 6, P(G ∈ CNT ∩
TPCL) = 1− o(1). It follows immediately that

P(G ∈ LC ∩ D2 ∩ CNT) = P(G ∈ D2)− P(G ∈ LC ∩ CNT ∩ D2 ∩ TPCL) + o(1) = P(D2) + o(1).

By (3) and the fact that G ∈ HAM implies G ∈ D2, we have P(G ∈ HAM) = P(G ∈ D2) +
o(1). Together with Lemma 3 this yields the asymptotic probability of P(G ∈ HAM) as in
Theorem 1.

It remains to prove Lemmas 7 and 8.

6.2 Proof of Lemma 7

Equivalently we can define Gb as follows. Take G ∼ G(n, p, q). Define

p∗ =
p̄(1− p)
(1− p̄)p, q∗ =

p̄(1− q)
(1− p̄)q .

Do the following independently for every edge x ∈ G: if x is a block edge, delete x with
probability p∗; if x is a crossing edge, delete x with probability q∗. As p(1 − p∗) = p1 and
q(1− q∗) = q1 with our definition of (p∗, q∗), we immediately have

Claim 9. The resulting graph is distributed as G(n, p1, q1).

We will prove that conditioning on G = H for any H ∈ LC ∩ D2 ∩ TPCL, P(COL | G =
H) ≥ exp(−an/f log n), and Lemma 7 follows.

Consider the set of edges deleted in generating Gb from H. Colour these edges red.
Let P be a longest path in H. Note that COL is implied if

(B1) no large vertex in H is incident with more than log n/100 red edges.
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(B2) no small vertex in H is incident with a red edge;

(B3) no edge in P is red.

Let X be the union of the set of edges in P and the set of edges incident with small vertices.
Let X = |X |. By (T2), |X | ≤ (n− 1) + n0.4 log n/10 < 2n. As max{p∗, q∗} = o(a/ log n) in
case 1, the probability that none of the edges in X is deleted is at least (1− o(a/ log n))2n ≥
exp(−an/f log n) for some f → ∞. Note that (B2) and (B3) are implied if no edges in X
are red. Hence, P(B1 ∩B2) ≥ exp(−an/f log n).

Let X be the set of edges in H that are not in X . Condition on no edges in X were deleted
(i.e. became red). We will prove that a.a.s. every vertex is incident with at most log n/200 red
block edges in X , and at most log n/200 red crossing edges in X . By (T3) we may assume that
p, q = Ω(log n/n). By (T4), each vertex has degree O(log n). By the definition of p∗ and q∗,
every edge is deleted (i.e. becomes red) with probability O(p̄ ·max{1/p, 1/q}) = O(1/ log2 n).
By the tail bounds for the binomial distribution and the union bound, a.a.s. every vertex
is incident with at most o(log n) red edges and thus P(B1 | B2 ∩ B3) = 1 − o(1). Hence,
P(COL | G = H) ≥ P(B1∩B2∩B3) ≥ exp(−an/f log n) for some f →∞. Lemma 7 follows.

6.3 Proof of Lemma 8

Recall the definition of EXPN and SEXPN. Assuming (T1), there exists an absolute constant
ε0 > 0 such that

for every S ⊆ V (G) where |S| ≤ ε0n, we have |NG(S)| ≥ 2|S| · 1{n1(G)=0}. (4)

By the definition of COL we immediately have the following claim.

Claim 10. {G ∈ LC ∩ D2 ∩ TPCL} ∩ COL implies B ∩ {Gb ∈ CNT ∩ EXPN ∩ D2}, where
B = {L(G) = L(Gb) < n− 1} ∪ ({L(Gb) = n− 1} ∩ {G /∈ HAM}).

Proof. If G ∈ TPCL ∩ D2 and (G,Gb) ∈ COL, then by (T1) we have Gb ∈ CNT ∩ EXPN ∩ D2.
Moreover, (G,Gb) ∈ COL implies B. This proves our claim.

Hence, it is sufficient to prove

P(B | Gb ∈ CNT ∩ EXPN ∩ D2) ≤ exp(−Ω(an/ log n)),

as

P({G ∈ LC ∩ D2 ∩ TPCL} ∩ COL) ≤ P(B ∩ {Gb ∈ CNT ∩ EXPN ∩ D2})
≤ P(B | Gb ∈ CNT ∩ EXPN ∩ D2),

by Claim 10. Note that G is obtained by adding every non-edge in Gb independently with
probability p̄. We will prove that conditioning on any graph Gb ∈ CNT ∩ EXPN, adding
approximately p̄

(
n
2

)
∼ an/2 log n edges will either increase L(Gb), or complete a Hamilton

path in Gb to a Hamilton cycle, with sufficiently high probability. We will use the classical
technique of Pósa rotations to bound the probability of B.
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Pósa rotations. Let P = v0, v1, . . . , v` be a longest path in Gb. Then v0 is not adjacent
to v`, and all the neighbours of v` in Gb must be in P , since otherwise we can extend P to
a longer path. Assume viv` is an edge in Gb where i < ` − 1, then another longest path
P ′ = v0, . . . , viv`, v`−1, . . . , vi+1 can be obtained by using the edge viv` instead of vivi+1.
This operation from P to P ′ is called a Pósa rotation. Consider the set P of longest paths
obtained by repeatedly rotating P . All of these paths start from v0 and end at a vertex
that is in P . Let End(v0) denote the set of ends other than v0 in the paths in P. A key
observation is the following. The reader may refer to [4] for a proof.

