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Abstract

We derive an asymptotic equivalent to the average running time of the merging algorithm
of Hwang and Lin applied on two linearly ordered lists of numbers a1 < as... < a,n, and
b1 < by... < b, when m and n tend to infinity in such a way that the ratio p = 7+ is constant.
We show that the distribution of the running time is concentrated around its expectation
except when p is a power of 2. When p is a power of 2, we obtain an asymptotic equivalent
for the expectation of the running time.
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1 Introduction

In the merging problem we are given two linearly ordered lists of numbers a; < as < ... < ap
and b; < by < ... < b, and the task consists of pooling these two lists into a third ordered list
1 < ¢... < Cptm- We assume that the n + m elements are distinct and n < m. The merging
is performed by pairwise comparisons between the elements in the two lists. The measure of
complexity of a merging algorithm is the number of comparisons made by the algorithm, and the
complexity of the merging problem is the complexity of the best merging algorithm. As usual,
we can speak of worst case and average case complexity.

The worst case complexity of the merging problem is quite well studied. The most widely used
merging algorithm which performs well for any values of m and n is binary merge was invented
by Hwang and Lin [5]. They have shown that the complexity of binary merge in the worst case
is at most L(n,m) + n, where L(n,m) = log, ("J;m) is the obvious lower bound coming from
information theory. Several much more complicated merging algorithms were proposed later by
Christen [1] and Manacher [7] which perform better than binary merge in the worst case for some
ratios m/n, but binary merge is still the best deterministic algorithm when m/n < 3. Recently
Fernandez de la Vega, Kannan and Santha [3] have proposed a probabilistic merging algorithm
which is always faster than binary merge for m/n > (v/5 +1)/2 ~ 1.618 .

In contrast with the worst case complexity, very little is known about the average case complexity
of merging. However, Fernandez de la Vega, Kannan and Santha [3] have derived a lower bound
for the class of insertive merging algorithms, in which for each element of the smaller list, the
comparisons involving it are made consecutively. They proved that if (1+1) < m/n < (v2+1-n)
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for some constant n > 0, then every insertive merging algorithm makes on the average at least
a constant factor more comparisons than the information theoretical lower bound.

The purpose of this paper is to derive estimates for the average running time of the merging
algorithm of Hwang and Lin. This algorithm (or rather a simplified version of it, sufficient for
our purposes) will be described in the next section where we also give a precise definition of the
probability model.

2 The merging algorithm of Hwang and Lin

Let a1 < a2 < ... < ap, and by < b2 < ... < by, denote two ordered lists of numbers, where m > n.
Note that merging these two lists is equivalent to determining the numbers J(7), for 1 < i < n,
where J (i) denotes the index of the rightmost term of the first sequence which is smaller than b;.
Plainly, J(¢) is the number of terms of the first sequence which are smaller than b;. This means
that ay(;y < bi < aygy41 if a1 < bj < @, J(i) = m if b; > a,, and we set J(i) = 0 if b; < ay.

Roughly speaking, the merging algorithm of Hwang and Lin proceeds (as virtually all known
merging algorithms) by succesive insertions of the elements of one of the given lists into the
other. One peculiarity of this algorithm is that the roles of the lists may be interchanged during
the computation, precisely at any moment when the relative order between the sizes of the parts
of the lists remaining to be merged is reversed. However, it can be shown that, for any fixed
ratio ™ = p > 1 of the sizes of the two lists and n — oo, with probability 1 — o(1), most of
the time during the execution of the algorithm, the size of the part of the first list remaining to
be merged will stay bigger than that of the second. Thus, the algorithm of Hwang and Lin will
keep inserting elements of the second list into the first one except perhaps for the very last steps.
Accordingly, we shall analyse a simpler algorithm (with the specification that all the insertions
are insertions of elements of B into A), which we call algorithm HL; and check our assertion
about the sizes of the unmerged parts of the lists. We refer the reader to the paper of Hwang and
Lin ([5]) for the description of their algorithm. For convenience, we shall express the algorithm
HL in terms of the J(i)’s as follows.

