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The existence of Hamiltonian cycles in random vertex-labelled regular graphs -is
investigated. It is proved that there exists ro, < 796 such that for r> r, almost all
vertex-labelled r-regular graphs with n vertices have Hamiltonian cycles as n— co.
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1. INTRODUCTION

The study of the properties of random graphs was initiated by Erdés and
Rényi [2]. There they considered the asymptotic properties of random
graphs with n labelled vertices and M(n) edges as n— 0. One problem they
left open was the number of edges needed to ensure the almost certain
existence of a Hamiltonian cycle. This was later partially solved by Pésa [8]
and then completely solved by Korshunov [6] and Komlés and
Szemerédi [5]. The corresponding result for digraphs follows from a theorem
of McDiarmid [7].

An interesting feature of this result, highlighted in [5], is that Hamiltonian
cycles “appear” when M(n) is large enough to “ensure” that the graph has
no vertices of degree one or zero. It is therefore of interest to study classes of
graphs in which the minimal vertex degree exceeds some prescribed value.

In [4] we studied random graphs obtained by taking a random digraph in
which each vertex has outdegree m and then ignoring the orientation of the
arcs. We showed that there exists m, < 23 such that, if m > m, is kept fixed
and n— oo, almost all such graphs have Hamiltonian cycles. We conjecture
that the minimum value for m, is 3.

In this paper we consider random vertex-labelled regular graphs of degree
r and prove a similar result, viz that there exists ro < 796 such that, if 7> r,
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104 FENNER AND FRIEZE

and n— oo, almost all r-regular graphs with n labelled vertices have
Hamiltonian cycles.

In the next section, after introducing some definitions and notation, we
show how to generate random vertex-labelled regular graphs; the last section
is devoted to proving our main result.

2. DEFINITIONS AND NOTATION

For ease of reference we define most of our terms in this section.

A multigraph G= (V, E, y) has a vertex set V, an edge set E, and an
incidence function y, where for each edge e in E, y(e) = {x, y} for some pair
of (not necessarily distinct) vertices x and y in V. For any vertex v in V,
degg(v) denotes the degree of v in G, where loops count twice towards the
degree of a vertex. For any subset of vemces Sc V we define

0s(S)={wevV-— S|3eEE such that w € y(e) and w(e)N S # @}.

Configurations

For positive integers n and r, let 4 =A(n,r)= {1, 2,.., rn}, where we
assume throughout that rn is even. The elements of 4 are referred to as
points. Let A;=A,(n,r)={(i—Dr+1,G—1)r+2,..,ir} for 1, 2,..,n and
for S V(n)={1,2,.,n}let Ag=);cs4;-

Let Q(n, r) be the set of partitions of A into rn/2 disjoint two-element
subsets. The elements of Q(n,r) are referred to as configurations by
Bollobas [1]. The rn/2 two-element subsets of 4 are called the edges of the
configuration.

For F in 2(n, r), let G(F)= (V(n), F, y,) be the vertex-labelled multigraph
with edge set F, where for all {p,q} €F, v,({p, q})= {[ p/r); [9/r]}-

The set of simple configurations is defined by Q*(n,r)=
{FEQ(n,r)|G(F) is a simple graph}. (A simple graph has no loops or
repeated edges; for simple graphs we identify e with y(e) for each e € E.)

. Let RG(n,r) be the set of vertex-labelled r-regular simple graphs with
vertex set V(n); thus

RG(, 1) = (G(F) | FE€ 2*(n, ).
Bollobas [1] has shown that
hm |.Q*(n, /2@, r)| = e“”“” 4 2.1

for each G in RG(n,r) there are exactly (r!)" simple
configurations F such that G(F)=G. ‘ 2.2)
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We turn RG(n, r) into a probability space by assigning each member the
same probability; we also do the same for 2(n, r). For any subset P(n, r) of
RG(n,r) we say that almost all G in RG(n,r) are in P(nr) if
lim,_ ., | P(n, r)|l/|RG(n, r)) = 1, and similarly for a subset Q(n, r) of 2(n, r).

The following remark, which is a straightforward consequence of (2.1) and
(2.2), shows why Bollobas’s construction is so useful.

Remark 2.1. If almost all F in Q(nr) are in Q(nr) and
F € Q*(n, )N Q(n, r) implies G(F) € P(n, r), then almost all G in RG(n, r)
are in P(n, r).

Coloured Configurations

For any positive integer s < r, we define an s-colouring o of A as an n-
tuple (X,,X;,-» X,), Where X, S 4, and |X,|=s for i=1,2,.,n; we let
X(@)=Ur_, X;. Now let K(n,r,s)={0,,0,,0;,.} denote the set of s-
colourings of 4. We shall assume always that

o, =a,(nrs)=({1, 2., sh{r+ Lr+2..,r+sh.,

{nr—r+ 1,nr—r+2,.,nr—r+s})

We say that ¢’ = (X}, X},..., X3) EK(n,r,s — 1) is a subcolouring of ¢ if
X! c X, for i=1,2,..,n. We define K,(n, r, s) to be the subset of K (n,r,s)
containing those s-colourings which have a,(n, r, s — 1) as a subcolouring.