Lemma 11. |NGb
(End(v0))| < 2|End(v0)|.

As Gb ∈ EXPN∩D2 we immediately have that |End(v0)| ≥ ε0n where ε0 is specified in (4).
Now for every v ∈ End(v0), there is a longest path Pv which is obtained from P by

repeatedly applying Pósa rotations. Let End(v) denote the set of ends other than v in the
longest paths obtained by rotating Pv. Again, we have |NGb

(End(v))| < 2|End(v)|, which
implies that |End(v)| ≥ ε0n. Consider the set E of pairs of vertices (x, y) where x ∈ End(v0),
and y ∈ End(x). We have that |E | ≥ ε20n

2. Moreover, adding any pair in E as an edge to G
will either form a Hamilton cycle in G, if ` = n− 1, or form a cycle with length ` + 1, and
then using the fact that G is connected, we can extend the cycle to a path of length ` + 1,
if ` < n − 1. In either case, event B fails. For that reason, we call E a set of boosters. We
have shown that B fails if E ∩ E(G \Gb) 6= ∅.

By the construction of G, every edge in E is added to G in the second stage of edge
exposure, independently with probability p̄. The probability that none of these edges are
added is (1− p̄)|E |/2 ≤ exp(−ε20an/2 log n). This completes the proof for Lemma 8.

7 Proof of Theorem 1: when p = O(1/n)

In this case, we will define a 3-round edge exposure of G(n, p, q).

7.1 Gb and Gy

Let q̄ = a/n log n where a→∞ and a = o(log n). Define

q1 = 1− 1− q
(1− q̄)2

.

First, generate Ĝ ∼ G(n, 0, q1). Then, expose block edges that are incident to vertices
with degree at most one in Ĝ. Let Gb be the resulting graph. All edges in Gb are coloured
blue. By bounding the expected number of vertices having degree at most 1 in Ĝ by o(log n),
we immediately have the following claim.

Claim 12. A.a.s. fewer than log n vertices in Gb are incident to a block edge.

Then, for every crossing non-edge x in Gb, add x to the graph Gb with probability q̄. All
edges added in the second stage are coloured yellow. Call the resulting graph Gy. Finally,
for each crossing non-edge in Gy, add it to the graph with probability q̄ and colour it red.
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The crossing edges of the resulting graph G have the same distribution as those in G(n, p, q).
Obviously we can couple G with G′∼G(n, p, q) such that G ⊆ G′. It is thus sufficient to
prove that the lower bound for P(G ∈ HAM) matches the lower bound in Theorem 1.

Let now TPCL include properties (T1)–(T4) as well as the following property.

(T5) : Fewer than log n vertices of G are incident with fewer than 2 crossing edges.

Let COL denote (G,Gb) ∈ COL as defined in Section 5.2. Note that (T3), (T5) and COL

implies the following.

COL1 : Fewer than log n vertices in Gb are incident to a block edge.

The next two lemmas bound P(COL | G ∈ LC∩D2∩TPCL) and P({G ∈ LC∩D2∩TPCL}∩COL)
in case 2.

Lemma 13. There exists a constant K > 0 such that

P(COL | G ∈ LC ∩ D2 ∩ TPCL) ≥ exp(−Kan/ log2 n).

Lemma 14.
P({G ∈ LC ∩ D2 ∩ TPCL} ∩ COL) ≤ exp(−Ω(a2n/ log2 n)).

Since P({G ∈ LC∩D2∩TPCL}∩COL)� P(COL | G ∈ LC∩D2∩TPCL) as a→∞, the proof
of Theorem 1 for case 2 follows exactly as in case 1. It only remains to prove Lemmas 13
and 14.

7.2 Proof of Lemma 13

The proof is basically the same as that for Lemma 7. The probability bound is only different
because of the different range for p and q. We only point out the differences in the proof.
We give an equivalent definition of (Gb, G) as follows. Take G′ ∼ G(n, p, q). Let q∗ be such
that q(1 − q∗) = q1. Independently delete each crossing edge x in G′ with probability q∗.
Call the resulting graph G′b. Next delete all block edges in G′b except for the edges incident
with a vertex which is only incident with at most one crossing edge in G′b. The resulting
graph has the same distribution as Gb. Let G be the graph obtained by taking all crossing
edges in G′ and all block edges in Gb. Note that G and Gb only differ on the crossing edges.

Now max{p∗, q∗} in the proof of Lemma 7 is replaced by q∗. By (A1), (A5) and the
assumption p = O(1/n) we have q = Θ(log n/n) and thus q∗ = Θ(a/ log2 n). It follows
that the probability that none of the edges in χ is deleted is at least (1−Θ(a/ log2 n))2n ≥
exp(−Θ(an/ log2 n)). The rest of the proof is the same as in Lemma 7.

7.3 Proof of Lemma 14

Recall the definition of TPCL, EXPN and SEXPN. Assuming G ∈ SEXPN, there exists an absolute
constant ε0 > 0 such that (4) holds. Claim 10 continues to hold. Thus, it is sufficient to
show

P(B | {Gb ∈ CNT ∩ EXPN ∩ D2}) ≤ exp(−Ω(a2n/ log2 n)).