Algorithm HL
J(0):=0
for i=1ton do
ri= [log, (541
§:=2"
[ me.Is(ifl)J
for k=1tol do
ji=J@E—1)+ks
if b; < a; then
determine J(i) using binary search in the interval [j — s,j — 1];
continue outer loop
endfor
determine J () using binary search in the interval [j + 1,m]
endfor

end



We shall refer to the comparisons used by the binary search as comparisons of the second type.
The other comparisons will be called comparisons of the first type.

Throughout the analysis we will make the following hypotheses. The algorithm receives as input
pairwise distinct elements, and n < m. The inputs are randomly chosen with uniform distribution
among the (m:") distinct linear orders which are consistent with the partial orders defined by
each of the two lists. The integers m and n tend to infinity, but their proportion remains fixed,
that is there exists a constant p > 1 such that 7% = p. We shall set =~vanda=1-~. We
shall prove the following theorems.

_m_
m+n

Theorem 1 Let p be a fized constant > 1 and distinct from a power of 2. Let v = pﬁ,
r = |log, p| and s = 2". The number of comparisons M (m,n) used by the algorithm of Hwang
and Lin applied to two lists of length m and n satisfies
M(m,n)
=0 s e —
11—~

in probability as m and n tend to infinity with 7> = p.

Theorem 2 Let again M(m,n) denote the number of comparisons M(m,n) used by the algo-
rithm of Hwang and Lin applied to two lists of length m and n. Let m and n tend to infinity with
o = 2" where r is a fized positive integer and let s = 271, Then the number of comparisons
M(m,n) used by the algorithm of Hwang and Lin applied to two lists of length m and n satisfies
EM(m,n) 1 1 1
[ —— _)
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as m and n — oo.

Actually, our results are slightly more precise. The proofs occupy the rest of the paper. Let us
first remind the reader of the following well known fact which we state as a lemma for ease of
reference.

Lemma 1 For any integer r > 1 binary search in an interval of length 2" requires exactly r
cOmparisons.

3 Proof of Theorem 1

Let a; < a2 < ... < ayy and by < be < ... < by, be our two ordered lists and recall that J(¢) was
defined as the index of the rightmost term of the first list which is smaller than b;. Equivalently,
we can think of J(7) + 4 as the rank of the ¢th 1 which appears in a 0-1 string of length m + n
chosen uniformly at random from all 0-1 strings with n 1’s and m 0’s, m = pn where p > 1. Let
X; denote the number of 0’s between the ith 1 and the i+1th 1. Thus,

J@)=X1+Xo+---+ X,

We replace X; by Y; where Y1,Y5,...,Y,41 are independent copies of the geometric random
variable Y with parameter p = =" = v+ O(1/n) where v = p/(1 + p) i.e. Pr(Y = j) =
p’(1 —p) for j = 0,1,2,...00. The next lemma shows that in order to get back to our model,
we need only conditionon Y3 + Y5 + -+ + Y, 11 =m.



Lemma 2 Conditional on Y1 + Ya + --- + Y41 = m, each 0-1 string with n 1’s and m 0’s is
equally likely.

Proof Fix y1,¥2,---,Ynt1 such that y1 +y2 + -+ - + ypy1 = m.

n+1
Pr(Y;=y,1<i<n+1) = [[p¥(1-p)
i=1
= pr(l-p"H
is independent of y1,y2,-- ., Ynt1- |
Lemma 3 ) )
+o0
Pr(Yi + Yoo+ Yoy =m) > — 1
V2mp(p+1)n
Proof
Yy1+y2+-+Yng1=m
n+m
= ( )p’”(l -p)"*
n
m+n (m+n)™t"
= (1401 (1 —p)"tt
(1 -+ o)y 5o E R ym ()
1+40(1)
V2mp(p + 1)n
O
Lemma 4 If Zy,Z>,...,Z}, are independent geometric random variables with parameter o then
there exists eg = €9(a) such that if € < ey then
k k
Pr Z1+Z2+---+Zk——a > € a < 2e~k/8,
1—a 1—a
Proof The proof is the usual application of the Markov inequality to the moment generating
function of the sum. m|

The core of the proof relies on the following lemma.