Suppose we first colour the points in X(c) blue and the points in 4 — Xi (o)
green; now let us colour blue those edges having at least one blue point and
colour green the remaining edges, those having two green points. Then, for
each F € Q(n,r) and o € K(n, r, s), we define H, the blue subgraph of G(F)
by

H=H(F,0) = (V(n), F,, v,

where F, = {e € F|eN X(0) # @}, i.e., H is the subgraph of G(F) containing
just the blue edges.

3. MAIN RESULT

THEOREM 3.1. There exists r, such that if r>r, then almost all G in
RG(n, r) are Hamiltonian.

Proof. Bollobas [1] has shown that for r>3 almost all G in RG(n, r)
are connected. In Corollary 3.7 we shall show that there exists o such that
for r > ry almost all G in RG(n, r) have property LC:

a graph G has property LC if a longest cycle of G has the same
number of vertices as a longest path of G.



106 FENNER AND FRIEZE

However, any connected graph having property LC is Hamiltonian: if the
longest cycle C had k < n vertices, then at least one vertex of C would be
adjacent to a vertex not in C and then a path of length X+ 1 could be
formed. N

In order to show that for > r, almost all G in RG(n, r) have property
LC, we use the following standard construction. Suppose that
P= (v, 0,..., ;) is a longest path in a simple graph G = (V, E). Then, if
{ops 0} is in E, t#£ Kk — 1, P! = (V)50 Uyy Uys Up_ g5 U, ;) iS also a longest
path of G. If, in addition, {v,,,,v,} EE, s+ ¢ or ¢ + 2, we can construct yet
another longest path P” using a similar “flip.” We now let G be a multigraph
and define the above construction in a similar manner.

Keeping v, fixed, let EP(v,) be the set of the other endpoints of all the
longest paths formed by doing all possible sequences of flips. The proof of
the following lemma may be found in Posa [8].

LEMMA 3.2. If wis in V—EP(v,) then w is adjacent to some vertex of
EP(v,) in G if and only if w is in P and is adjacent to some vertex of EP(v,)
on P.

The following inequality is a straightforward consequence of Lemma 3.2:

|9(EP(v,)) < 2 |EP(v,)| — 1. @3.1)

Now let AG"be the set of endpoints of all longest paths in G and, for each
v € Ag, let A5(v) be the set of other endpoints of all longest paths having v
‘as one endpoint. Then (3.1) yields the following corollary.

CoroLLARY 3.3. If |65(R)|>2|R| for all RSV with |R|<m, then
|Ag@) > m for all vE A,;.

It is not difficult to show that, for » > 7 (and possibly with more work, for
r > 3), Corollary 3.3 implies that, for all v € A, |44(v)| > a(r)n for almost
all G in RG(n,r) for some a(r) >0 (see Lemma 3.4). Thus, if we could
ignore conditioning problems, it seems likely that there would be a high
enough probability that G would contain an edge joining the endpoints of
some longest path, yielding property LC. We overcome the conditioning
problems by using a colouring argument analogous to that we used in (4],
but at the cost of increasing our estimate of r,.

We now prove some properties of the blue subgraphs H(F, o).

LEMMA 3.4. For any real positive a <% and integers r>s>1, let
B(n, r, a, 5) be the set of all configurations F in $2(n, r) for which there exists
Rc V(n) such that (i) 1<|R|<an, and (ii) |6,(R)|<2|R|, where
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H=H(F,s,). If n/(n)=Prob(FEB(n,r,as) then lim,_ ,m,(n)=0,
provided

3a + (sa/r)'? < 1, (3.2)
e x log x + 2x log 2x + (1 — 3x) log(1 — 3x)
o=s= s x1ogBx + (XN ) >0 63

(Note that for a < }

(i) (3.2) is satisfied if s/r is sufficiently small,

(i) the supremum in (3.3) is finite but tends to infinity as
3a + (sa/r)"/? tends to 1.)

Proof. Let F be a random configuration in £(n,r). Now let
R={1,2,.,k}, T={k+ 1,k +2,.,3k}, and U= {3k + 1,3k + 2,..., n}; we
first bound the probability that 5,(R) < T. In terms of F, this is equivalent to

no blue point of 4, is paired with a point of 4, 3.4)

and

no green point of A is paired with a blue point of 4. (3.5)

As the method we are using at present is not capable of getting an estimate
of r, close to 3 (which we conjecture to be its least value), we ignore (3.5) in
order to simplify the calculations. '

If (3.4) holds then for some ¢< sk/2 there will be 2t blue points of Ag
paired together and sk — 2¢ blue points of 4, each paired either with a green
point of A, or with a point of A;. For a fixed set of 2¢ blue points of Ag, the
probability of this happening is bounded above by ’

2t—1 2t-3 1 (ik_

sk—2t
. . < t sk—2t
m—1 m-—3 m—2t+1 n ) < (2/rn) (3k/n)

< (3k/n)**(sn/9rk)’.