10



As in the proof of Lemma 8, we will show that the probability that the additional yellow and
red edges do not increase L(Gb) is small. However, the graph induced by the yellow and red
edges is k-partite. and so there is a subtle issue here with k-partite graphs. The yellow and
red edges exposed in the second and third stage must respect to the vertex partition. If the
set of boosters, the potential non-edges whose addition will allow an extension of the longest
path, are all unichromatic, i.e. the ends of each booster have the same partition index, then
the edges exposed in the second stage will not help to extend the paths. The purpose of
using 3 rounds of edge exposure is to cope with this vertex partition issue. To explain how
it works, we need a few definitions.

Let P = (v0, . . . , v`) be a longest path in the graph Gb. Let P be a list of longest paths
obtained as follows. P = {P} initially and End(v0) = {v`}. Take a path P ′ ∈P and do a
Pósa rotation, if it creates a path whose end other than v0 is not yet in End(v0). Then add
this new path to P and add its end vertex other than v0 to End(v0). Since |End(v0)| < n,
this process will terminate. As before, given that Gb ∈ EXPN we have |End(v0)| ≥ ε0n.

For each v, let σ(v) denotes its partition index. For each x ∈ End(v0), let Px be the path
that was added to P when x was added to End(v0). Let φ(x) be the vertex adjacent to x on
Px. Let P(x) denote the set of longest paths obtained by rotating Px with x being the fixed
end, and let End(x) denote the set of the ends of the paths other than x in P(x). Then, all
paths in P(x) must start with xφ(x). Moreover, σ(x) 6= σ(φ(x)), unless x is incident with
a block edge.

We call a vertex x in End(v0) good, if at least 1
2
|End(x)| vertices in End(x) have distinct

partition index from x.
Consider Gy. Let Out denote the set of vertices x for which there exists a longest path

P in Gy such that x /∈ P and one end of P lies in distinct vertex part from x. We will show
the following.

Claim 15. Either there are 1
2
|End(v0)| good vertices in End(v0), or with probability 1 −

exp(−Ω(an/ log n)), either L(Gy) > L(Gb) or |Out| = Ω(an/ log n) in Gy.

Note exp(−Ω(an/ log n)) ≤ exp(−Ω(a2n/ log2 n)) as a→∞ is chosen to be o(log n).
If there are 1

2
|End(v0)| good vertices in End(v0), then with the same proof as in case 1,

we can bound P(B | Gb ∈ CNT ∩ EXPN ∩ D2) by exp(−Ω(an/ log n)) ≤ exp(−Ω(a2n/ log2 n)).
If instead |Out| = Ω(an/ log n) in Gy, then we will prove the following claim which,

together with Claim 15 and the argument above, completes the proof for Lemma 14.

Claim 16. If |Out| = Ω(an/ log n) then B holds with probability exp(−Ω(a2n/ log2 n)).

Proof. Let x ∈ Out and let P be the corresponding path, and y be the end on P where
σ(x) 6= σ(y). Consider Pósa rotations on P with y as the fixed end, and let End(y) denote
the ends obtained. Either at least half of End(y) have partition indices distinct from σ(x), or
at least half with partition indices distinct from σ(y). This implies that |Ex| = Ω(n) where

Ex = {{x, y} : z ∈ End(y), σ(x) 6= σ(z)} ∪ {{y, z} : z ∈ End(y), σ(y) 6= σ(z)}.

Let E = ∪x∈OutEx. Then |E | = Ω(an2/ log n). Moreover, B fails if E ∩E(G \Gy) 6= ∅. Since
every booster in E appears in the second stage of edge exposure with probability q̄. The
probability that none of them appears is at most (1− q̄)|E | = exp(−Ω(a2n/ log2 n)).
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Proof of Claim 15. Let Bad(v0) denote the set of vertices in End(v0) that are not good and
assume |Bad(v0)| > 1

2
|End(v0)|. Let x ∈ Bad(v0). Let Mono(x) denote the set of vertices

in End(x) which have the same partition index as x. By the definition of Bad(v0) and
because x ∈ Bad(v0), |Mono(x)| ≥ 1

2
|End(x)|. Consequently, the vertices in Mono(x) must

have distinct partition indices from φ(x), unless x is incident with a block edge in Gb. Let
A denote the set of vertices that are not incident with any block edges in Gb. Consider all
pairs of vertices E ′ = {(φ(x), y) : x ∈ Bad(v0) ∩ A, y ∈ Mono(x)}. As TPCL ∩ COL implies
COL1, it follows that |E ′| = Ω(n2). If any yellow edge exposed in the second round of edge
exposure is in E ′, then we find a cycle C by deleting x from the path P ′, and then adding
the edge yφ(x). Gb is connected and by (A3) there must exist a vertex z such that (a) z
has distinct partition index from x; (b) z is not on P ′; (c) there is a path from z to P ′.
Using the cycle C and the path from z to P ′ we obtain a path of length greater than that
of P ′, which implies L(Gy) > L(Gb), or we obtain a path of the same length as P ′ and one
of its ends, namely z, has a distinct partition index from x. This implies that x ∈ Out.
Assume it is always the latter case for each yellow edge in E ′. Since |E ′| = Θ(n2), it follows
that E|Out| = q̄ · Θ(n2) = Ω(an/ log n). The probability bound in the claim follows by the
Chernoff bound.

8 Proof of Theorem 1: when q = O(1/n).

In this case we have min1≤i≤k{pni − log ni} = log log n + O(1). The subgraph induced by
the vertices in block i is distributed as G(ni, p).