Lemma 5 There exists K = K(p) such that whp for any € > 0 and for 0 <i <n— Klogn
(a) m—J@GE) >n—i.

(b) Nog, (™542)71 = Nog, p].

Proof (a) follows from (b).

PI‘ 7() > = PI' E X — ’) >
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from Lemma 3. a

Note that the inequality a) of Lemma 5 implies our claim that up to very near from the end of
the execution, (at least up to i = n — K logn), whp the roles of the two lists are not reversed.

Theorem 1 can now be easily proved.

7o

Let ng = n — Klogn. Let T; denote the number of Type 1 comparisons. Let Ti refer to the
~ nO
Z Ti o 1-— /ys

independent model.
no e,ysno 6’7 n(]
r<' 21—73> = Pr<' |ZY—m>
i=1 i=1
_ 1/2 > €Y°no
, T 19

The algorithm HL tells us that 7T; — 1 is the number of consecutive intervals of length s = 27
laying at the right of a; and which contain only 0’s. Thus 7; — 1 has a geometric distribution
with parameter 1 — v°. Hence,

no
1—v

0 s s
Pr ( S di-1) - 1n377s > 1“_2“) < =m0/, (1)
=1

To finish the proof of Theorem 1 we only have to argue that >
also follows from Lemma 4, and to use Lemma 1.

imnot1 1 T = O(logn) whp which

4 Proof of Theorem 2

Here again we analyse in fact algorithm HL.

Let, for 1 <i<n, Z; = X; —ip, S; = E;Zl Zj, and S, = 0,. Let ny = n'/?(logn)*. The cases
corresponding to p = 2" bring a new difficulty: In these cases, the parameter s for the i + 1th
step is equal to 2"~! when S; is positive, and to 2" when S; is non-negative.

Let A denote the event

max |S;| < v/nlogn. (2)
1<i<n

Lemma 6 The event A occurs whp.
Proof (Sketch) Bound above for each i the probability Pr[S; > /nlogn], where S; refers
to the independent model, check that the sum of these bounds is o(n~/2) and use Lemma 2. O

Lemma, 6 and the fact that the total number of comparisons is 2(n) show that we can condition
on A for the proof of Theorem 2.



Lemma 7 In the range ny < i < n — ny, both probabilities Pr[S; < 0] and Pr[S; > 0] are
asymptotic to 1/2.

Proof Use the formula
Pr[S; < S, =
Pefs; < 0] = =0 A S =)
Pr[S, = 0]
where $; refers to the independent model, and use normal approximation. |

Lemma 8 a) Assume i <n—nj and 0 < S; < /nlogn. Then,

E(T:) = 7:llt(;(j)

b) Assumei <n—ny and —y/nlogn < S; < 0. Then,

1+ 0(1)
E(T;) = 1=t
Proof This follows as in (1). Note that we can condition on S; > 0, say, and then replace

Xit1,. .., Xnt1 by independent Y;41,..., Y541 subject to Yip14+---4+Ypp1 =m— (X1+ . +Xz)
The parameter for Y}, j > ¢ will have to change slightly, but will remain close enough to v whp
within our range. |

We have of course
ET; = Pr[S; < 0E[T;|S; < 0] + Pr[S; > 0].E[T;|S; > 0], 1 <i<n.

Lemmas 7 and 8 give then, assuming A, the estimate

1 1 1
Bhi= <§+0(1)> (1—73 - 1—723>’

with s = 271, for each ¢ in the interval n; < 4 < n—n,. In order to conclude the proof of Theorem
2, it remains only, using the linearity of expectation, to account for the Type 2 comparisons, and
to check that the contribution of the expectations corresponding to the remaining values of ¢ is

o(n).
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