Thus the probability that (3.4) holds is bounded above by
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It then follows that

lan)

< 3 ez () (+(om) )
- lan] n 12
<3 (z7w-m)
1/2\ sk k 2k
() ) ) (&) -2

for some ¢ > 0, using Stirling’s inequalities. Thus, using (3.2) and (3.3), we

see that
my(n) < 2- 6a)”z l"z"l : ( (f:) ”2)"*
=0(n"%. |

LEMMA 3.5. For any §>0,0<y< 1, and integer s >0, let C(n, r, B, ¥,
s) be the set of all configurations F in Q(n,r) for which there exists o in
K\(n,r,s) such that |{v € V(n)|deg,(v)>yr}|>pn, where H = H(F,o).
There exists ry=r,(B, y, s) such that if r > r, and ny(n) = Prob(F € C(n, r, 8,
7, §)) then lim,_, , m,(n) =0.

Progf. Let F be a random configuration in 2(n, r) and let ¢ be any fixed
colouring in K,(n,r,s). For any S< V(n), let Eg denote the event that
deg,(v) > yr for all v € S.

Suppose now that |S|=[fn]. If E; occurs, there must be at least
t = (yr —2s)[fn] edges of F pairing a green point of 4 (i.e., a point of
Y=As— Xs) with a blue point of 4,,,_s (i.e., a point of Z=X,,,,_s).

We now consider the points of Y sequentially. Whatever the history of
previous pairings, the probability that p € Y is paired with some point ¢ € Z
is at most

__ 1z a-Ps 1
T m=2|Y|  r=28(r—s) +O(n)'

Thus, if B(m, ) denotes a binomial random variable,
Prob(E) < Prob(B(| Y}, 8) > ¢).

(Edges {p,q} < Y have not been ignored; if we conditioned on the set T of
such edges, | Y| would be replaced by | Y| — 2|7 in the above inequality.)
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On using the Chernoff bound [3], this yields

(=0 r—(2—-6)s)’8
39(r—s) ’

Prob(E;) < e ", where ar=

provided that (y—8)r > (2—6)s. We note that for s fixed a increases
unboundedly with r. It now follows that

n

) <E=s+ 1 (o

) e=am, (3.6)

$0 7,(n) - O for r sufficiently large. [§

An error in our original proof of Lemma 3.5 was brought to our attention
by McDiarmid and a referee. The proof above is due to McDiarmid.

We note that, at the expense of increasing the minimal value of r,(f, y, s),
Lemma 3.5 and its proof can be considerably simplified: if » > (1 + f)s/(8y)
then > |Z|, so Eg cannot occur and thus C(n,r,f,y,5) is empty. This
would also yield some simplification in the proof of Lemma 3.6 below, but
our upper bound on r, (of 796) would then increase considerably.

Using the previous two lemmas, we can now prove the existence of r, such
that for r > r, almost all G in RG(n, r) have property LC.

LEmMMA 3.6. Let D(n,r)={F€ Q(n,r)| G(F) does not have property
LC). There exists r, such that if r > ry, and n,(n) = Prob(F € D(n, r)) then
lim,_ ., 73(n) =0.

Proof. First choose any a < § and any positive # < a and y < 1. Next
choose r and s such that (3.2) and (3.3) are satisfied with s replaced by
s—1,and r>r,B,y5). Let Q=0(n,r) and K =K(n, r, s).

For (F,0) € 2 X K, let a(F, o) =1 if the following three conditions hold:

no edge of G(F) joins the two endpoints of any longest path of H, (3.7a)
|84(R)| > 2|R| for all R < V(n) with |R| < an, (3.7b)
[{v € V(n)| degy,(v) > yr}l < Bn, (3.7¢)

and let a(F, o) =0 otherwise.