Let p̄ = a/n log n with a = 1. Define

p1 = 1− 1− p
(1− p̄) .

We give a quick overview of the proof in this case. First we generate Gb ∼ G(n, p1, q).
We call a vertex “problematic” if it is incident with fewer than 2 block edges in Gb. Let
P denote the set of problematic vertices. All edges in Gb are coloured blue. In the second
round of edge exposure, we expose block edges that are not present in Gb with probability
p̄. The resulting graph is G. All edges in G \ Gb are coloured red. It is easy to see that
G ∼ G(n, p, q). We obtain our Hamilton cycle by (i) finding a collection A1 of paths of
length 1 or 2 that cover the problematic vertices, (ii) finding a collection A2 of crossing
edges so that the number of crossing edges in A1 ∪ A2 between any pairs Vi and Vj is even
and positive, and (iii) finding a collection of vertex disjoint paths that connect the ends of
the paths and edges in A= A1 ∪ A2 into a Hamilton cycle. These longer paths found in (iii)
only use block edges.

The property COL will be defined differently from previous cases. We will split COL into
three parts. Let COL1 denote the property that

|F ∩NG(v)| ≤ dG(v)− 2 for all v ∈ G such that dG(v) ≥ 2.

where F = E(G)\E(Gb). With a simple first moment argument we can prove the following.

Claim 17. A.a.s. (G,Gb) ∈ COL1.

12
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Figure 1: Construct M

Let COL = COL1 ∩ COL2 ∩ COL3 where COL2 and COL3 will be defined later. Note that
{G ∈ D2} ∩ COL1 implies Gb ∈ D2. If {G ∈ D2} ∩ COL1 holds then every problematic vertex
is incident with at least 2 edges. For every u ∈ P , randomly choose 2 edges incident with u,
colour them green. For each green edge, colour the end other than the problematic vertex
green. See the left side of Figure 1 for an example.

Given a path u1u2 . . . u`, we say that we supplant the path by an edge e = u1u` if
we delete all the internal vertices on the path and their incident edges, and add edge e.
Assume {G ∈ D2} ∩ COL1. Supplant every green 2-path in G by a new green edge. Call
the resulting graph H. Note that H is not defined if {G ∈ D2} ∩ COL1 fails. Note also that
H[Vi \ P ] = G[Vi \ P ] for every 1 ≤ i ≤ k. Let E0 denote the set of green edges and let U0

denote the set of green vertices obtained so far in H.
Next, we will choose a set of blue crossing edges and recolour them green, and colour the

ends of these edges green. For every 1 ≤ i < j ≤ k, if there are an odd number of green
edges between Vi and Vj in H, then randomly choose a blue crossing edge x between Vi and
Vj in Gb and recolour it green. Colour the end vertices of x green. If there is no green edge
between Vi and Vj in H, then randomly choose two blue crossing edges x, y between Vi and
Vj in Gb and recolour them green. Colour the end vertices of x and y green.

See Figure 1 for an illustration of the construction of H and Eg. Let E denote the set of
crossing edges recoloured from blue to green. Let U denote the set of end vertices of edges
in E. Write E =⊥ if the above construction cannot be completed. This happens only if
|EGb

(Vi, Vj)| < 2 for some i 6= j. However (A2) and (A4) ensure that P(|EGb
(Vi, Vj)| < 2) =

o(1). The following a.a.s. properties are straightforward and we omit their proofs.

Claim 18. A.a.s. the following statements hold.

(a) E 6=⊥.

(b) E ∩ E0 = ∅.

(c) E induces a matching.

(d) U ∩ U0 = ∅.
Let Eg = E0 ∪ E denote all the green edges obtained so far in H.

Claim 19. If H has a Hamiltonian cycle containing all edges in Eg then G contains a
Hamilton cycle.

13



Proof. Let C be such a Hamilton cycle in H. Replacing each edge x ∈ E0 ∩C by the green
2-path whose supplantation yielded x gives a Hamilton cycle in G.

We will prove that H has a Hamiltonian cycle containing all edges in Eg by using the
following lemma. Given a set of edges B, let V (B) denote the set of vertices spanned by B.
Let Bi,j, i ≤ j, denote the set of pairs of vertices of B with one end in i and the other end
in j. Given a graph G and a set E of edges on V (G), let G+ E denote the graph on V (G)
obtained by taking the union of the edges from G and E.

Lemma 20. Let B be a set of pairs of vertices such that

• the pairs in B are pairwise disjoint;

• |Bi,j| > 0 for every 1 ≤ i < j ≤ k and
∑

j 6=i |Bi,j| is even for every 1 ≤ i ≤ k;

• V (B) = O(log n);

• Eg ⊆ B;

• no two vertices in V (B) share a common neighbour in H;

• no vertex in V (B) is adjacent to a vertex with degree at most 2 in H.

Then a.a.s. if {G ∈ D2} ∩ COL1 holds then H + B has a Hamilton cycle that contains all
edges in B.

Using Claim 18 it is easy to show that B = Eg satisfies all assumptions of Lemma 20.
Let HHAM denote the event that H has a Hamilton cycle containing all edges in Eg. If
{G ∈ D2} ∩ COL1 holds then taking B = Eg in Lemma 20 immediately implies HHAM, which
gives

P(G ∈ HAM) ≥ P({G ∈ D2} ∩ COL1 ∩ HHAM)

≥ P(G ∈ D2)− P({G ∈ D2} ∩ COL1 ∩ HHAM})− P(COL1)

= P(G ∈ D2)− o(1),

by Claim 17 and Lemma 20, which completes the proof of Theorem 1 in the case q = O(1/n).

It only remains to prove Lemma 20. We will prove it by induction on k. The following
key lemma will be used to complete the inductive argument.

Lemma 21. Fix 1 ≤ i ≤ k. Let Ai be a set of pairs of vertices of Hi such that

• the pairs in Ai are pairwise disjoint;

• V (Ai) ≤ log n;

• no two vertices in V (Ai) share a common neighbour in Hi;

• no vertex in V (Ai) is adjacent to a vertex with degree at most 2 in Hi.

Then a.a.s. if {G ∈ D2} ∩ COL1 holds then Hi + Ai has a Hamilton cycle containing all of
the edges in Ai.

We will prove Lemma 20 in Section 8.1 and prove Lemma 21 in Section 8.2.
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v3 using edge u1v1.

P+
1 = P1 + {u2v2, u3v3}
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1 = {u2u3}

e1 = u2u3

Figure 2: Construct Pj, P
+
j and ej with k = 2

8.1 Proof of Lemma 20

We proceed with induction on k. The base case k = 1 follows by Lemma 21. Assume k ≥ 2
and that the assertion holds for k − 1.

With a slight abuse of notation we call the pairs in B edges, even though they are not
necessarily edges present in H. Let B′k denote the set of edges in B with both ends in Vk
and let B′′k denote the set of edges of B with exactly one end in Vk. Let Vk(B

′′
k) denote the

ends of the edges in B′′k that are in Vk. The second assumption of Lemma 20 implies that
|B′′k | is even. Take an arbitrary pairing A′k of the vertices in Vk(B

′′
k) and let Ak = B′k ∪ A′k.

By Lemma 21, Hk +Ak has a Hamilton cycle C which uses all edges in Ak. Delete all edges
in A′k from C. This results in a collection of vertex disjoint paths P1, . . . , P` such that

• the ` paths cover all vertices in Hk and use all the edges in B′k;

• ` = |A′k| = 1
2
|Vk(B′′k)|;

• the ends of the ` paths are the set of vertices in Vk(B
′′
k);

For every Pj above, the ends of Pj are each incident with an edge in Eg ⊆ B′′k . Let P+
j

denote the path obtained by adding these two edges to Pj. Supplant P+
j by a new edge ej.

Now both ends of ej are in ∪i≤k−1Vi. See Figure 2 for an example of the construction of Pj,
P+
j and ej.

Let B̂ = (B ∪ {e1, . . . , e`}) \ (B′k ∪ B′′k). Let Ĥ = H[∪i≤k−1Vi] be the subgraph of H

induced by ∪i≤k−1Vi. Now Ĥ has k̂ = k − 1 blocks of vertices, and B̂ is a set of pairs of

vertices with both ends in Ĥ. Moreover, all assumptions of Lemma 20 are satisfied by B̂ and
Ĥ with k replaced by k̂. By the induction hypothesis, there is a Hamilton cycle C ′ in Ĥ+ B̂
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which uses all the edges in B̂. Now replacing every edge ej in C ′ by P+
j . The resulting is a

Hamilton cycle in H +B which uses all of the edges in B.
Now Lemma 20 follows by induction.

8.2 Proof of Lemma 21

We introduce/recall the following useful notations.

• Hi = H[Vi \ P ] = G[Vi \ P ];

• H+
i = Hi + Ai;

• Hb
i = Gb[Vi \ P ];

• Hb+
i = Hb

i + Ai.

We say a Hamilton cycle in H+
i is admissible if it uses all edges in Ai. Let H+

i ∈ HAM+

denote the property that H+
i contains an admissible Hamilton cycle. It is sufficient to prove

that
P({G ∈ D2} ∩ COL1 ∩ {H+

i /∈ HAM+}) = o(1). (5)

We will use Pósa rotations to bound the above probability. A path in H+
i (Hb+

i ) is said
admissible if for each edge in Ai it uses either that edge or none of its vertices. Let L(H+

i )
and L(Hb+

i ) denote the length of a longest admissible path in H+
i and Hb+

i respectively.
We will adapt the previous Pósa rotation arguments to cope with admissible paths. This
requires modifications of several previous definitions.

8.2.1 COL, SSEXPN, TPCL and LC

First, we define SSEXPN which is a stronger condition than SEXPN. For V ⊆ V (G), we say
that (G, V ) has property EXPN+, if there exists an absolute constant ε0 > 0 such that

for every S ⊆ V (G) where |S| ≤ ε0n, |NG(S) \ V | ≥ 2|S| · 1{n1(G)=0}.

We say G has property SSEXPN, if the following holds: For any F ⊆ E(G) such that |F ∩
NG(v)| is 0 if v is small, and is at most log n/100 if v is large, and for any V ⊆ V (G) such that
|V | ≤ log n, no two vertices in V share a common neighbour, and no vertex in V is adjacent
to a vertex with degree at most 2, we have that G−F is connected, and (G−F, V ) ∈ EXPN+.
We have the following lemma whose proof is postponed until Section 9.

Lemma 22. A.a.s. Hi ∈ SSEXPN for every 1 ≤ i ≤ k.