Let B=B(n,r,a,s—1), C=C(n,r,B,7,5s), and D=D(n,r). We now
show that if @=02— (BUC) and FE 2N D then a(F,0)=1 for at least
one 6 € K,=K,(n,r,s). Indeed, since FE& C, (3.7c) is satisfied for all
o € K,. Moreover, since F & B, (3.7b) is also satisfied for all 0 € K,. Now
let P=(v,,v,,.., ;) be a longest path in G(F). Consider points p; and ¢,,
1<i<k—1, with p,€A,, q,€4,,, , and {p;,q;} € F. Such points must
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exist since P is a path in G(F). At least one ¢ € K, colours p,, p,,.., Px—;
blue, so for such a colouring (3.7a) holds as F is in D.
It therefore follows that

IDI< Y. T a(F0) + |BUC
Fefl oek,

In order to bound this double sum we introduce an equivalence relation = on

2 X K, by letting (F, o)~ (F', ¢') if and only if
o=0', (3.8a)
F,=F!, i.e., H(F,0) = H(F', 6). (3.8b)

Let Q = (2 X K,)/= be the set of equivalence classes. We note that
[(F,0)]€ @  implies (3.7b) and (3.7c) hold.

For A€ Q, let n, =|{(F,0) € 4| a(F,0)=1}| and let g, and F, denote the
values of g and F_, respectively, for any (F, o) € 4.

We shall later show that if 8=((1—4)e*)""2< 1, where
A=(—y)a—pB)r/(r—s), then

n, < c,8" 4| for some constant ¢, > 0. 3.9)
Hence
2. 2 aF,0)= > n,
Fefl oek, AeQ
<" 3 |4
AeQ
=co8" |2||K,l.
Therefore,

m3(n) < (¢o 0" l-é| |K( |+ 1B C|)/|2] < co0(r — s + 1))" + 7,(n) + 7y(n).

Thus if we choose r sufficiently large that @(r —s+ 1) <1 we see that
72,(n) - 0. '

It now only remains to prove (3.9). We suppose first that 4 € Q is fixed.
Let Z,=)F,, ie., the set of points incident with blue edges, let
Z,=Z,NA;and let Y;=A4,—Z, for i=1,2,.,n. Now let Y,=0)]_, 7Y,
and let 2, be the set of partitions of Y, into 2-element subsets. We then see
that

(F,o)ed if and only if o =0, and F=F, U I for someI € 2, (3.10)
and thus |2,|=|4|. (I is the set of green edges of F.)
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Next let L = {i||Z,| > yr}. Since |Z,| = deg,(i) and (3.7¢c) holds, we have
|L| < Bn.

Now let H = H(F, g); H is independent of the choice of (F, g) in 4. Since
(3.7b) holds, Corollary 3.3 implies that |4,(v)| > an for all v € 4,,. It then
follows that

|[A4(®)Y—L|> (@—B)n for all v € 4,,, (3.11a)
|4, —L|> (a—B)n. (3.11b)

If we now let U= ¢, ¥, and U(v) = Ujcn,m Y5 it follows from (3.11)
that, for all v € 4,,,

U1 2 [U@) > (1 =y)r (@—B)n.

Now let (F, 0) € 4 be such that a(F, 0) =1 and let I be as in (3.10). Then,
by (3.7a),

there is no e € I such that, if y,(e) = {v,, v,},

(3.12)
v, EAy and v, € A,v,).

Then, if we let M=(1—y)r(a—p)n and N=(r—s)n>|Y,|, the
proportion of I in £, that satisfy (3.12) is bounded above by

1p/2]

w= [] W-—M-1)/N-2-1). (3.13)

To show this, we choose I at random so that each such I in £, is equally
likely to be chosen. We then examine the points in U= {p,, p,, p3,...} in
turn until either we find some p; such that the point ¢ paired with p, in I is in
U([ p,/r]), or we exhaust I. If g is not in U([ p;/r]) then we eliminate both p;
and g from further consideration. We observe that I will be exhausted if and
only if I satisfies (3.12).

Let us suppose that ¢ pairs have been examined and the process has not
terminated. Let p; be the uneliminated point of U having the smallest index.
Then there are at least M — 2t points of U([p;/r]) that have not been
eliminated. Thus the probability that the process ends with p; given that it
has not previously terminated is at least (M — 2¢)/(N — 2t — 1), from which
(3.13) follows.

Now, from (3.13),

(N = MY (N72) — M72] — 1)t
2[M/2]+llN/2J!

w

y/

<co(
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for some ¢, >0, on using Stirling’s inequalities; (3.9) then follows since
nyfld|<w. 1

From Lemma 3.6, on using Remark 2.1, we obtain

COROLLARY 3.7. There exists a least integer ro such that if r > r, then
almost all G in RG(n, r) have property LC.

This completes the proof of Theorem 3.1.

By straightforward computation, one can show that r, < 796 by taking
a=0.26, =0019, y=03, and s=31 in Lemma3.6. Additional
computation might reduce this bound, but not significantly.

In spite of the size of this upper bound, it is not unreasonable to
conjecture that ry= 3. It is interesting to note that property LC holds for all
2-regular graphs and since it also holds for almost all r-regular graphs, for r
large, a gap might seem unnatural.

Remark. As this manuscript was being typed we were interested to learn
from Bollobas [9] that he has just obtained the same result. However, his
upper bound on r, is approximately 107.
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