Let COL2(i) denote the event that L(H+
i ) = L(Hb+

i ) if L(Hb+
i ) < n− 1, and H+

i /∈ HAM+

if L(Hb+
i ) = n− 1. We may define COL2 = ∪i∈[k]COL2(i), although in the proof of Lemma 21

we only need to consider COL2(i). Let COL3 denote the event that

|F ∩NG(v)| is 0 if v is small in G, and is at most log n/100 if v is large in G,

where F = E(G \Gb).
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We redefine TPCL so that (T1) is replaced by

(T1’): Hi ∈ SSEXPN for every 1 ≤ i ≤ k.

Let H+
i ∈ LC denote the event that the longest admissible path has the same number of

vertices as the longest admissible cycle in H+
i .

8.2.2 Completing the proof of Lemma 21

Because Ai is a set of vertex-disjoint edges, no two edges in Ai appear next to each other
in the longest admissible cycle. Then, if H+

i is connected, one can always extend a longest
admissible cycle to a longer admissible path, unless H+

i ∈ HAM+. Hence, H+
i ∈ LC ∩ CNT

implies that H+
i ∈ HAM+. Recall again that Hi and H+

i are defined only if {G ∈ D2} ∩ COL1
holds. Hence

P(G ∈ D2 ∩ COL1 ∩H+
i /∈ HAM+) ≤ P(G ∈ D2 ∩ COL1 ∩ {H+

i /∈ LC ∩ CNT})
≤ P(G ∈ D2 ∩ COL1 ∩H+

i /∈ LC) + P(G ∈ D2 ∩ COL1 ∩H+
i /∈ CNT)

= P(G ∈ D2 ∩ COL1 ∩H+
i /∈ LC) + o(1) (by Lemma 22(a)).

It is sufficient to prove that P(G ∈ D2 ∩ COL1 ∩ H+
i /∈ LC) = o(1), which follows from the

following two lemmas and the fact that a.a.s. G ∈ TPCL.

Lemma 23. P(COL2(i)∩COL3 | H+
i ∈ LC∩{G ∈ D2∩COL1∩TPCL}) ≥ exp(−O(an/ log2 n)).

The proof is almost identical to the proof of Lemma 7, with a few trivial modifications
as in Lemma 13. We omit the details.

Lemma 24. P(H+
i ∈ LC∩{G ∈ D2∩ COL1∩ TPCL}∩ COL2(i)∩ COL3) ≤ exp(−Ω(an/ log n)).

Proof. Recall that V (Ai) denotes the set of vertices spanned by the edges in Ai. We have
the following claim similar to Claim 10.

Claim 25. {G ∈ D2∩COL3∩TPCL} implies that {Hb+
i ∈ CNT∩D2}∩{(Hb+

i , V (Ai)) ∈ EXPN+}.

Hence,

P(H+
i ∈ LC ∩ (G ∈ D2 ∩ COL1 ∩ TPCL) ∩ COL2(i) ∩ COL3)

≤ P(H+
i ∈ LC ∩ {Hb+

i ∈ CNT ∩ D2} ∩ {(Hb+
i , V (Ai)) ∈ EXPN+} ∩ COL2(i) ∩ COL3)

≤ P(COL2(i) ∩ COL3 | {Hb+
i ∈ CNT ∩ D2} ∩ (Hb+

i , V (Ai)) ∈ EXPN+)

Let P = v0v1, . . . v` be a longest admissible path in Hb+
i . A Pósa rotation which adds

edge vhv` and deletes edge vhvh+1 is said to be admissible if vhvh+1 /∈ Ai. Let End(v0) be
the set of admissible paths obtained by doing admissible Pósa rotations on P . We first show
that

Claim 26. |NHb+
i

(End(v0)) \ V (Ai)| < 2|End(v0)|.
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Proof. The proof is similar to the standard Pósa rotation argument. Consider any y ∈
End(v0) and the path P ′ obtained via a Pósa rotation when y is added to End(v0). Assume
xy is an edge where x in on P . Assume x = vi and assume x /∈ V (Ai). Then, either the
two neightbours of x on P ′ are exactly vi−1 and vi+1, in which case one of them can be
added to End(v0) by a Pósa rotation; or the two neighbours of x on P ′ are not vi−1 and vi+1,
which implies that one of them must have been added to End(v0) before y. Hence, either
{vi−1, vi+1} ∩ End(v0) 6= ∅ or vi ∈ V (Ai). Our claim follows immediately.

By (T1’) and Claim 26, we have that |End(v0)| = Ω(n). Take any x ∈ End(v0), consider
End(x), the set of longest admissible paths starting from x by performing admissible Pósa
rotations. Then we also have |End(x)| = Ω(n) for every x ∈ End(v0). If any of the edges
in E(H+

i \ Hb+
i ) belongs to the set E := {xy : x ∈ End(v0), y ∈ End(x)}, then the event

COL2(i) fails. As |E | = Ω(n2), the probability that E(H+
i \ Hb+

i ) ∩ E = ∅ is at most
(1− p̄)Ω(n2) = exp(−Ω(an/ log n)). Hence

P(COL2(i) | Hb+
i ∈ CNT ∩ D2 ∩ ((Hb+

i , V (Ai)) ∈ EXPN+)) ≤ exp(−Ω(an/ log n)),

completing the proof.

9 Proof of Lemmas 5 and 22

We first state a lemma, whose proof is sketched below.

Lemma 27. Assume (A1). A.a.s. G(n, p, q) satisfies the following graph properties.

(C1) For every i ∈ [k], at most n0.9 vertices in Vi have degree less than
1

2
log n.

(C2) No two vertices with degree less than 100 are within distance 5.

(C3) No vertices with degree less than 100 are contained in cycles of length at most 5.

(C4) Every set S with |S| < n/ log2 n induces at most 3|S| edges.

(C5) For all ε > 0 there exists δ > 0 such that for all S where Ω(n/ log2 n) = |S| ≤ δn,

|E(S)| < ε|S| log n.

Proof of Lemma 5. Let G be a graph satisfying properties (C1)–(C5). We also assume
that the minimum degree of G is at least 2, as otherwise the lemma is trivially true. In the
proof of the lemma we consider various ranges for |S|. Colour the edges in F red and let
G′ = G− F . Our assumption on F implies that

every vertex is incident with at most log n/100 red edges. (6)

Let ε = 1/24, and let δ > 0 be the constant in (C5).
Case a: n/(log n)2 ≤ |S| ≤ (δ/3)n. Let E1 = EG(S, S) and E2 = EG′(S, S) and let

U = NG′(S). Suppose that |U | < 2|S|. Then, |S ∪ U | < 3|S| ≤ δn. By (C5), S ∪ U induces
at most ε|S∪U | log n ≤ 3ε|S| log n edges in G. This implies that |E2| ≤ 3ε|S| log n. By (C1),
the total degree of vertices in S is at least (|S|−n0.9) · (1/2) log n ≥ |S| log n/3. On the other
hand, by (C5), S induces at most ε|S| log n edges. Thus, |E1| ≥ |S| log n/3 − 2ε|S| log n =
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|S| log n/4. Consequently, |F ∩ EG(S, S)| = |E1| − |E2| ≥ (5/24)|S| log n, contradicting
condition (6).

Case b |S| ≤ n/ log2 n. A vertex in G is called extremely small if its degree is less than
100. Let X denote the set of extremely small vertices in S, and Y denote S \ X .

Case b1: |Y| = 0. Then F is not incident with any vertex in S. By (C2), S must
induce an independent set. By our assumption, all vertices in S has degree at least 2. By
(C2), NG(a) ∩ NG(b) = ∅ for every distinct a, b ∈ S. It follows immediately then that
|NG′(S)| = |NG(S)| ≥ 2|S|.

Case b2: |Y| ≥ 1. Now F is not incident with any vertex in X . Let Z1 = NG′(X ) \ Y =
NG(X )\Y be the set of neighbours of X that are not in Y , Z2 = NG′(S)\Z1 be the neighbours
of S in G′ that are not in Z1. Then, |NG′(S)| = |Z1| + |Z2|. Let Y1 = NG′(X ) ∩ Y be the
set of neighbours of X in Y . By (C2) and our assumption that the minimum degree of G is
at least 2,

|Y1| = |EG′(X ,Y)| = |EG(X ,Y)| (7)

|NG′(X )| = |Z1|+ |Y1| ≥ 2|X |. (8)

We prove next that every vertex in Y can be incident to at most one vertex in Z1 in G (and
G′). Assume a ∈ Y is adjacent to two vertices b and c in Z1. If b and c have a common
neighbour z ∈ X , then abzc forms a 4-cycle in G, violating (C3). Assume b and c each
adjacent to b′ ∈ X and c′ ∈ X respectively. Then b′bacc′ is a 4-path in G connecting two
light vertices, violating (C2). Hence, |NG′(z) ∩ Z1| ≤ 1 for every z ∈ Y . Consequently,

|EG′(Y ,Z1)| ≤ |Y|. (9)

Assume to the contrary that |Z1|+ |Z2| = |NG′(S)| < 2|S| = 2(|X |+ |Y|). Then, by (8)
we have

|Z2| < 2|Y|+ |Y1|. (10)

Every vertex in Y has degree at least 100 in G. Also, a vertex is incident with red edges
only if its degree is at least log n/10 and then at most log n/100 red edges. It follows that
every vertex in Y has degree at least 100 in G′ as well. Thus,

|EG′(X ,Y)|+ 2|EG′(Y)|+ |EG′(Y ,Z1)|+ |EG′(Y ,Z2)| ≥ 100|Y|. (11)

By (C4), |EG′(Y)| ≤ 3|Y|, |EG′(Y ,Z2)| ≤ |EG′(Y ∪ Z2)| ≤ 3(|Y| + |Z2|). We have shown
that |EG′(X ,Y)| ≤ |Y1| and |EG′(Y ,Z1)| ≤ |Y|. Hence, by (10), the left hand side of (11)
is at most 16|Y|+ 4|Y1| ≤ 20|Y|, whereas the right hand side is 100|Y|, contradiction. This
confirms that |NG′(S)| ≥ 2|S|.
Proof of Lemma 27. The proof is standard and straightforward. We give a sketch only
and omit the somewhat tedious calculations. For (C1), following the same argument as in
Lemma 3, we can show that the expected number of vertices with degree less than 1

2
log n is

o(n0.9).
By (A1), there is i ∈ [k] such that pni + (n− ni)q − log ni = log log n + O(1). Together

with (A4), this implies that p, q = O(log n/n). Using this, the expected number of S with
|S| = s which induce more than 3s edges is at most(

n

s

)(
s2

3s

)
(C log n/n)3s, for some constant C > 0.
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It is straightforward to see that summing the above over s < n/ log2 n yields o(1). This
proves (C4). The proof for (C5) is almost the same, and we can bound the expected number
of sets S inducing more than ε|S| log n by o(1) by choosing a sufficiently small δ.

For (C2), we bound the expected number of `-paths, ` ≤ 5, where the ends are vertices
of degree less than 100. There are at most n`+1 ways to choose the `+ 1 vertices. Using the
probability bounds as in Lemma 3, the probability of both of the chosen end-vertices having
degree less than 100 is at most log200 n/n2. The probability that the chosen ` + 1 vertices
form a path is bounded by (C log n/n)`. Multiplying all together we have that the expected
number of such paths is at most n`+1 · (log200 n/n2) · (C log n/n)` = o(1). This proves (C2).
The proof of (C3) is similar.

Proof of Lemma 22. We only need to consider G(ni, p) where pni ≥ log n+ log log n+O(1).
The proof is almost the same as the proof of Lemma 5 with only small modifications which
we point out below. Again we assume that Hi is a graph satisfying (C1)–(C5) (for (C1),
we only need to consider a fixed i). Let V be an arbitrary set of vertices in Hi such that
|V | ≤ log n, no two vertices in V share a common neighbour, and no vertex in V is adjacent
to a vertex of degree at most 2. Colour the vertices in V red. Let F be an arbitrary set of
edges such that |F ∩ NHi

(v)| is 0 if v is small, and is at most log n/100 if v is large. Let
H ′i = Hi − F .

Let ε = 1/24, and let δ > 0 be the constant in (C5). For S where n/(log n)2 ≤ |S| ≤
(δ/4)n, let E1 = EHi

(S, S) and let E2 = EH′
i
(S, S). Let U = NH′

i
(S). Assume |U \V | < 2|S|.

Then, |S ∪ U | < 3|S| + |V | ≤ 4|S| ≤ δn. Now with the same proof as in Lemma 5, we can
lead to a contradiction with condition (6). Thus, we must have |U \ V | ≥ 2|S| in this case.

For S where |S| ≤ n/ log2 n, again, call a vertex in Hi extremely small if its degree is less
than 100. Let X denote the set of extremely small vertices in S, and Y denote S \ X .

Case 1: |Y| = 0. Then F is not incident with any vertex in S. By (C2), S must induce
an independent set. Recall that Hi = Gb[Vi \P ]. It follows immediately that every vertex in
Hi has degree at least 2, as all problematic vertices are in P . Moreover, by the assumptions
on V , the vertices with degree 2 are not adjacent to any vertex in V , and every vertex in
Hi can be adjacent to at most one vertex in V . Hence, every vertex has at least 2 non-red
neighbours. By (C2), NHi

(a)∩NHi
(b) = ∅ for every distinct a, b ∈ S. It follows immediately

then that |NH′
i
(S) \ V | = |NHi

(S) \ V | ≥ 2|S|.
Case 2: |Y| ≥ 1. Now F is not incident with any vertex in X . Let Z1 = NG′(X ) \ Y =

NG(X ) \ Y be the set of neighbours of X that are not in Y , Z2 = NG′(S) \ Z1 be the
neighbours of S in G′ that are not counted in Z1. Let Z ′i = Zi \ V for i ∈ {1, 2}. Then,
|NH′

i
(S) \ V | = |Z ′1|+ |Z ′2|. Let Y1 = NG′(X ) ∩ Y be the set of neighbours of X in Y . With

the same argument for (7)–(9), together with the fact that every vertex in X has at least 2
non-red neighbours, we have

|Y1| = |EH′
i
(X ,Y)| = |EHi

(X ,Y)| (12)

|NHi
(X ) \ V | = |Z ′1|+ |Y1| ≥ 2|X | (13)

|EH′
i
(Y ,Z1)| ≤ |Y|. (14)

Assume to the contrary that |Z ′1|+ |Z ′2| = |NH′
i
(S)\V | < 2|S| = 2(|X |+ |Y|). Then, by (13)

we have
|Z ′2| < 2|Y|+ |Y1|. (15)
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Every vertex is adjacent to at most one vertex in V . It follows immediately that

|Z2| ≤ |Z ′2|+ |Y|. (16)

Every vertex in Y has degree at least 100 in Hi. Also, a vertex is incident with red edges
only if its degree is at least log n/10 and then at most log n/100 red edges. It follows that
every vertex in Y has degree at least 100 in G′ as well. Thus,

|EH′
i
(X ,Y)|+ 2|EH′

i
(Y)|+ |EH′

i
(Y ,Z1)|+ |EH′

i
(Y ,Z2)| ≥ 99|Y|. (17)

By (C4), |EH′
i
(Y)| ≤ 3|Y|, |EH′

i
(Y ,Z2)| ≤ |EH′

i
(Y ∪ Z2)| ≤ 3(|Y| + |Z2|) ≤ 3(4|Y| + |Y1|)

by (15) and (16). We have shown that |EH′
i
(X ,Y)| = |Y1| and |EH′

i
(Y ,Z1)| ≤ |Y|. Hence,

the left hand side of (11) is at most 19|Y| + 4|Y1| ≤ 23|Y|, whereas the right hand side is
99|Y|, contradicting with |Y| ≥ 1. This shows that |NH′

i
(S) \ V | ≥ 2|S|.

10 Conclusion

We have analysed the Hamiltonicity of a particular stochastic block model and given tight
estimates for the threshold. The most natural extension of this work will be to the case
where P is an arbitrary symmmetric stochastic matrix. This will be the subject of further
research.
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